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Abstract: The use of metaheuristics in estimating the exact parameters of solar cell systems con-
tributes greatly to performance improvement. The nonlinear electrical model of the solar cell has
some parameters whose values are necessary to design photovoltaic (PV) systems accurately. The
metaheuristic algorithms used to determine solar cell parameters have achieved remarkable success;
however, most of these algorithms still produce local optimum solutions. In any case, changing to
more suitable candidates through elephant herd optimization (EHO) equations is not guaranteed;
in addition, instead of making parameter α adaptive throughout the evolution of the EHO, making
them adaptive during the evolution of the EHO might be a preferable choice. The EHO technique
is used in this work to estimate the optimum values of unknown parameters in single-, double-,
and three-diode solar cell models. Models for five, seven, and ten unknown PV cell parameters are
presented in these PV cell models. Applications are employed on two types of PV solar cells: the
57 mm diameter RTC Company of France commercial silicon for single- and double-diode models
and multi-crystalline PV solar module CS6P-240P for the three-diode model. The total deviations
between the actual and estimated result are used in this study as the objective function. The perfor-
mance measures used in comparisons are the RMSE and relative error. The performance of EHO and
the proposed three improved EHO algorithms are evaluated against the well-known optimization
algorithms presented in the literature. The experimental results of EHO and the three improved
EHO algorithms go as planned and proved to be comparable to recent metaheuristic algorithms. The
three EHO-based variants outperform all competitors for the single-diode model, and in particular,
the culture-based EHO (CEHO) outperforms others in the double/three-diode model. According
the studied cases, the EHO variants have low levels of relative errors and therefore high accuracy
compared with other optimization algorithms in the literature.

Keywords: metaheuristics; solar cell systems; elephant herding optimization; alpha tuned EHO;
cultural-based; biased initialization; parameter identification; single diode; double diode; three diodes

1. Introduction

Energy is an essential component of the universe and is considered one of the forms
of existence. Energy is divided into two main types (renewable energy and non-renewable
energy); non-renewable energy as fossil fuels has a terrible impact on the environment.
Therefore, many nations tend to use renewable energy to produce their electricity. Solar
energy is one of the primary and available renewable energy sources on the planet that
has no pollution and easy installation as well as being inexpensive and noise-free. The
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need to add renewable energy sources is increased with the dramatic changes in electricity
requirements. Therefore, the effective modeling of renewable energy resources is an
important issue for efficient energy management [1].

Solar cells are one of the ways to take advantage of solar energy, so significant attention
went to model photovoltaic (PV) cells [2–7]. Several parameters define the nonlinear
electrical model of a solar cell, which must be studied in depth to design PV systems. It is
vital to understand the current–voltage graph (I-V) before using PV cells. In addition to
determining PV’s parameters, picking a few points from this curve can also help. Based on
the number of diodes, different parameter models are presented. Three different types are
available: single diode, double diode, and three diode [8–11].

Parameter identification can be accomplished in two ways, using deterministic methods
or using metaheuristics. Examples of traditional approaches are Lambert W-functions [12]
and the interior-point method [13]. Although traditional models can solve parameter
identification, it has some drawbacks facing nonlinear problems such as sensitivity to the
initial solution besides sticking in a local optimum solution with heavy computations and
taking a long time to reach this optimum. Therefore, metaheuristics algorithms are used
to overcome these drawbacks. Examples of these metaheuristics are the Particle Swarm
Optimization (PSO) [6], Genetic Algorithm (GA) [14], Differential Evolution (DE) [15],
Harmony Search (HS) [16], Artificial Bee Colony (ABC) [17], and Simulated Annealing
(SA) [18].

The continuous development in optimization methods has been notable in recent
decades. For example, several optimization methods were developed and applied for
different power system problems, as presented in [19,20]. Furthermore, in [21–25], an
algorithm that mimics the elephant herding behavior called Elephant Herding Algorithm
(EHO) was proposed for different applications. Reference [26] proposes three improved
variants of EHO that are developed.

The basic architecture of the PV cell guarantees that two differentially doped semicon-
ductor layers form a PN junction. When irradiation is present, the cell absorbs photons
from incoming light and produces carriers (or electron–hole pairs). As a result, there may
be a discrepancy at the intersection [27]. In an ideal PV cell model, a photocurrent source
and a diode are connected in parallel. Model estimation is made easiest by the fact that
there are only three unknown parameters: the ideality factor η, the photocurrent Ipv, and
the reverse saturation current Is.

The contact resistance Rs between the silicon and electrode surfaces is described by
this resistance. A parallel resistance Rp is attached to the diode to prepare for leakage
current in the PN junction. The single-diode model (SDM) model has five parameters that
must be estimated: Ipv, Is, Rs, and Rp [28]. The double-diode model (DDM) is a more
precise method of modeling PV cells. It takes into account current loss recombination in
the depletion area. With the addition of the seventh parallel diode, there are now seven
parameters to estimate (Ipv, η1, Id1, η2, Id2, Rp, and Rs) [8].

These models are of great interest to many researchers. There have been many suc-
cessful algorithms for adjusting parameters of PV cells in SDM and DDM, but few works
in TDM have been published in this area. Reference [29] proposed a solar PV parameter
extraction method based on the Flower Pollination Algorithm (FPA). Two diode models
are chosen to understand the precision of the computation. The authors experimented with
the effectiveness of FPA using RTC France info. Simulated Annealing (SA), Pattern Search
(PS), Harmony Search (HS), and Artificial Bee Swarm Optimization (ABSO) techniques
are often used to compare the measured root mean square error and relative error for
the built model. Researchers [30] proposed a hybridized optimization algorithm (HISA)
for accurately estimating the parameters of the PV cells and modules. From the experi-
mental data obtained from five case studies consisting of two cells and three modules for
monocrystalline, multi-crystalline, and thin-film PV technologies, single- and double-diode
models of PV cells/modules were developed with their respective single I V nonlinear
characteristics.
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The authors [31] propose two simple metaphor-free algorithms called Rao-2 (R-II) and
Rao-3 (R-III) to estimate the parameters of PV cells. Several well-known optimization algo-
rithms are compared to the efficiency of the proposed algorithms. The comparison helps
show the merit of the algorithms. Finally, an analysis of statistical data is combined with
experimental findings to verify the efficiency of the proposed algorithms. The Grasshopper
Optimization Algorithm (GOA) is proposed [32] for parameter extraction of a PV module’s
three-diode PV model. This GOA-based PV model uses two popular commercial modules:
Kyocera KC200GT and Solarex MSX-60.

The single-, double-, and three-diode models have different solar cell parameters.
These models have five parameters for the single-diode model and seven parameters for
the double- and three-diode models. Each parameter must be obtained accurately based
on the objective function to reach the global optimum. In this study, the EHO algorithms
have been chosen to solve this problem because they have a few control parameters and
smooth implementation. In addition, EHO’s simplicity and few parameters made it a
suitable choice for achieving such enhancements. Furthermore, by dividing the population
into clans, we could avoid becoming trapped in a local optimum and instead converge on
reaching a global minimum. Finally, after getting experimental results for this problem, a
comparison with other well-known algorithms was presented to prove the result’s quality.
This comparison is important to ensure that the new variants can solve this problem and
compete with other algorithms.

Table 1 reports some of the recent solvers that were applied for PV parameter estima-
tion problems in the recent years

Table 1. Recent optimizers for PV parameter estimation.

Ref #/Year Algorithm Ref #/Year Algorithm Ref #/Year Algorithm

[3], 2020 Projectile Search Algorithm [32], 2020 Grasshopper Optimizer [33], 2020 Backtracking Search
Algorithm

[5], 2020 Cuckoo Search Optimizer [34], 2020 Flower Pollination [35], 2021 Marine Predators Optimizer

[6], 2018 Differential Evolution
Algorithm [36], 2021 Newton-Raphson jointed

with Heuristic Algorithm [37], 2020 Improved Wind-Driven
Algorithm

[9], 2021 Turbulent Flow of Water
Optimizer [38], 2021 Supply–Demand Optimizer [39], 2019 Differential Evolution

Algorithm

[10], 2021 Forensic Optimizer [40], 2021 Improved Bonobo Optimizer [41], 2020 Slime Mold Optimizer

[11], 2021 Gorilla Optimization
Algorithm [42], 2013 Artificial Bee Swarm [43], 2020 Coyote Optimization

Algorithm

[21], 2021 Closed loop PSO and EHO [44], 2021 Hybrid Whale and PSO
Optimizer [45], 2020 Adaptive Differential

Evolution

[31], 2019 Metaphor-Less Algorithms [46], 2021 Artificial Ecosystem
Optimizer [47], 2019 Gray Wolf Optimization

The RMSE and the relative error are used as the most performance measures developed
in the previous methods. The proposed variants of EHO are compared against most of the
new well-known algorithms on the parameter identification of different photovoltaics. The
performance of these proposed algorithms can be judged according to convergence speed,
high estimation of parameters, and low computation time.

The main contributions of this paper can be summarized as follows:

• Proposing three variants of the EHO algorithms for solar cell parameters estimation.
• The EHO and the proposed EHO variants are tested on single-, double-, and three-

diode models.
• Verifying the performance of each algorithm by comparing results with those of

competitors.
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• Proving that the culture-based variant has the most effective performance that im-
proves the EHO.

• Validation of the proposed variants under different environmental conditions for
temperature and irradiation. In this regard, the applications are employed on two
types of PV solar cells.

The rest of the paper is organized as follows. The second section focuses on solar cells
and mathematical models. In Section 3, an elephant-herding algorithm is proposed, and its
different versions are discussed. The results, computer simulations, and comparisons are
listed and discussed in Section 4. Finally, we conclude in Section 5 with a wrap-up and
conclusion.

2. Mathematical Models of Photovoltaic Cell

Solar cell models describing the I-V characteristics typically contain one diode, two
diodes, or three diodes. These detailed models are described as follows:

2.1. Single Diode Model (Five-Parameter Model)

A modified Shockley diode equation can describe a single diode model. It is widely
used for modeling solar cells because it is simple to implement with five parameters
(Iph, Id, n, Rsh, Rs). However, at low illuminations, the single diode model is particularly
inaccurate in describing cell behavior [48,49]. Figure 1 shows a single diode model consist-
ing of a current source in parallel with a diode, and the module shunt resistance controls
the loss of currents at the junction within the cell.
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2.2. Double-Diode Model (Seven-Parameter Model)

Figure 2 shows the double-diode model as an additional diode is added in parallel with
the current source. This additional diode can achieve higher accuracy than a single diode
model, but with seven parameters, more computation is needed (Iph, Id1, Id2, n1, n2, Rsh, Rs).
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2.3. Three-Diode Model (10-Parameter Model)
The three-diode model shown in Figure 3 extends the double-diode model by adding the third

diode in parallel with the two other diodes. The three-diode model has three more parameters than
the double-diode model (Id3, n2, K) [50,51].
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The mathematical formulation of the three-diode model is given by Equation (3) as:
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2.4. Parameter Extraction of the Solar Cell
A set of current–voltage (I–V) experimental data is given to extract the cell parameters. To

define an objective function to be used in optimization algorithms, Equations (1)–(3) are reformed
as in Equations (4)–(6). Equations (4)–(6) are used to get the error between the experimental and
measured currents for the PV models, which are considered as the fitness functions of the three PV
models.

f1(Vt, It, y) = It − Iph + Id1

[
exp

(
q(Vt + Rs · It)

n1 · k · T

)
− 1
]
+

Vt + Rs · It
Rsh

(4)

f2(Vt, It, y) = It − Iph + Id1

[
exp

(
q(Vt + Rs · It)

n1 · k · T

)
− 1
]
+ Id2

[
exp

(
q(Vt + Rs · It)

n2 · k · T

)
− 1
]
+

Vt + Rs · It
Rsh

(5)

f3(Vt, It, y) = It − Iph + Id1

[
exp

(
q(Vt+Rs ·It)

n1·k·T

)
− 1
]
+ Id2

[
exp

(
q(Vt+Rs ·It)

n2·k·T

)
− 1
]

+Id3

[
exp

(
q(Vt+Rs ·It)
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)
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+ Vt+Rs ·It

Rsh

(6)

The objective function can be implemented as the root mean square error (RMSE) as:

F =

√√√√ 1
N

N

∑
l=1

fl(Vt, It, y)2. (7)

3. EHO-Based Optimization Algorithms
The wild elephant grows in herds. Clans of elephants are organized into groups under the

leadership of female leaders. Furthermore, male elephants abandon the herd as they mature. To
implement the elephant’s behavior to solve nonlinear optimization problems, EHO is summarized
into three essential rules:

1. The population has a fixed number of clans; each clan consists of some elephants.
2. The male elephant separates the clan and lives alone away from the group.
3. A leadership of female elephants rules the clan.

There are clans within the elephant population, and within each clan, each elephant is ranked
based on its fitness, and then each group is updated separately.

Clan updating operator: For each member in clan ci, the best elephant effect on its next position
in clan c. We can update elephant j in clan c by:

xn,c,j = xc,j + α · r ·
(

xbest,c − xc,j

)
. (8)

The best elephant in each clan can be updated as:

xn,c,j = β · xcenter,c. (9)
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Separating operator: As mentioned, the male elephant will live alone, separately away from the
family. This separating process acts as the separating operator, which can be implemented into each
generation as the worst fitness. We achieve it as follows:

xworst,c = xmin + r · (xmax − xmin + 1). (10)

The elephant optimization procedure has been randomly generated based on the pseudocode
in Figure 4 and the flowchart in Figure 5. The EHO algorithm has significant merit of a few control
parameters. However, the chances of finding a new good elephant vs. a poor one are low; thus,
the new candidate solution is unlikely to be as excellent as or better than the old one. The search
operator does not consider the knowledge of the best solution or other solutions that may have
a beneficial influence on steering EHO toward more promising areas of search space due to the
participation of these random variables. However, a closer look at the flowchart and pseudocode of
EHO reveals several gaps and shortcomings. These shortcomings may have a bad impact, affecting
EHO’s performance.

• As depicted in Equation (10), the new generated xworst ,ci value may be worse than the original
value of F. Thus, in this equation, a better value cannot be guaranteed.

• The constant value alpha (α in Equation (8)) remains consistent during algorithmic steps.
Therefore, making the parameter based on the generation number of the elephant makes sense.

This paper aims to improve EHO performance, which is under-reported in the scientific litera-
ture. Listed below are three potential enhancements to EHO performance:

• Alpha tuning of αEHO.
• Cultural-based EHO (CEHO).
• Biased initialization EHO (BIEHO).
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3.1. Alpha Tuning of αEHO
Careful investigation of EHO parameters recommends setting the scale factor α to be adaptive

is more promising than being a constant value in the range [0, 1].
Putting it simply, making alpha adaptive and related to the population number is more conve-

nient and matched to the notion of evolution in Equation (11). In the original EHO algorithm, the
scale factor-alpha is a constant value. Now, α is varying with the generation number by this function:

αnew = α +
αmax − αmin

n
. (11)

3.2. Cultural-Based EHO (CEHO)
By utilizing the space of the best prior members, the cultural-based algorithm aids in the

improvement of the algorithm [26,52,53]. The cultural-based algorithm constructs a better community
by considering a belief space comprised of selected population members by acceptance function,
as shown in Figure 6. A new member can be generated by using the belief space. A cultural-
based algorithm is used to generate new solutions among belief space boundaries in the separating
operation.
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3.3. Biased Initialization EHO (BIEHO)
The main idea of the biased initialization algorithm is that the algorithm did not start evolving

while the population’s average fitness did not exceed a certain threshold. Therefore, the clan should
be satisfied with its population’s quality and ensure high-quality elephants. Start the generation with
a population with functional fitness. The next step of evolution will not begin until the quality of
the first generation reaches a suitable predetermined threshold. Biased algorithms are used in the
initialization step by adding a rule or a limit [54]. Forcing the first generation of the population to
have a good candidate solution may lead to another good production.

4. Computer Results and Simulations
EHO variants were tested using 57 mm diameter commercial silicon solar cells from the RTC

Company of France to verify their performance against single- and double-diode models. The experi-
ment is carried out under 1 sun (1000 W/m2) at 33 ◦C [8,42,55]. A multi-crystalline PV solar module
CS6P-240P is used to represent the three-diode model. CS6P-240P experimental data based on [56,57]
are established for four irradiance levels (109.2, 246.65, 347.8, and 580.3 W/m2) at temperatures (37.32,
40.05, 347.8, and 51.91 ◦C), respectively. Table 2 shows the manufacture specification for CS6P-240P
under standard test conditions (STD). The basic EHO and its three variants are compared with the
results of two algorithms from [42] called Artificial Bee Swarm Optimization algorithm (ABSO) and
Harmony Search (HS) algorithm. The few adjustable parameters for EHO can be set as α = 0.9, β = 0.1,
number of clans = 4, population size = 32, and maximum iteration = 5000.

Table 2. Manufacture specification under standard test condition.

Maximum Power at STC 240 W

Optimum operating voltage 29.9 V

Optimum operating current 8.03 A

Open circuit voltage 37.0 V

Short circuit current 8.59 A

V Temperature coefficient Voc −0.43%

I Temperature coefficient Isc 0.065%

Cell arrangement 60 (6 × 10)

Tables 3 and 4 present the optimal solar cell parameters and RMSE by EHO algorithms, Artificial
Bee Swarm Optimization algorithm (ABSO), and Harmony Search (HS) for single- and double-diode
modes. The single-diode model is considered the simplest model among all models with only five
parameters. Table 3 shows that the four EHO algorithms obtained the same result due to the model’s
simplicity, but all four algorithms outperformed ABSO and HS. Table 4 shows the results for the
double-diode model with seven parameters, showing differences between the extracted parameters
and the RMSE. Compared to other algorithms, CEHO achieved the lowest RMSE. Figure 7 shows
the convergence of the four EHO algorithms for the single-diode and double-diode model at the
first 250 generations, respectively. In addition, it showed the fast convergence of the proposed EHO
algorithms for obtaining good results.

Table 3. Comparison between EHO algorithms, ABS, and HS for single-diode solar cells.

Item EHO
EHO Variants

ABSO HS
αEHO CEHO BIEHO

Iph (A) 0.76078 0.76077 0.76078 0.76077 0.7608 0.7607

Id (µA) 0.32201 0.32143 0.32098 0.320479 0.30623 0.30495

Rs (Ω) 0.036388 0.036397 0.0364027 0.0364085 0.03659 0.03663

Rsh (Ω) 53.5851 53.58874 53.52479 53.49828 52.2903 53.5946

n 1.48086 1.48068 1.48054 1.48038 1.47583 1.47538

(RMSE) 9.861 × 10−4 9.861 × 10−4 9.861 × 10−4 9.861 × 10−4 9.9124 × 10−4 9.9510 × 10−4
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Table 4. Comparison between EHO algorithms, ABS, and HS for double-diode solar cells.

Item EHO
EHO Variants

ABSO HS
αEHO CEHO BIEHO

Iph(A) 0.76079 0.7607 0.76077 0.76079 0.76078 0.76176

Id1(µA) 0.19895 0.23015 0.470885 0.294513 0.26713 0.12545

Id2(µA) 0.25005 0.22753 0.258635 0.478734 0.38191 0.25470

Rs(Ω) 0.0367292 0.036594 0.036595 0.036591 0.03657 0.03545

Rsh(Ω) 53.47509 54.0848 54.85623 53.415705 54.6219 46.8269

n1 1.44596 1.45601 1.994023 1.47250 1.46512 1.49439

n2 1.69709 1.73558 1.462378 1.98067 1.98152 1.49989

(RMSE)F 9.876 × 10−4 9.853 × 10−4 9.830 × 10−4 9.852 × 10−4 9.834 × 10−4 0.00126
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As demonstrated by Table 5, the measured current is very close to the calculated current. In
addition, cultural-based EHO leads to outperformed results compared with other EHO variants.

Figures 8 and 9 show the power and current of the calculated and measured current from
cultural-based EHO. Again, the measured and calculated curves are almost identical, while the
relative error for the double-diode model for cultural-based EHO is presented in Table 6.

The previous results were for the PV panels at standard temperature and radiation. The
four EHO algorithms were tested against three other algorithms at different irradiance levels and
temperatures for more testing. Table 7 shows the extracted parameters for the seven algorithms
at different irradiance levels and temperatures. Finally, the three-diode model is tested against
three algorithms from [43] (Moth-Flame Optimizer (MFO), FPA, and Hybrid Evolutionary algorithm
(DEIM)). The RMSEs for each algorithm at varying irradiance levels are listed in Table 8. Again, at
low radiation with 109.2 W/m2, CEHO outperforms EHO with a slightly small difference but a big
difference compared to other algorithms. CEHO outperformed other algorithms at other radiations,
and BIEHO’s results were slightly different from CEHO’s. The superiority of the CEHO algorithm
is proven as the best compared with the other three variants and the other three algorithms for all
irradiance levels. Figure 10 shows that calculated data fit the I-V curve of measured data for CEHO.



Appl. Sci. 2021, 11, 11929 10 of 16

Table 5. The relative error for 26 measurements (single diode) with CEHO.

No. Vt (v) It (A) Measured Iph (A) Calculated Relative Error

1 −0.2057 0.764 0.764104 −0.000104

2 −0.1291 0.762 0.762674 −0.000674

3 −0.0588 0.7605 0.761362 −0.000762

4 0.0057 0.7605 0.760156 0.000344

5 0.0646 0.76 0.759053 0.000947

6 0.1185 0.759 0.758037 0.000963

7 0.1678 0.757 0.757083 −0.000083

8 0.2132 0.757 0.756130 0.00087

9 0.2545 0.7555 0.755073 0.000427

10 0.2924 0.754 0.753649 0.000351

11 0.3269 0.7505 0.751377 −0.000877

12 0.3585 0.7465 0.747342 −0.000842

13 0.3873 0.7385 0.740110 −0.000161

14 0.4137 0.728 0.727382 0.000618

15 0.4373 0.7065 0.706981 −0.000481

16 0.459 0.6755 0.675295 0.000205

17 0.4784 0.632 0.630777 0.001223

18 0.496 0.573 0.571946 0.001054

19 0.5119 0.499 0.499618 −0.000618

20 0.5265 0.413 0.413650 −0.00065

21 0.5398 0.3165 0.317502 −0.001002

22 0.5521 0.212 0.212138 −0.000138

23 0.5633 0.1035 0.102232 0.0013

24 0.5736 −0.01 −0.008728 −0.001272

25 0.5833 −0.123 −0.125504 0.002504

26 0.59 −0.21 −0.208448 −0.007552
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Table 6. The relative error for 26 measurements (double diode) with CEHO.

No. Vt (v) It (A) Measured Iph (A) Calculated Relative Error

1 −0.2057 0.764 0.764019 −0.000019

2 −0.1291 0.762 0.762623 −0.000623

3 −0.0588 0.7605 0.761343 −0.00843

4 0.0057 0.7605 0.760166 0.000334

5 0.0646 0.76 0.759088 0.006912

6 0.1185 0.759 0.758093 0.001093

7 0.1678 0.757 0.757154 −0.000154

8 0.2132 0.757 0.756208 0.000792

9 0.2545 0.7555 0.755147 0.000353

10 0.2924 0.754 0.753704 0.000296

11 0.3269 0.7505 0.751400 −0.000900

12 0.3585 0.7465 0.747325 −0.000825

13 0.3873 0.7385 0.740054 −0.001554

14 0.4137 0.728 0.727300 0.0007

15 0.4373 0.7065 0.706897 −0.000397

16 0.459 0.6755 0.675236 0.0003

17 0.4784 0.632 0.630758 0.001242

18 0.496 0.573 0.571968 0.001032

19 0.5119 0.499 0.499668 −0.000668

20 0.5265 0.413 0.413703 −0.000703

21 0.5398 0.3165 0.317536 −0.001036

22 0.5521 0.212 0.212140 −0.00014

23 0.5633 0.1035 0.102201 0.001299

24 0.5736 −0.01 −0.008761 −0.008761

25 0.5833 −0.123 −0.125531 0.002531

26 0.59 −0.21 −0.208418 −0.001582
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Table 7. Comparison between different EHO algorithms among irradiance levels.

Irradiance Algorithm Iph Id1 Id2 Id3 Rs Rsh n3

580.3 W/m2

51.91 ◦C

EHO 5.9992 1.7321 × 10−8 6.7684 × 10−7 1.1186 × 10−5 0.39027 493.15 3.9986

αEHO 5.9947 1.5744 × 10−8 2.2779 × 10−7 5.8365 × 10−5 0.35637 4729.3 2.1169

CEHO 5.9997 1.7336 × 10−8 3.84148 × 10−7 2.0015 × 10−10 0.39055 478.607 2.7151

BIEHO 5.9988 1.7292 × 10−8 1.3773 × 10−6 2.3406 × 10−8 0.38977 502.29 3.048

MFO 6.00066 1.7346 × 10−11 9.210 × 10−7 1.210 × 10−6 0.38481 461.866 3.2135

FBA 6.0075 1.7297 × 10−11 8.7857 × 10−7 9.0089 × 10−7 0.39137 457.054 3.2926

DEIM 6.0016 1.7363 × 10−11 9.9751 × 10−7 1.0234 × 10−6 0.38524 457.282 3.2658

347.8 W/m2

43.95 ◦C

EHO 3.0421 5.6398 × 10−9 2.116 × 10−6 2.0512 × 10−7 0.41272 522.92 3.925

αEHO 3.0328 4.5677 × 10−9 7.2634 × 10−8 3.1293 × 10−5 0.26283 4927.8 2.001

CEHO 3.0415 5.6216 × 10−9 2.6116 × 10−6 9.3642 × 10−9 0.41118 540.79 3.9941

BIEHO 3.0413 5.676 × 10−9 2.1503 × 10−7 7.9926 × 10−5 0.41442 562.44 3.4295

MFO 3.0457 5.6724 × 10−12 9.985 × 10−7 1.0234 × 10−6 0.4163 461.524 3.2256

FBA 3.04277 5.6211 × 10−12 5.3506 × 10−7 9.6777 × 10−7 0.42925 517.401 3.1541

DEIM 3.0454 5.6773 × 10−12 9.9482 × 10−6 1.3562 × 10−6 0.41479 465.385 3.6897

246.65 W/m2

40.05 ◦C

EHO 2.138 3.2543 × 10−9 5.3294 × 10−6 0.0005517 0.44377 4961.5 3.2946

αEHO 2.135 2.4755 × 10−9 9.8526 × 10−8 4.3367 × 10−5 0.28076 4977.9 2.0474

CEHO 2.1379 3.2050 × 10−9 8.1838 × 10−6 0.0005982 0.43518 4999.86 3.4380

BIEHO 2.1378 3.2494 × 10−9 4.9161 × 10−6 0.0004857 0.43959 4971.3 3.2026

MFO 2.1435 3.3585 × 10−12 1.62 × 10−6 0.9391 × 10−3 0.45333 4989.25 3.5252

FBA 2.1484 3.453 × 10−12 5.4342 × 10−7 9.0503 × 10−7 0.4923 4889.44 3.6523

DEIM 2.1498 3.4402 × 10−12 9.9684 × 10−7 1.025 × 10−6 0.8932 4746.08 3.5697

109.2 W/m2

37.32 ◦C

EHO 0.99658 1.8992 × 10−9 3.7627 × 10−7 7.6187 × 10−7 0.74613 469.11 3.9922

αEHO 0.98919 1.7615 × 10−9 6.7713 × 10−9 3.1843 × 10−5 0.58626 709.92 2.5034

CEHO 0.99641 1.8939 × 10−9 5.1732 × 10−7 3.4151 × 10−8 0.74203 472.73 3.8993

BIEHO 0.99641 1.901 × 10−9 2.5001 × 10−7 1.8607 × 10−5 0.74568 475.05 3.9983

MFO 0.99853 2.2787 × 10−12 1.0698 × 10−9 9.9999 × 10−7 0.7337 450.15 3.7173

FBA 0.9978 2.2761 × 10−12 1.0399 × 10−7 5.8927 × 10−7 0.7230 473.45 3.7569

DEIM 0.9985 2.2658 × 10−12 3.1652 × 10−8 4.9986 × 10−7 0.7351 449.34 3.3526

Table 8. Comparison between EHO algorithms, MFO, FBA, and DEIM for three-diode solar cells.

EHO
EHO Variants

MFO FBA DEIM
αEHO CEHO BIEHO

0.014598 0.026082 0.014591 0.014607 0.02455 0.02708 0.02807

0.0014236 0.02323 0.001337 0.001359 0.009927 0.016307 0.015864

0.0018575 0.006821 0.0017978 0.001821 0.012602 0.13287 0.012913

0.0009912 0.003721 0.00099094 0.0001923 0.001855 0.003607 0.0035508
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5. Conclusions
This paper presents a new optimization algorithm based on elephant herding behavior called

Elephant Herding Optimization (EHO) and three improved variants called αEHO, CEHO, and
BIEHO. The EHO and its three variants are developed to estimate single, double, and three-diode
solar cell models. The 57 mm diameter RTC Company of France commercial silicon solar cell with
26 points of measured data was chosen to present single and double models’ problem under one
irradiance level (25 ◦C and 1000 W/m2). The EHO variants results are compared with two good
algorithms (ABSO, HS). For presenting the three-diode model multi-crystalline PV solar module
CS6P-240P under four irradiance levels (109.2, 246.65, 347.8, and 580.3 W/m2) at temperature (37.32,
40.05, 347.8, and 51.91 ◦C) respectively. The EHO algorithms are compared with another three
algorithms (MFO, FBA, and DEIM). The superiority of the four EHO algorithms is proven in the
results. Cultural-based algorithms outperformed all algorithms used in the double- and three-diode
models and ABSO, HS, and Biased in the single-diode model. Finally, it can be concluded from the
results that EHO algorithms are very suitable for solving parameters extraction of solar cell problems
for variant models.

Among the drawbacks of conventional EHO is its scale factor alpha being a constant value.
Additionally, the behavior of EHO requires more attention to the solutions. Therefore, it would
be helpful to employ more hybrid solutions, as this study recommends. Moreover, due to the
practical nature of elephant herding, there are more processes involved than clan updating and
separating. Thus, more models should be developed and incorporated into the EHO method that
models elephant behavior. Finally, the main EHO was designed for solving continuous problems, so
it must be validated for continuous and discrete problems [58].

Future work will include extracting parameters for more complex models for more accurate
parameter extraction. In addition, the adaptive scaling factor is more promising than being a constant
value in the range [0, 1]. Moreover, due to the superiority of the CEHO algorithm, we can do more
enhancements to the CEHO algorithm to get more accurate results for more complex optimization
problems. In addition, more behavior characteristics are recommended to investigate an advanced
version of EHO accomplished with new hybrid algorithms.
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Nomenclature

Iph The photogenerated current
Id The diode current
Id1 The first diode current
Id2 The second diode current
Id3 The third diode current
Vt The internal voltage
Rs The series resistance
Rsh The shunt resistance
n1 The first diode ideality factor
n2 The second diode ideality factor
n3 The third diode ideality factor
k Boltzmann’s constant
T Temperature
ql The charge of an electron
N Number of experimental data
xn,c,j Updated position for elephant j in clan c
xc,j Old position for elephant j in clan c
α A scale factor ε [0, 1]
r Random number ε [0, 1]
β A scale factor ε [0, 1]
xcenter,c Centre of clan c
xc,j,d The dth of the elephant individual xc,j
xman Upper bound of the position of elephant
xmin Lower bound of the position of elephant
xworst,c Worst elephant individual in clan ci
αmin Lower bound of permissible range of α

αmax Upper bound of permissible range of α
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