Seawater Effect on Fatigue Behaviour of Notched Carbon/Epoxy Laminates
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
- Water absorption occurred slowly, and the weight remained almost constant after 30 days of immersion, which suggests that saturation had been reached, either for natural or artificial seawater.
- Seawater immersion affected the fatigue strength. However, considering the scattered nature of the fatigue phenomenon, the roles of the immersion time (30 and 60 days) or the type of seawater (natural or artificial) were not relevant.
- The effect of seawater for long lives, close to 1 million cycles, can be neglected. On the contrary, as the lifetime decreases, the reduction of fatigue strength increases progressively. For fatigue lives of 104 cycles, the stress amplitude was 1.2 higher in dry laminates than in wet laminates.
- The failure mechanisms were similar for all conditions, evidencing the fracture of axially aligned fibres and longitudinal delamination between layers. Debonding between the fibres and matrix produced by normal stresses was also observed for layers aligned in the 90°, 45° and −45° directions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Selvaraju, S.; Ilaiyavel, S. Applications of composite in marine industry. J. Eng. Res. Stud. 2011, 2, 89–91. [Google Scholar]
- Mouritz, A.P.; Gellert, E.; Burchill, P.; Challis, K. Review of advanced composite structures for naval ships and submarines. Comp. Struct. 2001, 53, 21–41. [Google Scholar] [CrossRef]
- Meng, M.; Le, H.; Grove, S.; Rizvi, M.J. Moisture effects on the bending fatigue of laminated composites. Compos. Struct. 2016, 154, 49–60. [Google Scholar] [CrossRef] [Green Version]
- Boisseau, A.; Davies, P.; Thiebaud, F. Fatigue behaviour of glass fibre reinforced composites for ocean energy conversion systems. Appl. Compos. Mater. 2013, 20, 145–155. [Google Scholar] [CrossRef]
- Diamant, Y.; Marom, G.; Broutman, L.J. The effect of network structure on moisture absorption of epoxy resins. J. Appl. Polym. Sci. 1981, 26, 3015–3025. [Google Scholar] [CrossRef]
- Wong, T.C.; Broutman, L.J. Water in epoxy resins Part II. Diffusion mechanism. Polym. Eng. Sci. 1985, 25, 529–534. [Google Scholar] [CrossRef]
- Zhou, J.; Lucas, J.P. Hygrothermal effects of epoxy resin. Part I: The nature of water in epoxy. Polymer 1999, 40, 5505–5512. [Google Scholar] [CrossRef]
- Popineau, S.; Rondeau-Mouro, C.; Sulpice-Gaillet, C.; Shanahan, M.E.R. Free/bound water absorption in an epoxy adhesive. Polymer 2005, 46, 10733–10740. [Google Scholar] [CrossRef]
- Weitsman, Y.J. Anomalous fluid sorption in polymeric composites and its relation to fluid-induced damage. Compos. Part Appl. Sci. Manuf. 2006, 37, 617–623. [Google Scholar] [CrossRef]
- Le Duigou, A.; Davies, P.; Baley, C. Seawater ageing of flax/poly(lactic acid) biocomposites. Polym. Degrad. Stab. 2009, 94, 1151–1162. [Google Scholar] [CrossRef] [Green Version]
- Tual, N.; Carrere, N.; Davies, P.; Bonnemains, T.; Lolive, E. Characterization of sea water ageing effects on mechanical properties of carbon/epoxy composites for tidal turbine blades. Compos. Part A Appl. Sci. Manuf. 2015, 78, 380–389. [Google Scholar] [CrossRef] [Green Version]
- Chilali, A.; Assarar, M.; Zouari, W.; Kebir, H.; Ayad, R. Analysis of the hydro-mechanical behaviour of flax fibre-reinforced composites: Assessment of hygroscopic expansion and its impact on internal stress. Compos. Struct. 2018, 206, 177–184. [Google Scholar] [CrossRef]
- Aoki, Y.; Yamada, K.; Ishikawa, T. Effect of hygrothermal condition on compression after impact strength of CFRP laminates. Compos. Sci. Technol. 2008, 68, 1376–1383. [Google Scholar] [CrossRef]
- Apicella, A.; Nicolais, L.; Astarita, G.; Drioli, E. Effect of thermal history on water sorption, elastic properties and the glass transition of epoxy resins. Polymer 1979, 20, 1143–1148. [Google Scholar] [CrossRef]
- Apicella, A.; Nicolais, L.; Astarita, G.; Drioli, E. Hygrothermal history dependence of equilibrium moisture sorption in epoxy resins. Polymer 1981, 22, 1064–1167. [Google Scholar] [CrossRef]
- Apicella, A.; Tessieri, R.; de Cataldis, C. Absorption modes of water in glassy epoxies. J. Membr. Sci. 1984, 18, 211–225. [Google Scholar] [CrossRef]
- Behera, A.; Dupare, P.; Thawre, M.M.; Ballal, A. Effects of hygrothermal aging and fiber orientations on constant amplitude fatigue properties of CFRP multidirectional composite laminates. Inter. J. Fatigue 2020, 136, 105590. [Google Scholar] [CrossRef]
- Behera, A.; Vishwakarma, A.; Thawre, M.M.; Ballal, A. Effect of hygrothermal aging on static behavior of quasi-isotropic CFRP composite laminate. Compos. Commun. 2020, 17, 51–55. [Google Scholar] [CrossRef]
- Carraro, P.A.; Maragoni, L.; Quaresimin, M. Prediction of the crack density evolution in multidirectional laminates under fatigue loadings. Compos. Sci. Techn. 2017, 145, 24–39. [Google Scholar] [CrossRef]
- Gonabadi, H.; Oila, A.; Yadav, A.; Bull, S. Fatigue damage analysis of GFRP composites using digital image correlation. J. Ocean. Eng. Mar. Energy 2021, 7, 25–40. [Google Scholar] [CrossRef]
- Kafodya, I.; Xian, G.; Li, H. Durability study of pultruded CFRP plates immersed in water and seawater under sustained bending: Water uptake and effects on the mechanical properties. Compos. Part B 2015, 70, 138–148. [Google Scholar] [CrossRef]
- Koshima, S.; Yoneda, S.; Kajii, N.; Hosoi, A.; Kawada, H. Evaluation of strength degradation behavior and fatigue life prediction of plain-woven carbon-fiber-reinforced plastic laminates immersed in seawater. Compos. Part A Appl. Sci. Manuf. 2019, 127, 105645. [Google Scholar] [CrossRef]
- Weitsman, Y.J.; Elahi, M. Effects of Fluids on the Deformation, Strength and Durability of Polymeric Composites—An Overview. Mech. Time-Depend. Mater. 2000, 4, 107–126. [Google Scholar] [CrossRef]
- Kotsikos, G.; Evans, J.T.; Gibson, A.G.; Hale, J.M. Environmentally enhanced fatigue damage in glass fibre reinforced composites characterised by acoustic emission. Comp. Part A 2000, 31, 969–977. [Google Scholar] [CrossRef]
- Kensche, C.W. Fatigue of composites for wind turbines. Int. J. Fatigue 2006, 28, 1363–1374. [Google Scholar] [CrossRef]
- Ramirez, F.A.; Carlsson, L.A.; Acha, B.A. Evaluation of water degradation of vinylester and epoxy matrix composites by single fiber and composite tests. J. Mater. Sci. 2008, 43, 5230–5242. [Google Scholar] [CrossRef]
- Ishida, H.; Koening, J.L. A fourier transform infrared spectroscopy study of the hydrolytic stability of silane coupling agents on E-glass fibers. J. Polym. Sci. Pol. Phys. 1980, 18, 1931–1943. [Google Scholar] [CrossRef]
- Al-Sabagh, A.; Taha, E.; Kandil, U.; Awadallah, A.; Nasr, G.-A.M.; Taha, M. Monitoring Moisture Damage Propagation in GFRP Composites Using Carbon Nanoparticles. Polymers 2017, 9, 94. [Google Scholar] [CrossRef] [Green Version]
- Amaro, A.M.; Reis, P.N.B.; de Moura, M.F.S.F.; Neto, M.A. Influence of open holes on composites delamination induced by low velocity impact loads. Compos. Struct. 2013, 97, 239–244. [Google Scholar] [CrossRef]
- Tan, J.L.Y.; Deshpande, V.S.; Fleck, N.A. Failure mechanisms of a notched CFRP laminate under multi-axial loading. Compos. Part A 2015, 77, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Alshaya, A.; Rowlands, R. Experimental stress analysis of a notched finite composite tensile plate. Compos. Sci. Techn. 2017, 144, 89–99. [Google Scholar] [CrossRef]
- Erçin, G.H.; Camanho, P.P.; Xavier, J.; Catalanotti, G.; Mahdi, S.; Linde, P. Size effects on the tensile and compressive failure of notched composite laminates. Compos. Struct. 2013, 96, 736–744. [Google Scholar] [CrossRef]
- Santos, R.A.M.; Reis, P.N.B.; Santos, M.J.; Coelho, C.A.C.P. Effect of distance between impact point and hole position on the impact fatigue strength of composite laminates. Compos. Struct. 2017, 168, 33–39. [Google Scholar] [CrossRef]
- Amaro, A.M.; Reis, P.N.B.; Santos, J.B.; Santos, M.J.; Neto, M.A. Effect of the Electric Current on the Impact Fatigue Strength of CFRP Composites. Compos. Struct. 2017, 182, 191–198. [Google Scholar] [CrossRef]
- ASTM International. Standard Practice for the Preparation of Substitute Ocean Water; ASTM International: West Conshohocken, PA, USA, 2003; Volume 98, pp. 98–100. [Google Scholar]
- Kennedy, C.R.; Leen, S.B.; Brádaigh, C.M.Ó. Immersed Fatigue Performance of Glass Fibre-Reinforced Composites for Tidal Turbine Blade Applications. J. Bio. Tribo. Corros. 2016, 2, 12. [Google Scholar] [CrossRef] [Green Version]
- Siriruk, A.; Penumadu, D. Degradation in fatigue behavior of carbon fiber-vinyl ester based composites due to sea environment. Compos. Part B Eng. 2014, 61, 94–98. [Google Scholar] [CrossRef]
- Meng, M.; Rizvi, M.J.; Grove, S.M.; Le, H.R. Effects of hygrothermal stress on the failure of CFRP composites. Compos. Struct. 2015, 133, 1024–1035. [Google Scholar] [CrossRef] [Green Version]
- Ray, B.C. Temperature effect during humid ageing on the interfaces of glass- and carbon-fibers reinforced epoxy composites. J. Colloid. Interf. Sci. 2006, 298, 111–117. [Google Scholar] [CrossRef]
- Barraza, H.J.; Aktas, L.; Hamidi, Y.K.; Long, J.; O’Rear, E.A.; Altan, M.C. Moisture absorption and wet-adhesion properties of resin transfer molded (RTM) composites containing elastomer-coated glass fibers. J. Adhe. Sci. Techn. 2003, 17, 217–242. [Google Scholar] [CrossRef]
- Zheng, Q.; Morgan, R.J. Synergistic thermal-moisture damage mechanisms of epoxies and their carbon fiber composites. J. Compos. Mater. 1993, 27, 1465–1478. [Google Scholar] [CrossRef]
- Ferreira, J.A.M.; Costa, J.D.M.; Reis, P.N.B. Static and fatigue behaviour of glass-fibre-reinforced polypropylene composites. Theor. Appl. Fract. Mech. 1999, 31, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, J.A.M.; Costa, J.D.M.; Reis, P.N.B.; Richardson, M.O.W. Analysis of fatigue and damage in glass-fibre-reinforced polypropylene composite materials. Compos. Sci. Technol. 1999, 59, 1461–1467. [Google Scholar] [CrossRef] [Green Version]
- Reis, P.N.B.; Ferreira, J.A.M.; Richardson, M.O.W. Fatigue damage characterization by NDT in thermoplastics composites. Appl. Compos. Mater. 2011, 18, 409–419. [Google Scholar] [CrossRef]
- Ferreira, J.A.M.; Reis, P.N.B.; Costa, J.D.M.; Richardson, M.O.W. Fatigue behaviour of Kevlar composites with nanoclay-filled epoxy resin. J. Comp. Mat. 2012, 47, 1885–1895. [Google Scholar] [CrossRef]
- Barré, S.; Benzeggagh, M.L. On the use of acoustic emission to investigate damage mechanisms in glass-fibre-reinforced polypropylene. Compos. Sci. Technol. 1994, 52, 369–376. [Google Scholar] [CrossRef]
- Abdel-Magid, B.; Ziaee, S.; Gass, K.; Schneider, M. The combined effects of load, moisture and temperature on the properties of E-glass/epoxy composites. Compos. Struct. 2005, 71, 320–326. [Google Scholar] [CrossRef]
- Reis, P.N.B.; Ferreira, J.A.M.; Costa, J.D.M.; Richardson, M.O.W. Fatigue life evaluation for carbon/epoxy laminate composites under constant and variable block loading. Compos. Sci. Technol. 2009, 69, 154–160. [Google Scholar] [CrossRef] [Green Version]
- Reis, P.N.B.; Ferreira, J.A.M.; Antunes, F.V.; Richardson, M.O.W. Effect of interlayer delamination on mechanical behavior of carbon/epoxy laminates. J. Compos. Mater. 2009, 43, 2609–2621. [Google Scholar] [CrossRef]
NaCl | MgCl2 | Na2SO4 | CaCl2 | KCl |
---|---|---|---|---|
24.53 | 5.20 | 4.09 | 1.16 | 0.695 |
Test | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
0-day immersion | ||||||
σa (MPa) | 216.0 | 228.4 | 252.9 | 261.1 | 277.4 | 308.6 |
Nf (cycle) | 3,325,233 | 1,177,063 | 374,299 | 138,655 | 62,318 | 18,267 |
30-days immersion (natural sea water) | ||||||
σa (MPa) | 221.1 | 244.9 | 252.9 | 261.1 | 277.8 | 293.0 |
Nf (cycle) | 231,596 | 1,065,134 | 373,244 | 10,953 | 2337 | 8521 |
30-day immersion (artificial sea water) | ||||||
σa (MPa) | 212.0 | 228.3 | 244.5 | 261.0 | 270.7 | 277.2 |
Nf (cycle) | 3,166,016 | 42,577 | 259,469 | 161,689 | 2282 | 3241 |
60-day immersion (natural sea water) | ||||||
σa (MPa) | 212.0 | 228.4 | 244.9 | 261 | 277.2 | 293.9 |
Nf (cycle) | 3,113,244 | 135,405 | 75,449 | 2965 | 11,265 | 1849 |
60-day immersion (artificial sea water) | ||||||
σa (MPa) | 212.0 | 228.5 | 244.8 | 260.9 | 277.3 | 309.9 |
Nf (cycle) | 3,243,975 | 3535 | 648,411 | 24,927 | 7396 | 2151 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Branco, R.; Reis, P.N.B.; Neto, M.A.; Costa, J.D.; Amaro, A.M. Seawater Effect on Fatigue Behaviour of Notched Carbon/Epoxy Laminates. Appl. Sci. 2021, 11, 11939. https://doi.org/10.3390/app112411939
Branco R, Reis PNB, Neto MA, Costa JD, Amaro AM. Seawater Effect on Fatigue Behaviour of Notched Carbon/Epoxy Laminates. Applied Sciences. 2021; 11(24):11939. https://doi.org/10.3390/app112411939
Chicago/Turabian StyleBranco, Ricardo, Paulo N. B. Reis, Maria A. Neto, José D. Costa, and Ana M. Amaro. 2021. "Seawater Effect on Fatigue Behaviour of Notched Carbon/Epoxy Laminates" Applied Sciences 11, no. 24: 11939. https://doi.org/10.3390/app112411939
APA StyleBranco, R., Reis, P. N. B., Neto, M. A., Costa, J. D., & Amaro, A. M. (2021). Seawater Effect on Fatigue Behaviour of Notched Carbon/Epoxy Laminates. Applied Sciences, 11(24), 11939. https://doi.org/10.3390/app112411939