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Abstract: The present work evaluates the deep learning algorithm called Sparse Auto-Encoder (SAE)
when applied to the characterization of structural anomalies. This study explores the SAE’s perfor-
mance in a supervised damage detection approach to consolidate its application in the Structural
Health Monitoring (SHM) field, especially when dealing with real-case structures. The main idea is
to use the SAE to extract relevant features from the monitored signals and the well-known Support
Vector Machine (SVM) to classify such characteristics within the context of an SHM problem. Vibra-
tion data from a numerical beam model and a highway viaduct in Brazil are considered to assess
the proposed approach. In both analyzed examples, the efficiency of the implemented methodology
achieved more than 99% of correct damage structural classifications, supporting the conclusion that
SAE can extract relevant characteristics from dynamic signals that are useful for SHM applications.

Keywords: novelty detection; vibration signals; Sparse Auto-Encoder; damage detection; structural
health monitoring

1. Introduction

In structural systems, damage may be defined as a change that negatively affects the
structure’s original performance. In most cases, even though the presence of damage may
not represent an immediate issue, it may cause the system to no longer operate under ideal
conditions. However, a relevant increase in damage levels can provoke a progressive loss
in the structure’s functionality. Such a situation can exceed safety threshold levels, causing
structural collapse and failure. Hence, the development of strategies capable of identifying
structural novelties is considered crucial and is a topic of interest for several researchers,
as shown in the studies of Azim and Gül (2021) [1], Nunes et al. (2021) [2], and Wah et al.
(2021) [3].

Structural Health Monitoring (SHM) is a field of research dedicated to developing
techniques and equipment to investigate damage or alterations in structures. It is known
that degradation processes directly influence structural dynamic behaviors, since it alters
the structures’ physical properties, such as mass and stiffness. Therefore, most damage
detection and health monitoring methods were mainly developed taking into account
vibration signals monitored over time (i.g., time histories of accelerations, displacements,
and velocities), as seen in the classic reference work of Doebling (1998) [4] and the present-
day literature review made by Avci et al. (2021) [5].

One of the best-known traditional methods to characterize a signal coming from struc-
tural monitoring is through modal identification, in which natural frequencies, vibration
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modes, and damping ratios are extracted from vibration data, so much so that several
approaches based on modal properties have been developed lately, as reported in the
works of Yang and Oyadiji (2017) [6], Liu et al. (2017) [7], and Marrongelli et al. (2019) [8].
Although it is possible to detect damage from deviations in natural frequencies and mode
shapes, such a methodology has some difficulties, especially when dealing with actual
structures due to the influence of environmental and operational factors on the modal
behavior [9–12]. Temperature variations and uncertainties about loadings may lead to
changes in dynamic parameters that can be mistakenly attributed to structural damage. In
addition to the procedures used to mitigate the ambient effects [13–15], many contributions
have been proposed to circumvent this problem, including different signal processing
techniques for analyzing dynamic data based on metrics or parameters extracted from the
signals in the time domain or any other transformed domain [16].

In the last few decades, the evolution of computational technologies has brought
remarkable advances in data acquisition systems, making it necessary to improve SHM
tools and techniques to deal with large amounts of vibration data. Thus, what was done in
an incipient way with a reduced number of variables through modal analysis, probability,
and statistical techniques is now automatically identified with machine learning methods,
such as the popular Artificial Neural Networks (ANNs), Support Vector Machines (SVMs),
Decision Tress, Clustering, among others. The works of Salehi and Burgueno (2018) [17],
Finotti et al. (2019) [18], Cardoso et al. (2019a) [19], Nguyen et al. (2019) [20], Umar et al.
(2021) [21], Chang et al. (2019) [22] are good examples associated with this kind of SHM
strategy. In such approaches, relevant features are extracted from dynamic responses by
signal processing techniques and are transferred as input parameters to computational
intelligence algorithms. These, in turn, try to recognize similar patterns among the data
and assign them to distinct structural conditions or damage states.

Generally, machine learning methods play an important role in SHM strategies. Nev-
ertheless, according to Crémona and Santos (2018) [23], the high dimensionality of the
involved variables in actual monitored systems and the structure’s complexity can sig-
nificantly compromise the damage detection algorithms’ performance. There are a few
techniques to reduce the dimension of large data sets, e.g., Principal Component Analysis
(PCA), Independent Component Analysis (ICA), t-Distributed Stochastic Neighbor Embed-
ding (t-SNE), etc. [24–26] However, since their success depends mainly on the nature and
quality of the data, empirical analysis is still essential for determining the most appropriate,
which can be time-consuming within an actual SHM context. Thus, developing a more
autonomous, accurate, and robust approach to identify structural alterations remains a
challenge. With this in mind, many SHM methodologies have been developed based on
Deep Learning (DL). DL algorithms are known for their ability to handle large volumes of
data. They consist of modeling representative data information using complex abstractions
through linear and nonlinear mapping with multiple processing layers. Among all of the
possible DL algorithms, the Sparse Auto-Encoder (SAE) is a promising alternative for the
SHM community. This method attempts to reduce and learn the data characteristics by
itself. Generally speaking, the SAE may be interpreted as a type of ANN whose aim is to
output an approximate reproduction of the input data through an internal codification that
transforms the input variables (theoretically of higher dimension) into new variables with
a lower dimension (see Goodfellow et al. (2016) [27]). Due to the learning autonomy of
their models, DL-based techniques can extract features more robustly than traditional data
processing techniques and adapt to different types of problems. Such factors facilitate the
automatic processing of dynamic signals, encouraging its application in an SHM approach.

In so doing, Pathirage et al. (2019) [28] studied the Sparse Auto-Encoder (SAE) to
diagnose the presence of damage based on modal parameters of the structures. It is
important to highlight that the parameters obtained by the SAE are not directly correlated
with the modal data of the structure. Instead, they carry characteristics that model the
structural behavior for the health state, type of loading and environmental factors for which
the SAE was trained. Numerical and experimental studies were carried out considering
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uncertainties in the finite element modeling of a steel frame and the noise effects on
the measured signals in a prestressed concrete bridge prototype. In the work of Wang
and Cha (2021) [29], the authors proposed a method based on the One-Class Support
Vector Machine (OC-SVM) to discover structural changes directly from measurement
acceleration. The method’s performance was evaluated on a 12-story numerical building
model and a laboratory-built scaled-down steel bridge. Bao et al. (2019) [30] investigated a
detection strategy in which acceleration data from a cable-stayed bridge are transformed
into image vectors and are then analyzed by an Auto-Encoder and classified by an ANN.
In turn, Silva et al. (2021) [31] adopted modal parameters as input attributes of the Auto-
Encoder to distinguish between different structural scenarios in a highway viaduct. SHM
methodologies with two other variations of the Auto-Encoder algorithm are discussed
in Ma et al. (2020) [32] and Shang et al. (2021) [33], both focused on the extraction of
signal characteristics in the time domain. While Ma et al. (2020) [32] presented a damage
detection method based on a Variational Auto-Encoder (VAE), Shang et al. (2021) [33] bet
on the theory of the Deep Convolutional Denoising Auto-Encoder (DCDAE). The first
strategy was evaluated for a bridge subjected to moving vehicles (numerical simulation and
laboratory experiment), and the second considered a beam structure (numerical simulation
and laboratory experiment).

Taking into consideration that SAE deep learning algorithms are recent tools in the
SHM area, studies focused on evaluating them to solve novelty detection problems are still
welcomed, as seen in a significant number of recent works that address this topic. However,
most studies already published still focus on numerical models or simplified laboratory
structures. Although some applications have been found in practical and unsupervised
applications of SHM systems, as reported by Avci (2021) [5], the SHM solution is not
universal for different types of structures. A set of techniques that might work for one
structure might not work for another. Moreover, most analyses already conducted with
SAE are applied to the detection of machine failure components, problems that are much
more particular than civil engineering structures. For these reasons, the authors understand
that there is a lack of studies to consolidate the application of the SAE in distinct types of
civil engineering structures. From this perspective, and understanding that the success of
an unsupervised SHM approach initially requires an evaluation within the framework of
supervised techniques, the objective of the present work is to evaluate the SAE algorithm
to extract parameters from vibration signals, allowing the identification of structural
alterations. In so doing, the SAE avoids the need for additional processing steps and the
constant demand for modal parameter estimation and tracking.

The proposed approach is initially assessed through numerical simulations performed
on a simply supported beam model. Several analyses are then carried out considering the
acceleration time histories obtained from a highway viaduct in Brazil. Such a structure
was subjected to a strengthening procedure after being damaged. The structural condition
assessment is performed using SAE to “learn” important data features; that is, to charac-
terize the vibration signals, and SVM to classify the corresponding damage classes (i.e.,
before and after the strengthening), according to SAE’s extracted attributes. It should be
mentioned that other classification algorithms could be applied to run the classification
task, such as linear and non-linear regressions, Artificial Neural Networks, and Clustering.
References Cury and Crémona (2012) [34], Finotti et al. (2016) [35], and Almeida Cardoso
et al. (2019b) [36] are dedicated to this kind of analysis. In general, SVM has competitive
results.

2. Theoretical Background: Deep Learning, Sparse Auto-Encoder (SAE) and Support
Vector Machine (SVM)

Deep learning may be faced as a special class of artificial neural networks (ANN),
normally with multiple layers. This characteristic allows the possibility to firmly adjust
ranked sets of network parameters that make this machine learning technique capable of
obtaining concise information from raw data. These sets of parameters may be applied to
resolve problems like prognosis or pattern identification, for example. Among the available
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deep learning strategies, one can highlight Long Short-Term Memory [37], Convolutional
Neural Network [38] and Auto-Encoder [30]. This last-mentioned strategy is the focus of
the present paper, as previously noted.

The main feature of the ANN called Auto-Encoder (AE) is its type of operation: The
architecture of an AE network is constructed to achieve an output that approximates its
input. A simple AE with three layers is presented in Figure 1 to clarify this statement,
which also introduces important elements, namely:

• Function f : represents the code function that operates over the input signal vector x (a
single series of dynamic measurements, for instance).

• Vector h: stands for the result of a function f over a signal vector x. In other words, it
is the feature vector.

• Function g: represents the code function that operates over the feature vector h. This
function reconstructs an approximation of the original input signal vector x.

• Vector y: stands for the result of a function g over the feature vector h. In other words,
it is the reconstruction of the auto-encoder’s input.

The code function f applied to the input data x leads to the learned features h = f (x).
On the other hand, the decode function g applied to h leads to output y = g(h). The
principal idea is to write a cost function to calculate the AE parameters that produce y ≈ x.
At this point, it is important to observe that the learning process of an AE is unsupervised.
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Figure 1. Three-layer AE structure.

There are three possibilities for AE concerning the dimensionality of the h and x vector,
K and M, respectively: For K > M, the complexity of h is higher than the one of x vector.
This is not desirable if one wants to “learn” essential features of x. For K = M, this
second hypothesis may be faced as a transformation of x, which also does not reduce
the complexity of the problem. AEs placed on the third possibility (K < M) are called
Undercomplete Auto Encoders, and they are often used for data mapping problems, like
those addressed in the present work. The reduction of data’s dimension allows identifying
significant parameters of x that are appropriate for identifying structural damage (h vector).

Instead of purely minimizing the cost function Z(x, g( f (x))), which calculates the
difference between x and y = g( f (x)), a sparse penalty T( f (x)) may be added in the
function Z during the training phase of the network. Function T( f (x)) is selected to
increase the capacity of the AE to represent x with a small number of h components. In this
case, the AE is called a Sparse Auto-Encoder (SAE). Goodfellow et al. (2016) [27] presented
an excellent overview of AE and SAE, which is recommended for further inquiries.

To illustrate the above definitions, a typical SAE network is presented in Figure 2. It
has an equal number of encoding and decoding layers (two in this figure) and a central
layer from which the internal codes h are derived. The symmetric configuration is manda-
tory for SAE networks. Both first and last layers (encoder and decoder, respectively) have
M processing units (neurons), M being the sampled signals’ length. The central layer has
K neurons, corresponding to the K internal components h that are used to characterize each
structural signal x composed of M data points. It is noteworthy that K � M, indicating
the transformation of the input variables into new ones with a lower dimension. In order
to achieve the objective of this work, the main SAE parameters—the number of encod-
ing/decoding layers and the dimension of the vector h—are analyzed for two different
structures, described further in the text. It is important to note that the feature vector h is
used to assess relevant information about the structure’s behavior. Then, such a vector is
used as input to SVM for structural novelty detection.
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SVM is a statistical machine learning method that has been widely used to solve several
pattern recognition problems. The fundamental idea of SVM is to construct an optimal
separating hyperplane by maximizing the margin and minimizing the misclassification
between two classes of data in a space [39]. The SVM performs the classifications by
defining some training data points positioned in the margins (support vectors), where the
distance between them is maximized through an optimization function that minimizes
the Euclidean norm of the hyperplane’s directional vector. When dealing with nonlinear
problems, the input variables are mapped in a higher-dimensional feature space by using a
kernel function. The SVM theory can be extended to multi-class classification problems
through strategies based on a combination of binary classifiers, e.g., one-against-one and
one-against-all [40]. For more detailed information about SVM, see Vapnik (2013) [39] and
Bishop (2006) [40].
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3. The Adopted SHM Strategy

This section describes the SHM strategy used to evaluate SAE’s performance, summa-
rized in two main steps:

1. Training phase

(a) Data organization. An input training matrix A with (P × M) elements is
created, P being the number of dynamic tests randomly selected for the training
phase, where M is the sampled signals’ length. Thus, matrix A is formed by
arranging each selected vector x in a row of the input matrix. In other words,
matrix A gathers the dynamic measurements.

(b) Data characterization using SAE. This task is conducted in an unsupervised
way via SAE, using matrix A. The penalization function Z(x, g( f (x))) is mini-
mized and, for each vector x, a corresponding vector h is obtained. An SAE
output matrix B with its (P × K) elements is organized with the output vectors
h. It can be said that matrix B “collects” the feature vectors. The minimization
is performed through a feedforward backpropagation algorithm employing
the Scaled Conjugate Gradient (SCG) optimization method [41]. Furthermore,
hyperparameters, such as the sparsity proportion ρ, sparsity regularization
β and weight regularization λ, were selected empirically. These parameters
are related to the sparse penalty function defined in Section 2 and assist in the
determination of the best solution by the SAE [42].

(c) Data classification using SVM. Although the signal characterization is unsuper-
vised, the data classification model’s training process is supervised, since the
pattern recognition herein is carried out using classical SVM. Hence, matrix B
and its respective targets (referring to the structural conditions) are utilized
for training the SVM. In this case, the SVM model is constructed using the
Radial Basis Function (RBF) kernel and considers the one-against-one strategy
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to solve the multi-class problems. The parameters σ and C (regularization
terms from the RBF kernel and maximization formulation, respectively) were
estimated through an exhaustive search procedure known as Grid Search [43]
applying the 10-fold cross-validation [44].

2. Evaluation phase. Assuming that the SVM models are well-trained and achieve ac-
ceptable classification rates, the performance of the proposed SHM strategy is directly
linked to the SAE’s capability to extract features from the dynamic signals adequately.
The current step is developed by evaluating the set of dynamic measurements that
were not used in the previous phase, gathered in matrices C and D. Matrix C, con-
taining Q vectors x (being N = P + Q, where N is the number of available dynamic
signals), is presented to the trained SAE network, resulting in a matrix D with the
respective vectors h. Finally, matrix D is presented to the trained SVM, whose output
is the structural condition.

Figure 3 schematically illustrates the two main steps of the SHM strategy.
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4. Numerical Application: Simply Supported Beam

In order to initially evaluate the SAE’s efficiency to characterize vibration data, numer-
ical simulations are performed using a simply supported beam model (see Figure 4a). The
beam is modeled with twelve Euler-Bernoulli elements (two degrees of freedom per node -
one translation and one rotation) with the following properties: total length = 12 m; Young’s
modulus = 210 GPa; cross-section area = 0.04 m2; specific mass = 7850 kg m−3 and moment
of inertia = 5.33 × 10−4 m4. The numerical integration is performed by using Newmark’s
method with a time step of 0.001 s. The excitation force F(t) is a typical random vector
with 10 kN of maximum magnitude, which is randomly set for every dynamic simulation
carried out and is applied at node 10. F(t) (kN) is simulated as shown in Equation (1):

F(t) = 10 × V ∼ D(0, 1) (1)

where V ∼ D(0, 1) is a vector with random values extracted from a uniform distribution
from 0 to 1. Figure 4b,c present a typical response of the system for a random excitation
force F(t), respectively.

Three structural damage scenarios were simulated: healthy structure, damage level #1,
and damage level #2. The first and second damage levels were defined by reducing in 10%
and 20%, respectively, the Young’s modulus of element #4 from the undamaged structural
model (depicted in Figure 4 by the gray element). The vertical dynamic responses of points
2 (Ac1), 4(Ac2), 6(Ac3) and 8(Ac4) were recorded in terms of accelerations and were used to
evaluate the SAE-based damage detection methodology. Each vibration signal lasts 5 s and
has 5001 discrete time samples (sampling frequency of 1000 Hz). The structure’s natural
frequencies in all assumed conditions are given in Table 1, merely for information purposes.



Appl. Sci. 2021, 11, 11965 7 of 18

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 19 
 

where 𝑉~𝐷ሺ0,1ሻ is a vector with random values extracted from a uniform distribution 
from 0 to 1. Figure 4b,c present a typical response of the system for a random excitation 
force F(t), respectively. 

 
Figure 4. Numerical application—simply supported beam. (a) FEM model. (b) Typical numerical response. (c) Typical 
excitation force. 

Three structural damage scenarios were simulated: healthy structure, damage level 
#1, and damage level #2. The first and second damage levels were defined by reducing in 
10% and 20%, respectively, the Young’s modulus of element #4 from the undamaged 
structural model (depicted in Figure 4 by the gray element). The vertical dynamic re-
sponses of points 2 (Ac1), 4(Ac2), 6(Ac3) and 8(Ac4) were recorded in terms of accelera-
tions and were used to evaluate the SAE-based damage detection methodology. Each vi-
bration signal lasts 5 s and has 5001 discrete time samples (sampling frequency of 1000 
Hz). The structure’s natural frequencies in all assumed conditions are given in Table 1, 
merely for information purposes. 

Table 1. Variation of the numerical beam eigenfrequencies. 

Structural Scenario 
1st Natural Fre-

quency 
2nd Natural 
Frequency 

3rd Natural Fre-
quency 

4th Natural Fre-
quency 

Healthy 6.51 Hz 26.06 Hz 58.65 Hz 104.32 Hz 
Damage level 1 6.21 Hz 25.04 Hz 56.53 Hz 100.30 Hz 
Damage level 2 5.88 Hz 23.92 Hz 54.22 Hz 96.03 Hz 

Three hundred different numerical simulations for each structural stage were gener-
ated by varying the excitation, totaling 900-time histories per measurement point (𝑁 = 900 
available dynamic signals). Since the excitation is random, the structure’s dynamic re-
sponses are also random. The proposed SHM approach is evaluated by investigating the 
signals from one point at a time. Thus, the entire dataset is organized in four input matri-
ces [900 × 5001] (900 dynamic time histories composed of 5001 time samples), corre-
sponding to the responses measured in positions Ac1, Ac2, Ac3 and Ac4. Since the SVM 
classifies the data category, it is also necessary to indicate the damage class of the signals. 
For this reason, a target matrix [900 × 3] is assembled, specifying in its rows the respective 
signal category through the binary code: (1 0 0)—healthy beam; (0 1 0)—damage level #1; 
and (0 0 1)—damage level #2. It is worth mentioning that the target matrix is only used in 

Figure 4. Numerical application—simply supported beam. (a) FEM model. (b) Typical numerical response. (c) Typical
excitation force.

Table 1. Variation of the numerical beam eigenfrequencies.

Structural
Scenario

1st Natural
Frequency

2nd Natural
Frequency

3rd Natural
Frequency

4th Natural
Frequency

Healthy 6.51 Hz 26.06 Hz 58.65 Hz 104.32 Hz
Damage level 1 6.21 Hz 25.04 Hz 56.53 Hz 100.30 Hz
Damage level 2 5.88 Hz 23.92 Hz 54.22 Hz 96.03 Hz

Three hundred different numerical simulations for each structural stage were gener-
ated by varying the excitation, totaling 900-time histories per measurement point (N = 900
available dynamic signals). Since the excitation is random, the structure’s dynamic re-
sponses are also random. The proposed SHM approach is evaluated by investigating the
signals from one point at a time. Thus, the entire dataset is organized in four input matrices
[900 × 5001] (900 dynamic time histories composed of 5001 time samples), corresponding
to the responses measured in positions Ac1, Ac2, Ac3 and Ac4. Since the SVM classifies
the data category, it is also necessary to indicate the damage class of the signals. For this
reason, a target matrix [900 × 3] is assembled, specifying in its rows the respective signal
category through the binary code: (1 0 0)—healthy beam; (0 1 0)—damage level #1; and
(0 0 1)—damage level #2. It is worth mentioning that the target matrix is only used in the
SVM training phase. During the evaluation phase, these labels have no direct participation
in the classification. They are only applied to compare the results obtained by the SVM
with the actual structure degradation level.

Before being processed by SAE, the signal matrices are normalized within the range
[−1;1]. The goal of normalization is to change the values of numeric columns in the dataset
to use a common scale, without distorting differences in the ranges of values or losing
information [45]. Afterwards, the input matrices—and consequently, the target matrices—
were randomly subdivided into other two matrices, allocating 50% of the signals for the
training phase—matrix A [450 × 5001]—and the remaining 50% of data for the evaluation
phase—matrix C [450 × 5001]. In order to guarantee that all structural scenarios are equally
represented in the SAE and SVM models, the training and evaluation matrices should have
approximately the same number of samples from each damage level (balanced dataset).
For further information about this subject, see Japkowicz and Stephen (2002) [46].

Subsequently, matrix A is used to construct the SAE model to “learn” representative
features directly from acceleration responses expressed in the time domain. For all analyses,
the SAE models were implemented considering encoder and decoder layers. Different
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numbers of neurons (internal codes h) were evaluated. In the last part of the training
process, the attributes extracted by SAE are passed as input parameters (matrix B) to an
SVM that creates a model aimed at identifying the corresponding damage classes.

Finally, the remaining data—matrix C and its derivative matrix D, not used in the
training phase—are presented to the machine learning models to test their real effectiveness,
indicating the different structural conditions. The proposed SHM approach was developed
using toolboxes and built-in functions available in Matlab. Table 2 shows the parameters of
the achieved SAE and SVM models.

Table 2. SAE and SVM parameters of the proposed strategy for the numerical beam example.

SAE Parameters

Sparsity proportion (ρ) 0.050
Sparsity regularization (β) 4.000
Weight regularization (λ) 0.001

Encoder/decoder activation functions Logarithmic sigmoid/linear
Optimization method Scaled Conjugate Gradient

Gradient maximum value 1.00E-6
Max. of training epochs 1000

Training error metric Mean-squared error

SVM Parameters

Kernel function RBF
Multiclass coding scheme One-vs-one

σ—for 50 SAE internal codes 1.0000
σ—for 100 SAE internal codes 1.5000
C—for 50 SAE internal codes 0.3162

C—for 100 SAE internal codes 0.3162

Results

Since the damage identification of the proposed strategy is based on the features
extracted by the SAE, the first stage of the analysis examines how many SAE internal
codes are necessary for a good representation of the dynamic structural responses. As
previously mentioned, the SAE training is performed by reconstructing its input data.
Therefore, it is reasonable that the difference between the original and the reconstructed
signals may indicate whether the extracted characteristics contain relevant information
about the structural response or not. In the present paper, this difference is denoted as
reconstruction error ε, and is individually calculated by Equation (2):

εj =
∑M

i=1
∣∣xji − x̂ji

∣∣
∑M

i=1
∣∣xji
∣∣ , (2)

where M is the total length of the sampled signal, and xji and x̂ji are the ith element of
the jth original signal vector x and the jth SAE reconstructed signal vector x̂, respectively
(j = 1, . . . , J, J being the length of the corresponding analyzed dataset). For the complete
set of dynamic signals, the reconstruction error is the mean of all errors εj, as given in
Equation (3):

ε̃j =
1
J

J

∑
j=1

εj. (3)

Figure 5 shows a box plot evolution of the error ε̃ as the amount of SAE features
increases for all selected points of the numerical beam example. Each box was created
by considering 30 different SAE models that reduce the problem’s dimensionality from
5001-time samples to the indicated number of internal codes (vector h). The thirty different
SAE models are auto-encoder models developed with the same parameters but varying in
the random seed. The boxes associated with the blue dashed line indicate the reconstruction
performance of the 30 models for data used during the training phase. The boxes related to
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the red dashed line, on the other hand, correspond to the reconstruction errors of the same
models when applying unseen data (evaluation phase).
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In Figure 5, it is possible to observe that the plotted curves are quite similar for all
simulated accelerometer channels. In all cases, the median of training and evaluation
errors tends to have a linear behavior as the number of internal codes increases. For
100 SAE characteristics (internal codes), ε̃ achieves values around 0.25 and 0.50 for training
and evaluation data, respectively. Moreover, although not represented in the graphs the
same linear behavior was verified for SAE models, with more than 100 internal codes
(from 100 to 500). Obviously, the greater the number of SAE features, the better the signal
reconstruction and the smaller the errors ε̃. However, the focus of this work is not to exactly
reconstruct the signal, but to extract key elements capable of characterizing the differences
between “normal” and “abnormal” structural responses. Figure 6 displays an example
of the SAE reconstructed response when using 50 and 100 internal codes in comparison
with their respective original signals. Both plots reveal that just a reduced number of SAE
features are enough to fairly represent the original simulated accelerations. For this reason,
the authors opted to classify the data with 50 and 100 SAE characteristics (the start and
the end of the linear behavior region exhibited in the graph). It can also be noted that the
reconstruction errors of the training data are smaller than those obtained for the evaluation
data, regardless of the number of SAE characteristics. This is an expected result, given that
the first group of data was used to create the SAE models, and the second one has never
been presented to them.
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The performance of the proposed approach for 30 different SAE/SVM models devel-
oped with 50 and 100 internal codes, respectively, is presented in Table 3. The classification
rate is the mean value of correct identifications achieved in each model (average of the
30 models), only considering the evaluation data. Figures 7 and 8 show the confusion
matrices related to the classification rates obtained in Table 3. These matrices point out
the classification frequencies of the evaluation examples along with the three structural
conditions. The diagonal elements in green are the amount and percentage of correct clas-
sifications, whereas the red elements refer to the amount and percentage of misclassified
data. The rightmost column of the matrix exposes the precision metric (true positives/(true
positives + false positives), and the row at the bottom exposes the recall metric (true
positives/(true positives + false negatives). The element in the bottom right of the plot
represents the overall accuracy. The “Output Class” corresponds to the predicted dam-
age level and the “Target Class” to the level which the signal really belongs. They were



Appl. Sci. 2021, 11, 11965 11 of 18

constructed with all evaluating subsets, resulting in 13,500 different analyzed examples
(450 evaluating examples × 30 models).

Table 3. Simply supported numerical beam: correct classification rates in percentage.

Mean Max. Min. Std. Deviation

SAE Internal Codes 50 100 50 100 50 100 50 100

Ac1 99.32 99.96 100.00 100.00 98.22 99.78 0.46 0.08
Ac2 99.56 99.99 100.00 100.00 98.22 99.78 0.43 0.04
Ac3 99.50 99.93 100.00 100.00 98.67 99.56 0.35 0.12
Ac4 99.50 99.94 100.00 100.00 98.89 99.56 0.38 0.13
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The classification averages are greater than 98% with standard deviation values be-
low 0.5% for all measurement points, indicating the ability of the SAE to interpret and
to extract features directly from structural acceleration time histories. Despite the good
performance obtained for both quantities of SAE characteristics tested, the accuracy is
slightly higher for models with 100 internal codes. For this configuration, practically 100%
of the data were correctly classified. The confusion matrices confirm these results.
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5. Experimental Application: Várzea Nova Viaduct

The second application is the Várzea Nova viaduct situated in Paraíba at the inter-
section of highways BR-101 and BR-230, between the towns of João Pessoa and Campina
Grande, in Brazil. The viaduct is 35.7 m long, and due to a traffic accident, one of the four
main girders was damaged. To fix it and also to comply with Brazil’s current regulation
codes, a series of procedures were implemented, including strengthening of pillars, beams,
deck, and foundation. Figure 9 shows a perspective view of the viaduct.
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Dynamic tests were conducted before and after structural reinforcement, leading
to sets of experimental time histories (accelerations) obtained under traffic loading. A
National Instruments NI9215 acquisition system attached to a computer was used to process
the vibration signals that were collected by two piezoelectric accelerometers ENDEVCO
model 752A13, positioned on the deck above the right border girder at its midspan and
at its one-sixth length, as shown in Figure 10. Four dynamic tests were performed for
each structural condition, resulting in 8 tests to be analyzed per accelerometer channel.
Each structural response has 512 s sampled at 512 Hz. The variation of the first natural
frequency—before and after the strengthening—is shown for information purposes in
Table 4. As expected, higher values can be observed on the fundamental frequency after the
strengthening, since this procedure increased the structure’s stiffness without significantly
changing it mass.
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Figure 10. Várzea Nova viaduct. (a) Top view and experimental setup. (b) Typical response for
accelerometer 1.

Table 4. Variation of the first natural frequency of the Várzea Nova viaduct.

Structural Scenario 1st Natural Frequency

Before strengthening 13.37 Hz
After strengthening 13.76 Hz

To allow a parallel with the beam’s signals with respect to the number of sampled
points and the number of cycles analyzed per second, the viaduct vibration measurements
were divided into more signals before processing the structural responses with SAE. Hence,
each accelerometer provided 512 8-s long signals arranged in input matrices (512 × 4096),
corresponding to 256 dynamic time histories collected before the strengthening procedure
and the other 256 collected after. Given the SVM supervised learning, a 512-position target
vector was generated specifying the data category through the binary code: 0—before the
strengthening, and 1—after the strengthening. In this case, the signal matrices are scaled
into (−10;10) to prevent the quadratic error magnitude from causing significant numerical
problems capable of hindering the convergence of the optimization method, as verified in
some initial tests.

For the present application, it was opted to assign approximately 70% of signals
to the training phase and 30% to the evaluation phase, as a result of the lower number
of structural responses available when compared to the numerical beam. One of the
512 signals of the accelerometer 2 was discarded due to acquisition problems verified
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during the data organization step. Therefore, the input matrices, as well as the target
vectors, were subdivided into matrix A (362 × 4096) for both accelerometer channels and
into matrix C (150 × 4096) for the accelerometer 1, and into matrix C (149 × 4096) for the
accelerometer 2. The architecture and parameters of the achieved SAE and SVM models
for the Várzea Nova viaduct are in Table 5.

Table 5. SAE and SVM parameters of the proposed strategy for the Várzea Nova viaduct.

SAE Parameters

Sparsity proportion (ρ) 0.050
Sparsity regularization (β) 4.000
Weight regularization (λ) 0.001

Encoder/decoder activation functions Logarithmic sigmoid/linear
Optimization method Scaled Conjugate Gradient

Gradient maximum value 1.0 × 10−6

Max. of training epochs 1000
Training error metric Mean-squared error

SVM Parameters

Kernel function RBF
Multiclass coding scheme One-vs-one

σ—for 50 SAE internal codes 0.3162
σ—for 100 SAE internal codes 0.3162
C—for 50 SAE internal codes 0.3162

C—for 100 SAE internal codes 0.0316

Results

The ε̃ convergence curves (see Equations (2) and (3)) of the Várzea Nova viaduct
are exhibited in Figure 11. Several numbers of internal codes were tested consider-
ing 30 different SAE models, in which the dimensionality of the problem reduces from
4096 time samples to the specified quantity of characteristics h. The error evolution behav-
ior for the viaduct signals is similar to the ones observed in the first example analyzed in
this paper. Even so, the reconstruction errors of the present structure stabilize at higher
values than in the numerical beam. While the error ε̃ of the beam evaluation data reaches
values around 0.5 for 100 internal codes, the error for the viaduct evaluation data stabilizes
at values above 0.8. This is an expected result, since experimental data are normally more
susceptible to noise. Besides, these viaduct plots also confirm the lower reconstruction er-
rors for the training data. As with the beam analysis, a visual representation example of the
SAE model reconstruction performance for 50 and 100 internal codes is shown in Figure 12.
It is possible to observe that the reconstructed signal with 50 internal codes alludes to the
original structural response. However, the improvement in the reconstruction of the signal
obtained with 100 SAE characteristics is clearly visible. Table 6, as well as the confusion ma-
trices of Figures 13 and 14, present the classification rates of the proposed damage detection
methodology for 30 different SAE/SVM models developed with 50 and 100 internal codes
respectively. They were assembled considering all evaluation subsets; thus, 4500 different
examples were analyzed for accelerometer 1 (150 evaluating examples × 30 models) and
4470 for accelerometer 2 (149 evaluating examples × 30 models).

According to the results, the SAE was efficient to characterize the viaduct vibration
signals with both 50 or 100 internal codes. The classification rates were all above 85% with
very low deviations (maximum value of 2.62%), highlighting the excellent performance
achieved by the models with signals of accelerometer 1 reconstituted from 100 SAE fea-
tures (total accuracy of 100% and zero standard deviation). In fact, the overall accuracy
percentages also reflect the better signal reconstruction for 100 SAE internal codes verified
in Figure 12. Moreover, it is possible to see that the worst classification rates are associated
with signals from accelerometer 2. This outcome may be attributed to the position of
accelerometer 2, which is less affected by the first natural frequency than of accelerometer 1
(placed exactly at the midspan).
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An interesting aspect could be noticed by interpreting the confusion matrices is
the SAE/SVM capacity to correctly identify the “after strengthening” data. In all cases,
no signal belonging to the class “after strengthening” was misclassified as being “before
strengthening” (the recall values are equal 100%). Regarding the few “before strengthening”
signals incorrectly recognized, even in the less favorable scenario—when 353 “before
strengthening” examples from accelerometer 2, reconstructed with 50 internal codes, were
classified as “after strengthening”—the results can still be considered as acceptable.

6. Conclusions

This paper investigated the use of a Sparse Auto-Encoder to characterize vibration
signals aiming to detect structural anomalies. Features extracted by SAE directly from
time-domain accelerations were used as input variables to train a classification model
based on the traditional Support Vector Machine. Firstly, the proposed methodology was
checked using structural responses from a numerical model of a simply supported beam
under different damage levels. Then, in order to verify the SAE/SVM effectiveness in a
real-case structure, experimental data from Várzea Nova viaduct in João Pessoa (Brazil)
were analyzed. Dynamic tests under local traffic were performed on the viaduct before
and after a reinforcement procedure.

For both structures, the proposed approach was able to identify practically all dynamic
responses correctly:

• For the numerical model, the two damage scenarios were almost perfectly detected,
indicating that the proposed method is sensitive to the damage level, corroborating its
potential for multiple damage and damage quantification problems.

• For the Várzea Nova viaduct tests, the performance was slightly inferior due to
the influence of external factors, such as noise, traffic, temperature, among others.
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Furthermore, even though better classification rates were obtained for signals recon-
structed with 100 SAE characteristics, the results for dynamic data reconstituted with
50 features were more than reasonable. It is also important to highlight that the SAE
features extracted have only 1% or 2% of the total signal’s length, for 50 or 100 inter-
nal codes, respectively. In addition, the performance of the proposed technique for
the accelerometer closest to the damage was superior, which may indicate that the
proposed methodology can be better explored in damage location problems.

Finally, the above considerations encourage the development of computational models
using SAE for structural integrity assessment.
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