
applied
sciences

Article

Efficient Online Log Parsing with Log Punctuations Signature

Shijie Zhang and Gang Wu *

����������
�������

Citation: Zhang, S.; Wu, G. Efficient

Online Log Parsing with Log

Punctuations Signature. Appl. Sci.

2021, 11, 11974. https://doi.org/

10.3390/app112411974

Academic Editor: Agostino Forestiero

Received: 17 October 2021

Accepted: 12 December 2021

Published: 16 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Software, Shanghai Jiao Tong University, Shanghai 200240, China; flamingoo@sjtu.edu.cn
* Correspondence: dr.wugang@sjtu.edu.cn

Abstract: Logs, recording the system runtime information, are frequently used to ensure software
system reliability. As the first and foremost step of typical log analysis, many data-driven methods
have been proposed for automated log parsing. Most existing log parsers work offline, requiring
a time-consuming training progress and retraining as the system upgrades. Meanwhile, the state
of the art online log parsers are tree-based, which still have defects in robustness and efficiency.
To overcome such limitations, we abandon the tree structure and propose a hash-like method. In
this paper, we propose LogPunk, an efficient online log parsing method. The core of LogPunk is
a novel log signature method based on log punctuations and length features. According to the
signature, we can quickly find a small set of candidate templates. Further, the most suitable template
is returned by traversing the candidate set with our log similarity function. We evaluated LogPunk
on 16 public datasets from the LogHub comparing with five other log parsers. LogPunk achieves
the best parsing accuracy of 91.9%. Evaluation results also demonstrate its superiority in terms of
robustness and efficiency.

Keywords: log parsing; log signature; punctuations; online algorithm

1. Introduction

Logging is the practice of recording events that provides information about the system
running status and execution paths. Earlier, system operators could understand runtime
behaviors and diagnose failures by manually analyzing logs [1,2]. A modern system
service are often composed of several basic services [3]. Moreover, modern system clusters
usually contain hundreds of nodes, some of which are even geographically distributed [4].
In this context, with the increasing scale and complexity of modern software systems,
the volume of logs explodes [5]. It leads to the emergence of automated log analysis
approaches. These automated approaches bring more tools (e.g., anomaly detection [6,7],
failure prediction [8,9], and failure diagnosis [10,11]) to ensure system reliability, which is
an indispensable step towards AIOps (Artificial Intelligence for IT Operations).

Logs are unstructured text printed by logging statements in the source code. As
shown in Figure 1, a logging statement is specified by log level, static string, and dynamic
variables. As the variable value changes at runtime, a logging statement can produce
different log messages. Typically, a log message may contain a timestamp, log level, logger
name, and raw message content. Different log messages from the same logging statement
have the same log template (event type).

Most data mining models used in log analysis require structured input. Therefore
raw logs cannot be used as input directly [12–14]. To conquer the unstructured nature of
raw logs, we need log parsing to convert the unstructured logs into a structured format
before analysis [15]. The goal of log parsing is to extract the static template, dynamic
variables, and the header information (timestamp, log level, logger name) from the raw
log message to a structured format . Such structured data can be fed into downstream log
analysis models.

Appl. Sci. 2021, 11, 11974. https://doi.org/10.3390/app112411974 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app112411974
https://doi.org/10.3390/app112411974
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112411974
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112411974?type=check_update&version=1

Appl. Sci. 2021, 11, 11974 2 of 15

Figure 1. An illustrative example of log parsing.

Regular expressions are always a choice for log parsing [15], but it is only practicable
for a small number of log templates. Continuous human efforts are needed to develop
and maintain the regular expressions, which are labor-intensive and error-prone [16,17].
As modern software has many log templates and constantly evolves [18], developing and
maintaining such regular expressions could be a nightmare.

To alleviate the pain of human efforts, researchers have proposed many automated
data-driven approaches. Earlier works leverage data mining approaches such as frequent
pattern mining [19,20], clustering [21,22], and iterative partitioning [23] to extract the
common part of log messages under the same cluster as the log template. However, all
these approaches are offline, which requires a time-consuming training process and can
not deal with the template changes caused by software updates. In contrast, online log
parsers parse logs in a streaming fashion and do not require offline training. Therefore,
what modern systems need is online log parsing, which is only studied in a few preliminary
works [17,24–26].

Spell [26] and Drain [17] are state-of-the-art online log parsers. Spell measures the
distance between log messages through longest common subsequence (LCS), and uses
prefix tree to optimize the processing time of each log message close to linear. Drain also
adopts a tree structure. Unlike Spell, it has more heuristics and strong assumptions about
the length and preceding tokens of log messages.

In practice, we find that the tree structure has some limitations in robustness and
efficiency. Although, existing online parsers achieve good parsing accuracy on specific
datasets. Their parsing accuracy fluctuates across different datasets, which means that they
are not robust (e.g., the average accuracy of Spell [26] is less than 80%). In addition, with
the rapid growth of log volume and the increasing demand for low latency log analysis,
efficiency becomes an essential concern of log analysis [18,27]. However, the previous
benchmark [15] shows that Spell [26] and Drain [17] are not efficient enough. In this work,
we abandon the tree structure and propose a hash-like method, which really improves
robustness and efficiency.

Unlike previous work, we focus on meaningless punctuations in log messages rather
than meaningful words. Because we believe that words processing is the reason why
the previous approaches are inefficient. Our intuition is that punctuation marks of log
messages from the same template tend to be the same, which means simple punctuations
imply template information. There are fixed types of punctuations, and they are easy
to process.

This paper proposes LogPunk, a robust and efficient log parser based on our novel log
signature method. LogPunk is designed as a general-purpose online log parsing method,
which is system and log type agnostic. We use log punctuations and length information
(cf. Section 2) to generate log signatures. Each log signature corresponds to a signature
group. Obviously, log messages with the same event type will have the same log signature
and get into the same group. However, a signature group may also contain log messages
from different event types with the same signature. We call this signature collision easy to

Appl. Sci. 2021, 11, 11974 3 of 15

solve by further calculating the similarity between the log message and event templates.
Fortunately, we found in our experiments that each signature group only corresponds to
one or two event templates in most cases.

We evaluate LogPunk on 16 datasets from the LogHub [28] comparing with five other
log parsers. Experiments demonstrate that LogPunk is efficient but without loss of accuracy.
LogPunk achieves the highest accuracy on 14 datasets and the best average PA of 0.919.
More importantly, LogPunk performs consistently across different datasets, which means
it is robust.

In summary, our paper makes the following contributions:

• We propose a novel and efficient log signature method based on log punctuations and
length information applied for log parsing;

• We present an online log parser based on our log signature method, named LogPunk,
which is better than the previous log parsers in robustness and efficiency;

• We conduct extensive experiments on 16 datasets and comparing LogPunk with five
other log parsers. The results show that LogPunk is accurate, robust, and efficient.

The paper is organized as follows. Section 2 introduces the background of log parsing.
Section 3 describes our log signature method and the implementation of LogPunk. Section 4
shows the results of evaluating LogPunk on the LogHub datasets. Section 5 compares
LogPunk with tree-based methods and discusses the validity. Section 6 introduces the
related work of three categories of data-driven log parsing approaches. Finally, Section 7
concludes the paper.

2. Problem Description

As shown in Figure 1, the goal of log parsing is to extract the static template, dynamic
variables, and header information from a raw log message. As the header information
usually follows a fixed format in the same system, regular expressions are commonly used
to extract the header information and the log content.

Log content is the central processing object of log parsing, composed of static templates
and dynamic variables. It can be defined as a tuple of EV = {(ei, vi) : e ∈ E, i = 1, 2, · · · },
where E is the set of all log templates, k = |E| is the number of all distinct templates and vi
is a list of variables.

Formally, given a set of log messages L = {l1, l2, · · · , lm} that is produced by k logging
statements (log templates) from the source code, where the k is unknown. A log parser is
to parse L to get all k log templates.

After extracting the log content from the raw log, it is common to process the content
with string splitting. By splitting the content, we get a split list, and each element in the
list is called a token. Log message length is defined as the number of tokens in the split
list. Formally, each log message consists of a bounded list of tokens, ti = {tj : t ∈ T, j =
1, 2, · · · , n}, where T is a set of all tokens, j is the token index within the split list and
n = |ti| is the number of tokens (message length).

The token is usually the smallest granularity to determine the template and variable
part. A token is either part of the static templates or dynamic variables. Therefore, how
to split the content has a significant influence on the parsing results. Different delimiters
result in different split token lists. Previous studies often use spaces as delimiters.

Online algorithms usually have two core steps: first, find the candidate template set;
and then traverse the candidate set to find the most suitable template.

Quickly finding candidate sets is critical in the first step. Inspired by the prefix tree
data structure, Spell [26] and Drain [17] adopt a tree structure to find candidate sets to filter
out most irrelevant templates. Such a tree structure is usually very complex. Some tree
nodes have hundreds of children, and the tree needs frequent maintenance. In addition, the
tree-based method does not guarantee that the returned template is the longest common
subsequence. For example, the log message l = DAPBC (each letter represents a token,
and the space between tokens is omitted) and the template set s = {DA, ABC}, the prefix

Appl. Sci. 2021, 11, 11974 4 of 15

tree returns DA instead of ABC. Since the second step will traverse the candidate set, the
size of the candidate set also matters.

In the previous benchmark [15], Spell and Drain failed to reach the first level efficiency,
which means there is still room for improvement. Our goal is to find a more efficient
method to obtain smaller candidate sets.

3. Methodology

As mentioned above, our approach is online, and it can process logs in a streaming
way. As shown in Figure 2, when a new raw log message arrives, LogPunk will first
preprocess it with some simple regular expressions to extract the content and split its
content into a token list. Then, a log signature will be generated for this log message
based on the token list. We can quickly locate the signature group that contains a list of
possible templates according to the signature. The most suitable template will be returned
by searching the signature group with our specially designed log similarity function. If no
such template is found, this log message will be appended as a new template itself.

Figure 2. Basic workflow of our method.

3.1. Step 1 Preprocess and Split

This step extracts a list of tokens from each log message through three sub-steps:
(1) log content extraction; (2) common variables substitution; (3) log content split.

First, a pre-defined regular expression is always used to extract the log content and
the header information (e.g., timestamp, log level, and logger name) [15]. Since the header
information often follows a fixed format in the same software system, it is convenient to
extract it directly. Therefore, the log content is what we are concerned about during the
log parsing.

After getting the log content, some simple user-defined regular expressions replace
common variables (e.g., IP address, URL, and file path) with a special token “<*>”. More-
over, the LogPai benchmark (cf. Section 4.1) has already defined such regular expressions.
To avoid biased comparison, we apply these regular expressions to all log parsers in
our experiments.

Finally, we split the log content with delimiters. Instead of using spaces as delim-
iters in prior works, we use more delimiters, such as commas (“,”), semicolons (“;”),
colons (“:”) and equal signs (“=”). Because variable and constant parts are not always

Appl. Sci. 2021, 11, 11974 5 of 15

separated by spaces. In addition, we keep all the delimiters in the token list after split-
ting. Take log message log1 in Figure 2 for example, the token list of “getRecentTasks:
num=20,flags=0x1,totalTasks=46” is [’getRecentTasks’, ’:’, ’, ’ ’, ’num’, ’=’, ’20’, ’,’, ’flags’, ’=’,
’0x1’, ’,’, ’totalTasks’, ’=’, ’46’].

3.2. Step 2 Generate Log Signature

In this step, we generate a log signature for each log message (Algorithm 1). To assign
the same signature for log messages with the same templates, we must find their common
points. Log messages with the same event type have words in common. Many prior
studies have emerged based on this observation [17,26]. As mentioned above, we find that
log messages with the same event type have the same punctuation marks. We use such
punctuation information to generate the log signature.

Algorithm 1: Log signature
Input: The log content token_list after splitting.
Output: A number representing the log signature.

1 init PUNCTUATION_TABLE = {’|’, ’"’, ’(’, ’*’, ’;’, ’,’, ’=’, ’:’,
’ ’};

2 init f req_dict = dictionary with default value of 0;
3 init f irst_non_digital_token = None;
4 init signature = 0;
5 for token in token_list do

// count punctuation characters
6 for char in token do
7 if char in PUNCTUATION_TABLE then
8 f req_dict[ch]+ = 1;
9 end

10 end
// find the first non digital token

11 if first_non_digital_token is None and token contains no digital character then
12 f irst_non_digital_token = token;
13 end
14 end
15 for char, freq in freq_dict do

// assume the maximum punctuation count is less than 100
16 signature = signature ∗ 100 + f req;
17 end

// assume the maximum token length is less than 100
18 signature = signature ∗ 100 + len(f irst_non_digital_token);
19 return signature

Specifically, we put all punctuations used to calculate the signature in a table called the
punctuation table. For each character in the split token list, we count it in a frequency table if
it appears in the punctuation table. For the convenience of the subsequent calculation, we
convert the frequency table into a number like a radix conversion. For each punctuation
and its frequency, we multiply by the radix and add the current frequency. For example,
in Figure 2, there is zero vertical bar (“|”), one colon (“:”), two semicolons (“,”), and
three equal signs (“=”) in the log message log1. So, the signature calculated is 00010203
if we take ten as the radix. In the implementation, we take 100 as the radix, assuming
that the frequency of any punctuation will not exceed 100. We can quickly locate the
signature group according to the number in the subsequent step by converting. This
number is returned as the signature. Algorithm 1 shows the detail of how to calculate the
log signature.

In practice, not all punctuations can be used to calculate the signature. For example,
a logging statement may generate variables like “+1” and “−1” simultaneously. In this

Appl. Sci. 2021, 11, 11974 6 of 15

case, “+” and “−” should not be used to calculate the signature. By eliminating the
punctuations appearing in variables, we get a stable punctuation table, and it performs
well on 16 datasets evaluated. The punctuations we selected are vertical bar (“|”), double
quotation (“””), parenthesis (“(”), asterisk (“*”), semicolon (“;”), comma (“,”), equal sign
(“=”), colon (“:”), and space (“ ”).

Ideally, a log signature should correspond to only one event type. In this case, the
log signature can be used to identify the event type uniquely. However, log messages
from different event types may get the same log signature, called signature collisions. For
example, log message log1 and log2 get the same signature (00010203), but they are from
the different templates in Figure 2. The average number of templates corresponding to
the same signature is called the collision index. By calculating the collision index, we can
measure the severity of the collision. If we only use the punctuation table to calculate the
signature, the collision index on evaluated datasets is 1.76. To optimize the collision index,
inspired by previous work [17], we use the length information of the first non-digital token
(tokens without digital characters). Finally, we get an average collision index of 1.25 on all
the 2000 log messages subsets (cf. Section 4.1) from the 16 evaluated datasets.

3.3. Step 3 Search Signature Group

In this step, we search the signature group to find the most suitable template. The
signature group maintains templates with the same signature in a list. The collision index is
also the average number of templates in each signature group. Each signature corresponds
to a signature group, and the corresponding relationship is recorded in a hash table. By
looking at the hash table, we can quickly find the signature group. Due to the small number
of templates in each signature group, we find the most suitable template by calculating the
log similarity one by one.

In practice, we traverse the template list in the signature group to find the template
with the largest similarity compared with the current log message. If the similarity is
greater than a given similarity threshold, the template index will be returned. Like prior
work, we consider that log messages with the same event type have the same length (cf.
Section 2). So, if the length is not the same, the similarity value is zero. The similarity
between the log message and the log template is defined as the number of identical tokens
divided by the total number.

In addition, we found that some log templates are very similar because they have the
same prefix tokens, and only the last few tokens are different. For example, BGL E99 “pro-
gram interrupt: fp cr field<*>” and E100 “program interrupt: fp cr update.............<*>”.
We apply a soft prefix tokens matching method before calculating the log similarity to deal
with this case. To be specific, we compare the first N non-punctuation tokens between the
template and the message. If tokens in the same position do not contain digital characters
and are not the same, we think the template does not match. The user specifies the vari-
able N as a hyperparameter called prefix threshold. The complete process of log similarity
calculation is shown in Algorithm 2.

As each signature group contains an independent subset of the whole messages,
existing online log parsing methods can also be applied to search templates inside each
signature group. Take Drain for example, the core data structure of Drain is a fixed-depth
tree. If we want to utilize Drain to search signature groups, we build such a tree structure
and adopt all Drain steps inside each signature group. In our experiment, we introduce
our log signature method to Spell and Drain in this way.

Appl. Sci. 2021, 11, 11974 7 of 15

Algorithm 2: Log similarity
Input: The split template_token_list; the split content_token_list; prefix threshold

pt.
Output: A number ranges [0, 1] representing the log similarity.

1 m, n = len(template_token_list), len(content_token_list);
// the length of token list should be the same

2 if m != n then
3 return 0
4 end
5 count, total = 0, 0;
6 for t1, t2 in zip(template_token_list, content_token_list) do
7 if t1 in PUNCTUATION_TABLE or t2 in PUNCTUATION_TABLE then

// punctuations should be the same
8 if t1 != t2 then
9 return 0

10 end
11 else
12 if t1 == t2 then
13 count+ = 1;
14 end

// soft prefix tokens matching
15 if not (t1 contains digital character or t2 contains digital character) then
16 if pt > 0 then
17 return 0
18 end
19 end
20 total+ = 1;
21 pt− = 1;
22 end
23 end
24 return count/total

3.4. Step 4 Update Signature Group

In the previous step, the most suitable template index is returned. If the index is
valid, we will update the template by replacing different tokens in the same position with
a special token “<*>”. If the index is −1, it means that no suitable template is found. We
will append this log message to the template list as a new template and return its index.
Finally, the log event id is calculated as a (log signature, template index) tuple.

4. Evaluation

In this section, we evaluate LogPunk on 16 benchmark datasets from the LogHub [28]
from three aspects: accuracy, robustness, and efficiency.

Accuracy. Accurate log parsers can correctly identify the static template and dynamic
variables in the log content;

Robustness. Robust log parsers should perform consistently across different datasets,
so they can be applied to more environments;

Efficiency. As log parsing is the first step of log analysis, inefficient log parsing cannot
meet the real-time requirements.

We compare LogPunk with five previous state-of-the-art log parsers, including Drain [17],
Spell [26], AEL [29], LenMa [25], and IPLoM [23]. All of them have been included in the LogPai
benchmark [15]. As mentioned above, we also introduce our log signature method to Spell and
Drain (denote as Spell+ and Drain+, respectively), which means that we utilize Spell and Drain
to search signature groups. All experiments were conducted on a Linux machine with an 8-core
Intel(R) Core(TM) i7-7700HQ CPU @ 2.80 GHz, 16 GB RAM, running 64-bit Ubuntu 18.04.5 LTS.

Appl. Sci. 2021, 11, 11974 8 of 15

4.1. LogHub Dataset and Accuracy Metrics

Our benchmark datasets come from the LogHub data repository [28]. LogHub main-
tains a collection of logs from 16 different systems spanning distributed systems, supercom-
puters, operating systems, mobile systems, server applications, and stand-alone software.
Many prior log parsing research [15–18,26] evaluated their approaches on these logs.

As illustrated in Table 1, LogHub contains 440 million log messages which amount to
77 GB. We can see that there are great differences in the number of templates in different
datasets. The Android dataset has a maximum of 76,923 templates, while the Proxifier has
a minimum of 9 templates. The average length of log messages is basically in the tens or
twenties, but the maximum log message length of some datasets can reach hundreds. In
terms of the log content, there is little difference among datasets, which is mostly readable
free text.

Benefiting from the large size and diversity of LogHub datasets, we can measure the
accuracy of log parsers and test their robustness and efficiency. LogHub picked up a subset
of 2000 log messages from each dataset and manually labeled the event templates as the
ground truth to ensure a consistent benchmark environment. In Table 1, “#Templates(2k)”
indicates the number of event templates in the 2000 log subsets. Such manually labeled
data are used to evaluate the accuracy and robustness of our log parser.

Table 1. Datasets overview.

Platform Description #Templates(2k) #Templates (Total) Length (Max, Average) Size

Android Android framework 166 76,923 32, 13.31 183.37 MB
Apache Apache web server error 6 44 14, 12.28 4.90 MB

BGL Blue Gene/L supercomputer 120 619 84, 15.32 708.76 MB
Hadoop Hadoop map reduce job 114 298 50, 14.82 48.61 MB
HDFS Hadoop distributed file system 14 30 111, 12.45 1.47 GB

HealthApp Health app 75 220 14, 4.93 22.44 MB
HPC High performance cluster 46 104 47, 9.56 32.00 MB
Linux Linux system 118 488 24, 14.39 2.25 MB
Mac Mac OS 341 2214 249, 15.49 16.09 MB

OpenSSH OpenSSH server 27 62 19, 13.81 70.02 MB
OpenStack OpenStack infrastructure 43 51 31, 20.63 58.61 MB
Proxifier Proxifier software 8 9 27, 13.73 2.42 MB

Spark Spark job 36 456 22, 12.76 2.75 GB
Thunderbird Thunderbird supercomputer 149 4040 132, 17.52 29.60 GB

Windows Windows event 50 4833 42, 31.93 26.09 GB
Zookeeper ZooKeeper service 50 95 26, 13.46 9.95 MB

Same as the prior work by Zhu et al. [15], we adopt the parsing accuracy (PA) metric to
measure the effectiveness of our log parser. PA is defined as the ratio of correctly parsed
log messages over the total number of log messages. After parsing, each log message will
be assigned with an event id suggesting which event type it belongs to. Regarding an event
type, we consider it as correct if and only if all its log messages in the ground truth are
parsed with the same event id. PA is stricter than the standard evaluation metrics, such as
precision, recall, and F1-measure.

4.2. Accuracy

As illustrated in Table 2, we compare the accuracy of LogPunk with eight other
baseline log parsers on 16 log datasets. According to the row, we can compare the PA of
different log parsers on the same dataset. Moreover, the column demonstrates the accuracy
distribution of the same log parser across datasets. Following the prior work [15], PA
values greater than 0.9 are highlighted in bold, and the best PA values of each dataset are
marked with asterisk “*”.

Appl. Sci. 2021, 11, 11974 9 of 15

From Table 2, we can observe that LogPunk achieves the best accuracy on ten datasets
out of 16, which significantly outperforms other baseline methods. In addition to that,
LogPunk achieves over 0.9 accuracy on 13 datasets. In the remaining datasets, LogPunk
also has a comparable accuracy. On average, LogPunk has the best accuracy of 0.919,
followed by Drain+ of 0.877.

In addition, Spell+ and Drain+ are better than the original Spell and Drain. Their
accuracy is improved by 0.055 and 0.011, respectively, which shows that our signature
method is effective and can be applied to other log parsers as an enhancement.

The average accuracy of the HDFS and Apache datasets almost reaches 100%. Because
HDFS and Apache logs have relatively simple structures, and the number of templates
is small. Meanwhile, some datasets could not be parsed accurately due to their complex
structure and abundant event templates, such as Mac and Linux. All log parsers perform
poorly on the Proxifier dataset because it is skewed. It only has eight templates in the
sample set, while template E8 takes up 947 out of 2000, and it is not easy to parse.

Table 2. Accuracy of log parsers on different datasets.

Dataset IPLoM LenMa AEL Spell Spell+ Drain Drain+ LogPunk Best

Android 0.712 0.88 0.682 0.919 0.922 0.911 0.913 0.936 * 0.936
Apache 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1

BGL 0.939 0.69 0.957 0.787 0.822 0.963 0.97 0.979 * 0.979
Hadoop 0.954 0.885 0.869 0.778 0.795 0.948 0.949 0.992 * 0.992
HDFS 1 * 0.998 0.998 1 * 0.998 0.998 0.998 0.998 1

HealthApp 0.822 0.174 0.568 0.639 0.686 0.78 0.78 0.901 * 0.901
HPC 0.829 0.83 0.903 0.654 0.898 0.887 0.926 0.939 * 0.939
Linux 0.672 0.701 0.673 0.605 0.739 0.69 0.749 * 0.741 0.749
Mac 0.671 0.698 0.764 0.757 0.804 0.787 0.858 * 0.852 0.858

OpenSSH 0.54 0.925 0.538 0.554 0.803 0.788 0.788 0.995 * 0.995
OpenStack 0.331 0.743 0.758 0.764 0.764 0.733 0.733 1 * 1
Proxifier 0.517 0.508 0.495 0.527 * 0.527 * 0.527 * 0.527 * 0.504 0.527

Spark 0.92 0.884 0.905 0.905 0.905 0.92 0.92 0.923 * 0.923
Thunderbird 0.663 0.943 0.941 0.844 0.95 0.955 0.955 * 0.951 0.955

Windows 0.567 0.566 0.69 0.989 0.99 0.997 * 0.997 * 0.996 0.997
Zookeeper 0.962 0.841 0.921 0.964 0.964 0.967 0.967 0.995 * 0.995

Average 0.756 0.767 0.791 0.793 0.848 0.866 0.877 0.919 N.A.

LogPunk has the best accuracy for the following reasons. First, our effective signature
method with a collision index of 1.25 avoids template crowding in one signature group.
Even though the whole template set is complex, the situation is much simpler in each
signature group. Second, adequate delimiters ensure the separation of variables and
templates to deal with some complex situations. Third, we provide two hyperparameters
(cf. Section 3.3. similarity threshold and prefix threshold), which can be set flexibly according
to the data feature.

4.3. Robustness

In this part, we evaluate the robustness of log parsers on different datasets. Figure 3
shows the accuracy distribution of each log parser across the 16 log datasets in the boxplot.
Each box has five horizontal lines from the bottom to the top, corresponding to the mini-
mum, 25th percentile, median, 75th percentile, and maximum accuracy values, respectively.
Diamond marks indicate outliers since LenMa only has an accuracy of 0.174 on HealthApp,
and LogPunk gets 0.504 on Proxifier and 0.741 on Linux. Although LogPunk seems to

Appl. Sci. 2021, 11, 11974 10 of 15

perform poorly on Proxifier and Linux datasets, other methods do not work well either,
and we have even achieved the highest accuracy on Linux.

For comparison, the log parser is arranged in ascending order of the average precision
from left to right. We can observe that LogPunk has the highest average accuracy and the
minimum variance, which means robustness. We also observed that Spell+ is more robust
than Spell, and Drain+ and Drain have little difference in robustness. Because Drain has
some strong assumptions, the preceding tokens of the same log type are the same. Such
assumptions are the main reason for Drain’s error in accuracy.

���� ���� 	� ����� ������
����
����� ������

���

���

���

���

���

��
��
��
��
	�

��
��
��

Figure 3. Accuracy distribution of log parsers across different types of logs.

4.4. Efficiency

With the increase in data volume, efficiency has become a vital attribute of log parsers.
The running time of the whole parsing process is recorded to measure the efficiency of log
parsers. In this experiment, we choose BGL and Android as the datasets. They are different
types of systems and have been used in prior work [23,26]. We vary the volume from 1 M
to 100 M for each dataset, and the hyperparameters are fine-tuned on 2 k log samples. We
obtain different sample sizes by truncating the raw log files.

The results are presented in Figure 4. The parsing time increases with the raising of
log size on both datasets. The efficiency of LogPunk is much better than other log parsers
on the BGL dataset, but LogPunk is close to AEL on the Android dataset. Because there
are many short log templates on the Android dataset, which lack punctuation features but
have many log messages, such as“startAnimation end” “startAnimation begin”. Such log
templates will get the same signature, resulting in too many templates (The most one has
42 templates) in the same signature group. However, we search the signature group one by
one, which will seriously affect the efficiency in such cases. Fortunately, inverted index [30]
and prefix tree [26] can improve search efficiency.

Except for LenMa, the parsing time of all parsers increases linearly with the size of
the dataset. LenMa cannot process 50 m log data files in ten minutes, so we remove it for
comparison in the rest sizes.

We observe that the parsing time of Android differs from the BGL dataset, which
means that the efficiency of a log parser also depends on the type of logs. Android needs
more time than BGL. It is because Android contains more event templates and is more
complex. In addition, we find that the Android dataset contains some noise log messages,
which appear in the form of one or two Chinese words. These log templates will be crowded
in the same signature group, resulting in low efficiency when searching signature groups.

Appl. Sci. 2021, 11, 11974 11 of 15

�� �� ��� ��� ��� 	�� ����

������

�

��

���

���

���

���

���

��
�
��
��
��
�
��
 �

��
�

����
����!��
�����
�����

��
�����

�� �� ��� ��� ��� 	�� ����
���

�

��

���

���

���

���

���

��
 !

��
��

��
�

��
!�

��
�

�����
����"��
� ���
�����

�
�����

Figure 4. Parsing time of log parsers on different volumes of logs.

5. Discussion

In this section, we compare LogPunk with tree-based methods and discuss the validity.
Comparison with tree-based methods. As mentioned in Section 2, tree-based meth-

ods have two main problems: (1) needs to maintain a complex tree structure and updates
the tree frequently as templates change. The updating process is time-consuming and
complex; (2) does not guarantee the longest common subsequence (due to the limitation of
the prefix tree itself). Unlike tree-based approaches, LogPunk works in a hash-like manner.
Once a log signature is calculated, we can immediately locate the corresponding signature
group. What we need to maintain is only a mapping relationship from the log signature to
the signature group. This solution with a simple data structure brings more efficiency and
accuracy improvements to LogPunk.

Moreover, the invariance of log signature also brings potential benefits of parallel
computing. Since most of the current log parsing methods are single-threaded, multi-
threaded log parsers will greatly improve the efficiency of log parsing.

External validity. LogPunk achieves a parsing accuracy of over 0.9 on more than
half of the evaluated datasets. We cannot ensure that LogPunk can achieve the same high
accuracy on other log datasets not tested in this work. However, it should also be noted that
our evaluated log datasets come from systems in different domains. LogPunk is superior
to other log parsers not only in accuracy, but also in efficiency. A future work is to verify
the effectiveness of LogPunk on more types of log data and apply LogPunk to the practical
log dataset from the production environment.

Internal validity. The internal threat to validity mainly lies in the implementations of
LogPunk and compared approaches. To reduce this threat, the implementation of LogPunk
was completely based on the most primitive Python library and did not use any third-party
library. We have also carefully examined the source code. Regarding compared approaches,
we adopted their open-source implementations from the LogPai benchmark [15] directly.

6. Related Work

Log parsing plays an important role in automatic log analysis and has been widely
studied in recent years. Generally, log parsing approaches are divided into three categories:
rule-based, source code-based, and data-driven parsing [17]. In this work, we focus on data-
driven log parsing approaches. The advantage of these approaches is that they do not rely
on application-specific knowledge heavily. In general, existing data-driven log parsing
techniques could be grouped under three categories: frequent pattern mining, clustering, and
heuristics [15].

(1) Frequent Pattern Mining: SLCT [19], LFA [20], and LogCluster [31] propose automated
log parsers that parse log messages by mining the frequent tokens in log files. These
approaches first count token frequencies and then use a predefined threshold to identify

Appl. Sci. 2021, 11, 11974 12 of 15

the static parts of log messages. The intuition is that if a log event occurs frequently,
then the static template parts will occur more times than the dynamic parts from
variables. SLCT applies frequent pattern mining to log parsing for the first time. LFA
utilizes the token frequency in each log message instead of the whole log data to parse
infrequent logs. LogCluster improves SLCT and is robust to shifts in token position.
All the above three methods are offline and need to traverse all log data to count the
token frequency. In contrast, LogPunk is an online log parser.

(2) Clustering: Many previous studies regard log parsing as a clustering problem and
propose many clustering approaches to solve this problem. From this perspective,
log messages sharing the same templates are grouped into one cluster and various
approaches to measure the similarity (or distance) between two log messages have been
proposed. LKE [32], LogSig [21], and LogMine [22] propose offline clustering methods.
LKE employs a k-means clustering algorithm based on weighted edit distance to
extract log events from free text messages. LogSig groups log messages with the same
frequent subsequence into a predefined number of clusters. LogMine clusters log
messages from bottom to top and identifies the most suitable log template to represent
each cluster.
SHISO [24] and LenMa [25] are both online methods. SHISO employs Euclidean
distance to measure the similarity between logs and generate a score. If the score
is smaller than the pre-defined threshold, SHISO makes a cluster of the similar two.
LenMa proposes an online clustering method using the length information of each
word in log messages. Additionally, it measured the similarity between two log
messages based on cosine similarity, to determine which cluster the new coming log
message should be added to. Despite performing well on test datasets, these two
methods perform poorly on public datasets. To ensure robustness, LogPunk has been
tested on 16 datasets from different systems.

(3) Heuristics: Different from general text data, log messages have some unique character-
istics, which can be used for log parsing. AEL [29] uses heuristics based on domain
knowledge to identify dynamic parts (e.g., tokens following “is” or “are”) in log mes-
sages, then clusters log messages into the same template set if they have the same
structure of dynamic parts. IPLoM [23] iteratively partitions log messages into finer
clusters, firstly by the number of tokens, then by the position of tokens, and lastly by
the association between token pairs. Spell [26] supposes that template tokens often take
most of the log message, and variable tokens take only a small portion. So, it utilizes
an LCS-based approach to measure log similarity and to find the most similar template.
Drain [17] uses a fixed-depth tree to parse logs. Each layer encodes specially designed
rules for log parsing. In the first layer, Drain searches by log message length, and in
the following layers, searches by preceding tokens. By doing so, log messages with the
same length and preceding tokens are clustered into the same groups placed on the
leaf nodes. The tree-based Spell and Drain outperform other methods in the previous
benchmark [15] and are state-of-the-art log parsers at present. LogPunk overcomes the
defect of tree structures (cf. Section 2) and parses logs in a hash-like manner.

7. Conclusions

A qualified general-purpose online log parser should be robust and efficient, which
meets the reliability requirements of modern software systems. At present, the state of the
art online log parsers are tree-based. Such a structure brings low robustness and inefficiency.
To overcome these limitations, we get inspiration from log punctuations and propose a
hash-like method.

This paper proposed LogPunk, a robust and efficient log parser based on our novel
log punctuations signature method. The candidate signature group is quickly located
according to the log signature, which improves the efficiency. To solve the problem of
signature collision, we design the log similarity function to find the most similar template,
which improves the robustness.

Appl. Sci. 2021, 11, 11974 13 of 15

Experiments are conducted on 16 public log datasets. Our experimental results show
that LogPunk obtains the highest accuracy on ten datasets out of 16 datasets. Especially,
LogPunk achieves the best average accuracy of 0.919 among the other five baseline log
parsers. In addition, experiments also show that LogPunk is robust and efficient.

Finally, some future works are analyzed as follows.

(1) Automated parameters tuning. Logpunk has two hyperparameters similarity threshold
and prefix threshold (cf. Section 3.3). During the experiment, these two hyperparameters
are fine-tuned manually. This process is time-consuming, and the obtained hyperpa-
rameters may not be optimal. A mechanism for automated parameters tuning can
greatly improve this situation.

(2) Punctuation table generation. The punctuation table (cf. Section 3.2) determines the
log signature and affects the whole log parsing process. We presented a punctuation
table by eliminating the punctuations appearing in variables, and it performs well on
the 16 evaluated datasets. For a new system, if we customize a punctuation table for
it, we may get better log parsing results. It is desirable to find a way to generate a
customized punctuation table automatically for an unknown system.

(3) Variable type identification. Existing log parsers treat all variables in the parsing result
as strings. However, obviously, each variable has its specific type information (e.g.,
number, IP, URL, file path, etc.) and it is useful to detect the variable-related anomaly.
If log parsing not only identifies variable but also variable types, it will bring more
initiative to downstream tasks.

Author Contributions: Conceptualization, S.Z. and G.W.; methodology, S.Z.; software, S.Z.; vali-
dation, S.Z.; investigation, S.Z.; resources, S.Z.; writing—original draft preparation, S.Z.; writing—
review and editing, G.W.; visualization, S.Z.; supervision, G.W.; project administration, G.W.; funding
acquisition, G.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: [https://github.com/logpai/loghub].

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AIOps Artificial Intelligence for IT Operations
LCS Longest Common Subsequence
PA Parsing Accuracy
URL Uniform Resource Locator
Symbols
EV Log Content
ei A Log Template
vi A List of Variables
E The Set of All Log Templates
L A Sequence of Log Messages
lm A Log Message
ti A List of Tokens
tj The Token with Index j
T The Set of All Tokens
n Message Length

References
1. Cito, J.; Leitner, P.; Fritz, T.; Gall, H.C. The Making of Cloud Applications: An Empirical Study on Software Development for the

Cloud. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering; Association for Computing Machinery:
New York, NY, USA, 2015; pp. 393–403. [CrossRef]

https://github.com/logpai/loghub
http://doi.org/10.1145/2786805.2786826

Appl. Sci. 2021, 11, 11974 14 of 15

2. Barik, T.; DeLine, R.; Drucker, S.; Fisher, D. The bones of the system: A case study of logging and telemetry at microsoft. In
Proceedings of the 2016 IEEE/ACM 38th International Conference on Software Engineering Companion, Austin, TX, USA, 14–22
May 2016; pp. 92–101. [CrossRef]

3. Forestiero, A.; Mastroianni, C.; Papuzzo, G.; Spezzano, G. A Proximity-Based Self-Organizing Framework for Service Composition
and Discovery. In Proceedings of the 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing,
Melbourne, VIC, Australia, 17–20 May 2010, pp. 428–437. [CrossRef]

4. Forestiero, A.; Mastroianni, C.; Meo, M.; Papuzzo, G.; Sheikhalishahi, M. Hierarchical approach for green workload management
in distributed data centers. In European Conference on Parallel Processing; Springer: New York, NY, USA, 2014; pp. 323–334.
[CrossRef]

5. Mi, H.; Wang, H.; Zhou, Y.; Lyu, M.R.T.; Cai, H. Toward Fine-Grained, Unsupervised, Scalable Performance Diagnosis for
Production Cloud Computing Systems. IEEE Trans. Parallel Distrib. Syst. 2013, 24, 1245–1255. [CrossRef]

6. Zhang, X.; Xu, Y.; Lin, Q.; Qiao, B.; Zhang, H.; Dang, Y.; Xie, C.; Yang, X.; Cheng, Q.; Li, Z.; et al. Robust Log-Based Anomaly
Detection on Unstable Log Data. In Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, Tallinn, Estonia, 26–30 August 2019; Association for
Computing Machinery: New York, NY, USA, 2019; pp. 807–817. [CrossRef]

7. Meng, W.; Liu, Y.; Zhu, Y.; Zhang, S.; Pei, D.; Liu, Y.; Chen, Y.; Zhang, R.; Tao, S.; Sun, P.; et al. LogAnomaly: Unsupervised
Detection of Sequential and Quantitative Anomalies in Unstructured Logs. In Proceedings of the International Joint Conferences
on Artificial Intelligence Organization, Macao, China, 10–16 August 2019; pp. 4739–4745. [CrossRef]

8. Zhou, X.; Peng, X.; Xie, T.; Sun, J.; Ji, C.; Liu, D.; Xiang, Q.; He, C. In Latent Error Prediction and Fault Localization for Microservice
Applications by Learning from System Trace Logs; Association for Computing Machinery: New York, NY, USA, 2019; pp. 683–694.
[CrossRef]

9. Chen, Y.; Yang, X.; Lin, Q.; Zhang, H.; Gao, F.; Xu, Z.; Dang, Y.; Zhang, D.; Dong, H.; Xu, Y.; et al. Outage Prediction and Diagnosis
for Cloud Service Systems. In The World Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019; Association for
Computing Machinery: New York, NY, USA, 2019; pp. 2659–2665. [CrossRef]

10. Zaman, T.S.; Han, X.; Yu, T. SCMiner: Localizing System-Level Concurrency Faults from Large System Call Traces. In Proceedings
of the 2019 34th IEEE/ACM International Conference on Automated Software Engineering, San Diego, CA, USA, 11–15 November
2019; pp. 515–526. [CrossRef]

11. Cotroneo, D.; De Simone, L.; Liguori, P.; Natella, R.; Bidokhti, N. How Bad Can a Bug Get? An Empirical Analysis of Software
Failures in the OpenStack Cloud Computing Platform. In Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, Tallinn, Estonia, 26–30 August 2019; Association
for Computing Machinery: New York, NY, USA, 2019; pp. 200–211. [CrossRef]

12. Xu, W.; Huang, L.; Fox, A.; Patterson, D.; Jordan, M.I. Detecting large-scale system problems by mining console logs. In
Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles, Big Sky, MT, USA, 11–14 October 2009;
pp. 117–132. [CrossRef]

13. Lou, J.G.; Fu, Q.; Yang, S.; Xu, Y.; Li, J. Mining Invariants from Console Logs for System Problem Detection. In Proceedings of the
USENIX Annual Technical Conference, Boston, MA, USA, 23–25 June 2010; pp. 1–14.

14. Lou, J.G.; Fu, Q.; Yang, S.; Li, J.; Wu, B. Mining program workflow from interleaved traces. In Proceedings of the 16th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 25–28 July 2010;
pp. 613–622. [CrossRef]

15. Zhu, J.; He, S.; Liu, J.; He, P.; Xie, Q.; Zheng, Z.; Lyu, M.R. Tools and benchmarks for automated log parsing. In Proceedings of
the 2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice, Montreal, QC,
Canada, 25–31 May 2019; pp. 121–130.

16. Beschastnikh, I.; Brun, Y.; Ernst, M.D.; Krishnamurthy, A. Inferring models of concurrent systems from logs of their behavior
with CSight. In Proceedings of the 36th International Conference on Software Engineering, Hyderabad, India, 31 May 2014;
pp. 468–479. [CrossRef]

17. He, P.; Zhu, J.; Zheng, Z.; Lyu, M.R. Drain: An online log parsing approach with fixed depth tree. In Proceedings of the 2017
IEEE International Conference on Web Services, Honolulu, HI, USA, 25–30 June 2017; pp. 33–40. [CrossRef]

18. Dai, H.; Li, H.; Chen, C.S.; Shang, W.; Chen, T.H. Logram: Efficient log parsing using n-gram dictionaries. IEEE Trans. Softw.
Eng. 2020. [CrossRef]

19. Vaarandi, R. A data clustering algorithm for mining patterns from event logs. In Proceedings of the 3rd IEEE Workshop on IP
Operations & Management, Kansas City, MO, USA, 3 October 2003; pp. 119–126. [CrossRef]

20. Nagappan, M.; Vouk, M.A. Abstracting log lines to log event types for mining software system logs. In Proceedings of the 2010
7th IEEE Working Conference on Mining Software Repositories, Cape Town, South Africa, 2–3 May 2010; pp. 114–117.

21. Tang, L.; Li, T.; Perng, C.S. LogSig: Generating system events from raw textual logs. In Proceedings of the 20th ACM International
Conference on Information and Knowledge Management, Glasgow, UK, 24–28 October 2011; pp. 785–794.

22. Hamooni, H.; Debnath, B.; Xu, J.; Zhang, H.; Jiang, G.; Mueen, A. Logmine: Fast pattern recognition for log analytics. In
Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, Indianapolis, IN, USA,
24–28 October 2016; pp. 1573–1582.

http://dx.doi.org/10.1145/2568225.2568246
http://dx.doi.org/10.1109/CCGRID.2010.48
http://dx.doi.org/10.1007/978-3-319-14325-5_28
http://dx.doi.org/10.1109/TPDS.2013.21
http://dx.doi.org/10.1145/3338906.3338931
http://dx.doi.org/10.24963/ijcai.2019/658
http://dx.doi.org/10.1145/3338906.3338961
http://dx.doi.org/10.1145/3308558.3313501
http://dx.doi.org/10.1109/ASE.2019.00055
http://dx.doi.org/10.1145/3338906.3338916
http://dx.doi.org/10.1145/1629575.1629587
http://dx.doi.org/10.1145/1835804.1835883
http://dx.doi.org/10.1145/2568225.2568246
http://dx.doi.org/10.1109/ICWS.2017.13
http://dx.doi.org/10.1109/TSE.2020.3007554
http://dx.doi.org/10.1109/IPOM.2003.1251233

Appl. Sci. 2021, 11, 11974 15 of 15

23. Makanju, A.A.; Zincir-Heywood, A.N.; Milios, E.E. Clustering event logs using iterative partitioning. In Proceedings of the 15th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France, 28 June 2009–1 July 2009;
pp. 1255–1264.

24. Mizutani, M. Incremental mining of system log format. In Proceedings of the 2013 IEEE International Conference on Services
Computing, Santa Clara, CA, USA, 28 June–3 July 2013; pp. 595–602. [CrossRef]

25. Shima, K. Length matters: Clustering system log messages using length of words. arXiv 2016, arXiv:1611.03213.
26. Du, M.; Li, F. Spell: Streaming parsing of system event logs. In Proceedings of the 2016 IEEE 16th International Conference on

Data Mining (ICDM), Barcelona, Spain, 12–15 December 2016; pp. 859–864. [CrossRef]
27. Du, M.; Li, F. Spell: Online Streaming Parsing of Large Unstructured System Logs. IEEE Trans. Knowl. Data Eng. 2019,

31, 2213–2227. [CrossRef]
28. He, S.; Zhu, J.; He, P.; Lyu, M.R. Loghub: A large collection of system log datasets towards automated log analytics. arXiv 2020,

arXiv:2008.06448.
29. Jiang, Z.M.; Hassan, A.E.; Flora, P.; Hamann, G. Abstracting execution logs to execution events for enterprise applications (short

paper). In Proceedings of the 2008: The Eighth International Conference on Quality Software, Oxford, UK, 12–13 August 2008;
pp. 181–186. [CrossRef]

30. Huang, S.; Liu, Y.; Fung, C.; He, R.; Zhao, Y.; Yang, H.; Luan, Z. Paddy: An event log parsing approach using dynamic dictionary.
In Proceedings of the NOMS 2020-2020 IEEE/IFIP Network Operations and Management Symposium, Budapest, Hungary, 20–24
April 2020; pp. 1–8.

31. Vaarandi, R.; Pihelgas, M. Logcluster—A data clustering and pattern mining algorithm for event logs. In Proceedings of the 2015
11th International Conference on Network and Service Management, Barcelona, Spain, 9–13 November 2015; pp. 1–7. [CrossRef]

32. Fu, Q.; Lou, J.G.; Wang, Y.; Li, J. Execution anomaly detection in distributed systems through unstructured log analysis. In
Proceedings of the 2009 Ninth IEEE International Conference on Data Mining, Miami Beach, FL, USA, 6–9 December 2009;
pp. 149–158. [CrossRef]

http://dx.doi.org/10.1109/SCC.2013.73
http://dx.doi.org/10.1109/ICDM.2016.0103
http://dx.doi.org/10.1109/TKDE.2018.2875442
http://dx.doi.org/10.1109/QSIC.2008.50
http://dx.doi.org/10.1109/CNSM.2015.7367331
http://dx.doi.org/10.1109/ICDM.2009.60

	Introduction
	Problem Description
	Methodology
	Step 1 Preprocess and Split
	Step 2 Generate Log Signature
	Step 3 Search Signature Group
	Step 4 Update Signature Group

	Evaluation
	LogHub Dataset and Accuracy Metrics
	Accuracy
	Robustness
	Efficiency

	Discussion
	Related Work
	Conclusions
	References

