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Abstract: The effectiveness of the Wolf Pack Algorithm (WPA) in high-dimensional discrete op-
timization problems has been verified in previous studies; however, it usually takes too long to
obtain the best solution. This paper proposes the Multi-Population Parallel Wolf Pack Algorithm
(MPPWPA), in which the size of the wolf population is reduced by dividing the population into
multiple sub-populations that optimize independently at the same time. Using the approximate
average division method, the population is divided into multiple equal mass sub-populations whose
better individuals constitute an elite sub-population. Through the elite-mass population distribution,
those better individuals are optimized twice by the elite sub-population and mass sub-populations,
which can accelerate the convergence. In order to maintain the population diversity, population
pretreatment is proposed. The sub-populations migrate according to a constant migration probability
and the migration of sub-populations are equivalent to the re-division of the confluent population.
Finally, the proposed algorithm is carried out in a synchronous parallel system. Through the simula-
tion experiments on the task assignment of the UAV swarm in three scenarios whose dimensions
of solution space are 8, 30 and 150, the MPPWPA is verified as being effective in improving the
optimization performance.

Keywords: Wolf Pack Algorithm (WPA); multi-population optimization algorithms; Multi-Population
Parallel Wolf Pack Algorithm (MPPWPA); approximate average division method; elite-mass pop-
ulation distribution; population pretreatment; synchronous parallel system; task assignment of
UAV swarm

1. Introduction

During the Nagorno-Karabakh conflict in 2020, it was shocking to witness UAV
swarms being employed to attack the ground targets precisely and roundly. It is an
inevitable trend that Unmanned Aerial Vehicle (UAV) swarms will play an important role
in future war [1]. Consequently, the task assignment of UAV swarms has become a research
hotspot in recent decades.

There are two core problems in task assignment. One is to establish a model for a
specific operational process which has obtained abundant achievements after decades
of extensive research, such as TSP (Travelling Salesman Problem), VRP (Vehicle Routing
Problem), MILP (Mixed Integer Linear Programming), CMTAP (Cooperative Multiple Task
Assignment Problem) and their extensions. The other is to design an appropriate opti-
mization algorithm to solve the model. The quality of an optimization method determines
the quality of a UAV’s task sequence and then affects the overall combat effectiveness.
Although the development of optimization algorithms is also thriving, there are few exist-
ing studies that solve the task assignment with high dimensionality (task assignment for
100 UAVs, for instance).

In this paper, we proposed a novel heuristic method called the multi-population
parallel Wolf Pack Algorithm (MPPWPA), which is improved from the basic Wolf Pack
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Algorithm (WPA) and is suitable for resolving the high-dimensional task assignment
problems. The main contribution of this paper is to incorporate the multi-population
optimization method and the parallel computing with WPA to reduce the convergence
time. The remainder of this paper is organized as follows. Section 2 mainly describes the
basic knowledge and corresponding literature review. MPPWPA is proposed in Section 3,
where the communication structures in multi-population optimization and the parallel
propulsion modes are described in detail. In Section 4, the performance of MPPWPA is
tested and compared with PSO, GA, ABC and WPA in three task assignment scenarios for
UAV swarms. Finally, Section 5 concludes the paper and briefly explores the outlook for
future work.

2. Basic Knowledge and Literature Review
2.1. Task Assignment Model

The background of the mission is to attack static present targets on the ground using a
UAV swarm consisting of isomorphic attack UAVs with limited weapons. The objective of
the mission is to attack all targets in the shortest time or with the least total fuel consumption.
When a UAV’s weapons are insufficient to cope with one target, multiple UAVs need to be
scheduled to attack the target at the same time. UAVs can control their speeds to achieve
the salvo attack. Any UAV needs to avoid obstacles and no-fly zones as it flies to the target.
In a specific mission, various constraints should be considered to assign the UAVs, such
as the mobility constraints, the weapon quantity constraints, the fuel quantity (or flying
range) constraints and the flyable zone constraints.

In this paper, a simplified task assignment model is described, which involves as
little uncertain information as possible, so as to facilitate the performance comparison
of optimization algorithms. The objective function is to minimize the costs of all tasks,
including the cost of the total range and the cost of the time to complete all tasks [2].

To formalize the problem, the following assumptions are set up.

1. There is no consideration of obstacles and no-fly zones, so the range between the UAV
and target can be expressed by their straight-line distance.

2. UAVs fly at fixed altitudes with the same constant velocity. Thus, the flight time can
be equivalent to the fight range.

3. The UAV drops the weapon directly above the target, so the task position is the
projection of the target position on the flight level. In other words, the UAV’s fight
range flying to the task position is the straight-line distance between the UAV’s
position and the target position in the horizontal plane, regardless of the altitude.

4. The time consumption involved in preparing and firing the weapon is not taken into
account. In other words, the time cost to complete a task includes only the flight time.

5. Each target can be attacked only once, while any UAV can attack multiple targets.
6. Targets’ initial positions are revealed.

The UAV swarm consists of NV attack UAVs, which can be expressed as V = {Vi|i =
1, , 2, · · · , NV}, and NT targets, which can be expressed as T =

{
Tj
∣∣j = 1, , 2, · · · , NT

}
.

The task sequence of UAV Vi ∈ V is

plani =
{

stage(k)i

∣∣∣k = 1, 2, · · · , Nsi

}
stage(k)i =

(
Tn, Rangei

m,n
)
, Tn ∈ T

(1)

where stage(k)i is the stage k of UAV Vi, Nsi is the task number assigned to UAV Vi, Tn is
the target of UAV Vi in the kth stage, and Rangei

m,n is the distance between Tm and Tj for
UAV Vi, where m = 0, 1, 2, · · ·NT and n = 1, 2, · · ·NT , T0 is a virtual target representing
the initial position of a UAV.

This task assignment problem is similar to the Vehicle Routing Problem (VRP) in
which UAVs equate to vehicles, targets equate to customers and the initial position of each
UAV equates to a depot. VRP [3] is a reasonably well-studied problem with extensive
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related derivative problems, such as the Capacitated Vehicle Routing Problem (CVRP) [4],
the Vehicle Routing Problem with Time Window (VRPTW) [5], the Split Delivery Vehicle
Routing Problem (SDVRP) [6], the Dynamic Vehicle Routing Problem (DVRP) [7], the
Vehicle Routing Problem with Simultaneous Delivery Pickup (VRPSDP) [8] and so on. At
present, the existing VPR models can basically meet the requirements for the modeling of
task assignment problems.

In this paper, we introduce the basic VRP to build the task assignment model. The
decision variable of task assignment is xi

m,n ∈ {0, 1}, representing whether UAV Vi attacks
target Tn after Tm; xi

m,n = 1 represents an attack, other values signify no attack.
The total range of all UAVs is

J1 =
NV

∑
i=1

NT

∑
m=0

NT

∑
n=1

xi
m,n · Rangei

m,n (2)

The time to complete all tasks refers to the maximum time taken by any UAV to
complete its own task sequence, and is expressed as

J2 = max
i∈NV

Timei (3)

where Timei is the time of UAV Vi to finish its all tasks and can be equivalent to the total
range of UAV Vi, so the time to complete all tasks can be represented as

J∗2 = max
i∈NV

NT

∑
m=0

NT

∑
n=1

xi
m,n · Rangei

m,n (4)

To keep the values of the two costs within the same order of magnitude, the total
range of all UAVs is equivalent to the average range, represented as

J∗1 =

NV
∑

i=1

NT
∑

m=0

NT
∑

n=1
xi

m,n · Rangei
m,n

NV
(5)

The optimization goal is to minimize both the total range of all UAVs and the maxi-
mum range among all UAVs.

Thus, the cost function of task assignment is

minJ = ω1 J∗1 + ω2 J∗2 = ω1

NV
∑

i=1

NT
∑

m=0

NT
∑

n=1
xi

m,n · Rangei
m,n

NV
+ ω2max

i∈NV

NT

∑
m=0

NT

∑
n=1

xi
m,n · Rangei

m,n

(6)

s.t. (1)
NV
∑

i=1

NT
∑

m=0
xi

m,n = 1

(2)
NV
∑

i=1

NT
∑

m=0

NT
∑

n=1
xi

m,n = NT

(7)

where ω1 and ω2 are weighting factors reflecting the importance of each performance
criterion, decided by the commander, and ω1 + ω2 = 1. Equation (7) indicates constraints:
each target can be attacked only once, and all targets must be attacked.

2.2. Optimization Methods

Optimization methods for the task assignment problem of UAV swarms are generally
studied in three categories.

The first category treats task assignment as a programming problem, such as the
Hungarian algorithm [9], the branch and bound search algorithm [10], dynamic program-
ming [11], the exhaustive method [12], Newton’s method [13], the gradient method [14]
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and so on. These methods can obtain the optimal solution if there is a solution, but it is
difficult to solve non-convex NP-hard problems. Generally, these methods need to abstract
the problem to establish a mathematical model, so high mathematical ability is required,
especially for large-scale problems. The methods that are easy to implement, such as the
exhaustive method and the branch and bound search algorithm, have high time and space
complexity. When the problem size increases, the difficulty of solving the problem increases
sharply, and the time consumption increases exponentially [15].

The second category includes mainly the distributed optimization methods, such as
the auction algorithm [16], the market-based decentralized algorithm [17], the contract net-
work [18], etc. These methods utilize a market-based decision strategy as the mechanism for
decentralized task selection and can naturally converge to a conflict-free solution. Luc Brunet
et al. [19] introduced consensus to the auction algorithm and proposed a consensus-based
auction algorithm (CBAA) and a consensus-based bundle algorithm (CBBA) to improve the
efficiency of conflict resolution. Yu X et al. [20] applied the CBAA to the task assignment
of complex space crafts and found that the algorithm can guarantee successful assignment.
These methods have excellent performance in small-scale distributed systems, but with the
increase in the numbers of individuals in communication networks, the computation and
time required for conflict resolution increase greatly. Hence, these methods are generally
applicable to the coordination tasks in small-scale communication networks. In addition,
these methods need build objective functions named bidding functions for individuals, and
the bidding function directly determines the success and quality of the solution.

The last category employs mainly bio-based heuristic algorithms, such as the Ant
Colony Optimization Algorithm (ACO) [21], the Genetic Algorithm (GA) [22,23], the
Particle Swarm Optimization Algorithm (PSO) [24], etc. Such methods are inspired by the
mechanism of natural evolution of biological populations and can approach optimal or
sub-optimal solutions with finite calculation costs. Due to the characteristics of simplicity,
robustness, parallelism, wide applicability and low structural requirements for the problem
model, they are widely applied to various optimization problems [25]. In this paper, we
focus on the application of heuristic algorithms in the task assignment of UAV swarms.
The traditional classical heuristic algorithms still occupy the main position of optimization
at present, and scholars have been committed to overcoming their defects of premature
convergence and have put forward a large number of variants to adapt to various problems.
In addition to the study of classical heuristic algorithms, many scholars are committed
to designing new algorithms, such as the Fish Swarm Algorithm (FSA) [26], Bacterial
Foraging Optimization (BFO) [27], the Shuffled Frog Leaping Algorithm (SFLA) [28], the
Artificial Bee Colony (ABC) algorithm [29], the Wolf Pack Algorithm (WPA) [30] and so
on. ABC has attracted much attention due to its simple optimization mechanism and the
ability to move beyond a local optimal. In [29], compared with PSO and GA, it was found
to perform well in solving five high dimensional numerical benchmark functions including
the Griewank, Rastrigin, Rosenbrock, Ackley and Schwefel functions. Similarly, WPA
also showed outstanding performance in high-dimensional and multimodal continuous
functions compared with PSO, GA and FSA in [30], and this was verified by 15 complex
benchmark continuous functions such as Easom, Matyas, Trid6, Sumsquares, Spere, Booth,
Bohachevsky1, Eggcrate, Schaffer, Six Hump Camel Back, Bohachevsky3, Bridge, Rastrigin,
Quadric and Ackley. This paper mainly studies the application and improvement of the
WPA to task assignment in UAV swarms. Because of the WPA’s outstanding performance in
high-dimensional continuous problems, we apply it to solve the task assignment problem.

2.3. The Basics of WPA

The WPA simulates the cooperative hunting of wolves according to their system of
dividing responsibilities. The prey represents the optimal solution and each wolf represents
a candidate solution. The wolf population consists of a leader wolf who is the current best
solution, a small number of exploring wolves who explore the solution space in a specific
way and a large number of fierce wolves who explore the solution space referring to the
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leader wolf. According to the laws of nature, the leader wolf is constantly replaced and the
worst wolves are removed and replaced by new wolves that are generated randomly.

The WPA has many control parameters, as listed in Table 1.

Table 1. Parameters of WPA and PSO-GA-DWPA.

Parameters Meaning Parameters Meaning

Imax Maximum iterations dnear
Threshold distance for calling

behavior

N Size of population α
Scale factor of exploring

wolves

stepa Walking step β
Scale factor of wolf
population update

stepb Raid step hmin Minimum walking directions

stepc Siege step hmax Maximum walking directions

Tmax Maximum cycles of walking behavior

2.3.1. Integer Matrix Coding

According to the task assignment model in this paper, the position of each wolf is
expressed by two-dimensional matrix coding as

Xi =

[
xi1 xi2 · · · xij · · · xiNT

yi1 yi2 · · · yij · · · yiNT

]
(8)

where Xi denotes the position of the wolf i ∈ N, N is the population size of the wolves,
the dimension of the variable is NT because all targets must and can only be attacked
once. The first row of the code is the index of UAVs (xij ∈ NV) and elements in this
row can be repeated because a UAV can attack multiple targets. The second row of the
code is the index of targets (yij ∈ NT) and the elements in this row are different. For any
UAV, the order of a target’s index is its task sequence. For instance, there are 3 UAVs

attacking 5 targets and the coding matrix is Xi =

[
1 1 2 1 2
3 2 5 4 1

]
, then the task assign-

ment scheme is as follows: plan1 =
{(

3, Range(1)1,3

)
,
(

2, Range(2)1,2

)
,
(

4, Range(3)1,4

)}
,plan2 ={(

5, Range(1)2,5

)
,
(

1, Range(2)2,1

)}
, plan3 = NULL.

2.3.2. The Optimization Mechanism of the WPA

The optimization process of the WPA is shown in Figure 1. There are three searching
processes for the optimal solution in one iteration.

Step 1: Walking behavior. Except the leader wolf, S (S = randint
[

N
α+1 , N

α

]
) best

wolves become exploring wolves and explore the solution space by individual mutation,
as Equation (9) and Figure 2 show. Then, the new position of wolf i will be the one that
determines the objective value minimum, as expressed in Equation (10). Any exploring
wolf better than the leader wolf will become the new leader wolf, then go to the next Step,
otherwise Step 1 will be repeated. For the walking behavior, this step is repeated Tmax
times at most.

Xp
i,temp = F1(Xi, stepa), p = {1, 2, · · · , h} (9)

Xi,new =


argmin

Xp
i,temp ,p∈h

J
(

Xp
i,temp

)
, i f minJ

(
Xp

i,temp

)
< J(Xi)

Xi, else
(10)

where h (h = randint(hmin, hmax)) means the number of variants of Xi and J(·) is the
objective function.
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these columns are randomly selected from [1, NV ], while the values of the second row are randomly exchanged.

Step 2: Calling behavior. M (M = N − S− 1) wolves are fierce wolves and copy part
of the leader wolf’s position, as shown in Equations (11) and (12) and Figure 3. Any fierce
wolf better than the leader replaces the leader wolf and Step 2 is repeated. Otherwise, the
next step involves continuing to copy the position of the leader wolf until the distance to
the leader wolf (d) is less than the threshold (dnear).

Xj,tepm = F2
(
Xj, Xleader, stepb

)
(11)

Xj,new =

{
Xj,tepm, i f minJ

(
Xj,tepm

)
< J
(
Xj
)

Xj, else
(12)
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Figure 3. Operation in calling behavior. stepb columns in Xj are randomly selected and are replaced
by the corresponding columns of the leader wolf, while the duplicate value in the second row is
replaced with the original value in the changed column.

Step 3: Sieging behavior. Except for the leader wolf, all wolves copy little of the leader
wolf’s position, as shown in Equations (13) and (14). The operation is similar to that of the
calling behavior and the difference is that stepc is much less than stepb.

Xi,temp = F2(Xi, Xleader, stepc) (13)

Xi,new =

{
Xi,tepm, i f minJ

(
Xi,tepm

)
< J(Xi)

Xi, else
(14)

Step 4: Updating the wolf population. The R (R = randint
[

N
β+1 , N

β

]
) worst wolves are

removed and replaced with new wolves that are generated randomly.

2.3.3. Analysis of WPA

It can be seen from the optimization process that the algorithm integrates various
optimization ideas and considers almost all the problems involved in heuristic methods.
Walking behavior is the preliminary means of exploiting the solution space, and better
candidate solutions are found through the tentative advances of exploring wolves around
themselves. Calling behavior shows the ability to explore the solution space, and it is a
global optimization to accelerate the convergence of the algorithm. While sieging behavior
is a local optimization aiming at the current best solution to avoid falling prematurely into
the local optimum. This behavior helps to improve the accuracy of candidate solutions.
By removing the worst individuals and replacing them with new ones, the update of the
wolf population increases the population diversity to some extent and exploits the solution
space again. Although there are many control parameters in the WPA, small changes to
parameters do not affect the optimization performance because the parameters have a wide
range of values. In other words, the algorithm is robust to control parameters.

Since the WPA was proposed in 2013, it has been applied to optimization problems in
many fields such as parameter optimization [31–33], the power coordinated optimization
model in Active Distribution Networks (ADNs) [34,35], image compression [36], image
fusion [37], etc.

A series of improvements to the basic WPA have been proposed. Wu et al. [38]
designed binary coding based on the WPA and proposed the Binary Wolf Pack Algorithm
(BWPA) to solve the 0–1 knapsack problem. Guo et al. [39] improved the BWPA by adopting
an adaptive step length and replacing duplicate best wolves with new wolves after each
iteration, which enhanced the global convergence and maintained the population diversity.
Li et al. [40] introduced the Oppositional Wolf Pack Algorithm (OWPA), in which the
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initial population is selected from two oppositional populations so as to enhance the global
convergence. Xian et al. [41] introduced chemotactic behavior and elimination-dispersal
behavior of bacterial foraging optimization (BFO) into the walking behavior of the WPA to
overcome the slow convergence speed and avoid entrapment into the local extremum. Lu
et al. [42] proposed the Discrete Wolf Pack Algorithm, with the principles of the Particle
Swarm Optimization and Genetic Algorithm (PSO-GA-DWPA), which melts the PSO into
walking behavior, and introduced the gene fragment replication method of GA into calling
behavior and sieging behavior; their simulation results showed that the proposed algorithm
was better than WPA both in convergence speed and accuracy. Xiu-Wu et al. [43] adopted
a variable step to improve the global search capability. Chen et al. [44] integrated the WPA
with GA to retain as many elite genes as possible and delete calling behavior to improve
the convergence speed. The above improvements improve the optimization performance
to a certain extent, but the problem of long convergence time for discrete problems with
high-dimensional solution space has not been effectively solved.

Compared with classical optimization algorithms such as GA and PSO, the WPA has
excellent performance in terms of both accuracy and time consumption. However, there
is still room to improve it, especially in discrete problems where its performance is not
as good as in continuous problems. Improving the details of the WPA leads to a limited
improvement in the performance. In order to solve the task assignment model faster, we
need to find a more effective method to modify the algorithm.

2.4. Multi-Population Optimization Method

The convergence speed and accuracy of the heuristic algorithms are greatly influenced
by population diversity, which reflects in the differences of candidate individuals. In single-
population algorithms, population diversity is determined in the initial population and
decreases as the individuals keep moving towards the global extreme. Multi-population
optimization methods are upgrades of heuristic algorithms based on the theory of co-
evolution [45]. The main advantage of multi-population methods is the maintaining of
population diversity as far as possible by making candidate individuals of sub-populations
spread over the entire search space.

2.4.1. The Basics of the Multi-Population Optimization Method

A population is divided into multiple small sub-populations who evolve with their
own evolution operations; every once in a while, sub-populations interact with each other
via merging and communication processes to maintain population diversity and avoid
premature convergence [46,47]. The general flow of the multi-population optimization
method is shown in Figure 4. Generally, the algorithm starts with initialization, including
the setting of parameters, the generation of an initial population of solutions and the evalu-
ation of the population. Then, the population is divided into multiple sub-populations and
each sub-population is optimized independently with its own algorithm within a certain
number of iterations. After that, sub-populations communicate to update themselves
according to some rules and this process is called population migration. This step is the
key to maintain diversity and accelerate the overall optimization progress. Finally, the
process stops once the termination condition is met.

The steps are described in detail as follows.
Step 1: Configuration of the parameters. The parameters of multi-population opti-

mization method include the maximum iterations, the size of the population, the number
of sub-populations, the parameters of the algorithm corresponding to each sub-population
and the parameters related to population migration.

Step 2: Generation of the initial population. An initial population of solutions is
created randomly or via some methods.

Step 3: Evaluation of the population. The fitness of each individual in the population
is calculated according to the objective function.
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Step 4: Division of the population into sub-populations. Sub-populations may have
the same or different sizes. Individuals of the population are divided into sub-populations
randomly or in the light of some criterion.

Step 5: Sub-populations perform the optimization process simultaneously and in-
dependently, which is the main step of the method. Within certain iterations, each sub-
population searches the solution space according to its own algorithm and parameters.
According to sub-population selections of the optimization algorithms, multi-population
optimization methods can be divided into isomorphic multi-population optimization and
heterogeneous multi-population optimization. In the former method, all sub-populations
have the same optimization algorithm and parameters, while in the latter method, the
optimization algorithms or optimization parameters of each sub-population are different.

Step 6: Judging whether the termination condition is met. Once the termination
condition is met, the evolution process is stopped and the current best solution is output.
Otherwise, Step 7 is begun.

Step 7: Population migration, which is the key for multi-populations to maintain
diversity and accelerate optimization. Through specific communication mechanisms and
migration rules, each sub-population sends information on some individuals to other
sub-populations and receives external individuals to replace its own ones. This is a process
of fusion and renewal for sub-populations. Then, Step 5 is returned to.

In the last decade, multi-population optimization methods have been studied in many
fields, including cognitive radio networks [48], energy power [49], Cloud manufactur-
ing [50], mobile ad-hoc networks [51], job-shop scheduling [52], path planning [53] and
so on. Since each sub-population can run its own optimization algorithm independently,
multi-population optimization methods have strong flexibility in selecting algorithms. Hao
et al. [54] applied the same algorithm with multiple sets of parameters in different sub-
populations to generate high-quality and effective paths of robots. Through a high number
of sub-populations interacting in parallel, the effect of each sub-population’s parameters is
compensated by individuals selected from other populations [55]. Wang et al. [56] used
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the Fruit fly optimization algorithm (FOA) for all sub-populations, but preprocessed the
individuals of sub-populations with different methods including chaos theory and the fish
swarm algorithm, so that the whole population could maintain diversity while tending
to the optimal solution. Yoshida et al. [57] applied multi-population with PSO, where the
initial particles were cloned with differential evolution algorithm in each iteration and the
optimal particles were selected from all existed particles to the next iteration in order to
maintain population diversity and improve the ability to search the solution space. Nseef
et al. [58] proposed that the sub-population size can change adaptively with time, which
has a remarkable effect on the solving of the dynamic optimization problem.

2.4.2. Factors of Multi-Population Optimization Method

One important factor concerns how to divide the population; specifically, how many
sub-populations there should be and the size of each sub-population. Too many sub-
populations may waste the limited computation resources because of population migration,
while too few sub-populations may cause the advantage of multi-population optimization
not to be significant. The size of sub-population is closely related to specific optimization
algorithms. At present, the appropriate number and size of sub-populations are obtained
through simulation experiments.

The other factor is the migration strategy, which specifically involves three elements—
the migration mode, the trigger condition and the individuals participating in migration.

• Migration mode:

As shown in Figure 5, there are two migration modes. The first one, as shown in
Figure 5a, is circular migration, in which sub-populations transmit individual information
in one direction. This mode is simple to implement and requires no extra computational
cost, but it cannot guarantee the quality of population fusion. The second one, as shown in
Figure 5b, is interaction migration, in which each sub-population chooses some neighbors
to exchange individual information with. This mode is more flexible to maintain population
diversity, but it increases additional computational costs.

• Trigger condition:

Population migration can maintain population diversity, and the more frequent the
migration is, the better the accuracy of the solution will be, but the time of calculation
increases accordingly. Therefore, a compromise between the accuracy of the solution
and the calculation time is needed. Typically, the trigger condition is set to a certain
iteration interval. Events are also used as trigger conditions; sub-populations migrate once
a sub-population falls into a local optimum, for example.

• Individuals participating in migration:

This element involves two issues, the migration rate and individual selection. The
former issue concerns how many individuals participate in the migration, and the latter
issue concerns which individuals participate in the migration. These two problems are
difficult to solve through theoretical derivation. At present, the experience gained through
a large number of experiments is that the best individual of a sub-population is sent to
another sub-population and replaces its worst individual.

2.5. Basic Communication Structures for Multi-Population Optimization

The classical island model proposed in the early days is shown in Figure 6. In this
model, each sub-population and its corresponding optimization algorithm are integrated
together as a node. In other words, every node includes not only the state of the sub-
population but also the algorithmic process, and it sends and receives the state of specific
individuals during the communication with other nodes by point-to-point communication.
This undoubtedly increases the difficulty of communication and is not conducive to the
large-scale migration of individuals. Besides, the lack of flexibility makes it more difficult
to add or remove nodes at runtime.
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To improve the means of communication, the Pool model [59], shown in Figure 7, uses

a central Pool to store the individuals and the Pool is accessible by all nodes. Each node
interchanges individuals with the Pool, so the communication between nodes will not be
affected when adding or removing nodes. Even so, the coupling between the population
state and the algorithm still exists; as a result, the framework of the population and algorithm
need to be rebuilt when adding a new node and both the size of the sub-population and the
parameters of the algorithm cannot be changed during the running time.

An improved Pool model [60] extends the capabilities of the Pool and decouples the
state of the sub-population and the algorithm as shown in Figure 8. In this model, the
state of all sub-populations is stored in the Pool and a sub-population, which is sent to the
corresponding algorithm as a parameter, which is generated by taking random samples
of the population. The unified storage of population states can support more methods of
population migration.
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2.6. Parallel Propulsion Mode

The parallel propulsion strategies of multiple nodes are coupled and affect each other.
Common parallel propulsion modes include synchronous sequential propulsion, synchronous
parallel propulsion and asynchronous parallel propulsion, as shown in Figure 9.

In synchronous sequential propulsion, as shown in Figure 9a, each task node of the
system is executed in accordance with the specified order. During the whole progress,
only one task node can be executed, represented as the colored progress bar shown in
Figure 9a, while other task nodes are in the state of waiting, represented as the grey progress
bar shown in Figure 9a. The logic of this propulsion mode is simple without complex
synchronization mechanisms. Since the tasks are executed one by one and the result of the
previous task can be sent to the next task as a parameter, the entire progress has low traffic.
However, this mode is suitable for tasks nodes that are sequentially dependent. Otherwise,
it will cause unnecessary time consumption and worse operation efficiency because every
task node has large amounts of idle waiting time.
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In synchronous parallel propulsion, as shown in Figure 9b, all task nodes are executed
at the same time. Due to the different computing capacity of each task node, the propulsion
speeds are different. The task nodes with faster propulsion speeds need to spend certain
amount of time waiting to maintain synchronization with other task nodes. In this mode,
all tasks are in the state of synchronous parallel operation, so the solving efficiency is
greatly improved compared with synchronous sequential propulsion. Even if a task node
is blocked during a stage, other task nodes can still be executed. It is obvious that there
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needs to be a synchronization mechanism to keep the system robust. This mode is suitable
for task nodes that need to communicate with each other regularly.

In Figure 9c, all task nodes are executed in parallel at their own propulsion speeds
without any waiting time. This mode is more suitable for task nodes with high indepen-
dence. Otherwise, communication data between nodes will be chaotic.

3. The Proposed Multi-Population Parallel Wolf Pack Algorithm (MPPWPA)

According to the analysis of the WPA and the multi-population optimization method,
this section proposes a novel multi-population parallel Wolf Pack Algorithm (MPPWPA)
for task assignment modelling with high-dimensional solution space.

3.1. Elite-Mass Population Distribution

In order to make full use of excellent individuals to accelerate convergence, a virtual
sub-population, called the elite sub-population, is constructed on the upper layer of the
existing sub-populations, which are defined as mass sub-populations. The elite population
has the same size as any mass sub-population and collects the best individuals from the
total population. The composition of the elite sub-population does not change until the
mass sub-populations migrate. According to the approximate average division proposed
in Section 3.3, individuals of elite sub-population will be divided approximately equally to
all mass sub-populations. In every iteration, the elite sub-population consisting of these
individuals is optimized first, then the mass sub-populations, including these individuals,
are optimized. This is similar to the process in which a company centrally trains leaders
of departments and returns them to their respective positions to direct the departments.
The high-quality individuals, after quadratic optimization, are of great significance for
accelerating convergence. We define such a population distribution as an elite-mass
population distribution and the optimization process is shown in Figure 10.

3.2. Pretreatment of the Population

In order to enhance the exploration of the search space, the population is pretreated
before population division. The basis of the pretreatment is to double the population
size by adding variants of some individuals in the original population and to generate
new individuals randomly. Individuals with the same solution are called redundant in-
dividuals. If an individual cannot obtain a better solution after multiple iterations and
it does not contribute to the optimization, we define this individual as aging. In the
optimization process, too many redundant individuals aging will lead to premature conver-
gence. During the pretreatment, the redundant individuals of the population are removed
periodically to prevent premature convergence. The original population is expressed as
Pop = {wol fi|i = 1, 2, · · · , N}, where N is the size of population. The steps of pretreatment
are as follows:

Step 1: Sort the Pop in ascending order;
Step 2: The first τ·N individuals from the Pop form a mutant population expressed as

Popm = {wol fi|i = 1, 2, · · · , Nm}, where Nm = τ·N is the size of mutant population, and
τ ∈ [0, 1] is the mutation ratio. Individuals in Popm undergo minor variation, which is
similar to the walking behavior of WPA.

Step 3: Build a temporary population Popt = Pop + Popm, whose population size is
Nt = N + Nm. If the time interval (defined as ∆I) for redundancy removal is met, remove
the redundant individuals of Popt and the population size decreases to N′t ;

Step 4: Randomly generate a new population Popr with the size of (2·N − Nt) or
(2·N − N′t);

Step 5 Coalesce all populations Poptotal = Pop + Popm + Popr. Sort the Poptotal in
ascending order and the first N individuals form the new Pop that replaces the original Pop.
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3.3. Approximate Average Division Method

As is known, the optimization performance of heuristic algorithms is closely related
to population size. Within a certain range, the more individuals the population includes,
the better the optimization performance will be [45]. In essence, multi-population op-
timization reduces the population size of an optimization unit and makes up for the
performance loss by absorbing high-quality individuals from other optimization units.
The contribution of a sub-population to global optimization depends on the quality of
its best individuals, because high-quality individuals can affect the exploration of global
optimal solutions. In MPPWPA, all sub-populations are optimized by the WPA, so the size
of each sub-population is the same. In order to equalize the quality of all sub-populations,
an approximate average division method is proposed. The number of sub-populations
is set as Num. All individuals are sorted in ascending order and every Num individuals
constitute a segment, then the individuals in each segment are randomly assigned to mass
sub-populations. In this way, the population can be divided almost uniformly.

Detailed steps are shown in Figure 11.
Step 1: The population Pop is sorted in ascending order;
Step 2: The first N

Num individuals are labeled as members of the elite sub-population;
Step 3: Pop is divided into multiple segments with the same length Num;
Step 4: Num individuals in each segment are randomly assigned to Num mass sub-

populations.
The proposed pretreatment and approximate average division method maximize

the competitiveness of each sub-population, and thus, they can be used in population
migration. Mass sub-populations to are coalesced to Pop, and then pretreated and re-
divided. The problems of migration rate and individual selection in population migration
are also avoided successfully.
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It should be noted that the migration probability (Pm) is used to determine whether
to carry out population migration after each iteration. If rand() < Pm, all mass sub-
populations fuse and the population will be re-divided; otherwise, all sub-populations
continue to be optimized. The flow of the MPPWPA is shown in Figure 12.

3.4. System for MPPWPA

Introducing the improved Pool model in Figure 8, the system for MPPWPA is pro-
posed, as Figure 13 shows. The system consists of one managing process and multiple
working processes that actually perform algorithms.

The managing process has four main responsibilities: (1) Control all processes.
(2) Manage all parameters. (3) Pretreat and divide the population in stages of initialization
and population migration. (4) Execute the optimization of the elite sub-population.

Each algorithm is encapsulated into a module, whose inputs are parameters of the
algorithm and the state of population, and the output is the state of the sub-population
after iteration. Each working process only needs to call and run the required algorithm
module, saving a lot of computational costs for processing data.

3.5. Parallel Propulsion Mode for MPPWPA

By analyzing the features and the applicable scope of three modes, combined with
the flow of the multi-population parallel optimization algorithm, a synchronous parallel
propulsion mode is introduced to MPPWPA, as shown in Figure 14.

In the synchronous parallel propulsion mode, the managing process is performed first,
which then generates three working processes with its result. After that, the managing
process waits for all working processes to finish and receives the results from the working
processes to prepare for the next stage. Three working processes are performed with the
synchronous parallel propulsion because their propulsion speeds are similar and their
results need to be handled by the managing process at the same time.
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4. Experiments of Task Assignment for UAV Swarm Using MPPWPA

To verify the effectiveness of the proposed MPPWPA, we chose the basic WPA
(Figure 3), PSO [2,30], GA [23] and ABC algorithm [29] for comparison. The PSO and
GA are widely used heuristic algorithms while the basic WPA and ABC algorithm are
relatively new but have received much attention in recent years.

The algorithms were coded in Python, and all simulations were run on a 2.50-GHz
computer with a quad-core Intel i5 CPU and 4 GB of RAM. A Monte Carlo study, consisting
of 20 runs, is used in this section to compare the performance of the PSO, GA, ABC, WPA
and MPPWPA with different parameters.

4.1. Preparation for Simulation Experiments

A Monte Carlo study, consisting of 20 independent runs, was used to compare the
performance of the PSO, GA, ABC, WPA and MPPWPA with different parameters for the
cost function of Equation (6) where ω1 = ω2 = 0.5.

Three scenarios were: five UAVs against eight targets, 20 UAVs against 30 targets and
100 UAVs against 150 targets. The dimensions of the variable in the three scenarios were
8, 30 and 150 respectively. The initial locations of the UAVs and targets were generated
randomly and projected onto a two-dimensional plane, as shown in Figure 15.
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(c) Scenario 3: 100 UAVs and 150 targets were randomly distributed in a space of 10,000 × 10,000 m.

The parameters of the WPA for different scenarios were set as shown in Table 2.
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Table 2. Parameters of WPA in three scenarios.

Parameters Scenario 1 Scenario 2 Scenario 3

Imax 200 400 1000

N 160 160 160

stepa 2 2 2

stepb 4 14 70

stepc 1 1 1

Tmax 10 10 10

dnear 2 14 70

α 4 4 4

β 5 5 5

hmin 1 1 1

hmax 5 5 5

The control parameters of the MPPWPA are shown in Table 3. This research mainly
studied the influence of Num and Pm on the optimization performance. Other parameters
related to WPA were the same with those in Table 2.

Table 3. Control parameters of MPPWPA.

Parameters Meaning Values

Num The number of mass sub-populations 2, 4, 8, 16

Pm Probability of migration 1, 0.8, 0.6, 0.4, 0.2, 0

τ Mutation ratio 20%

∆I Interval of redundancy removal
2 iterations in scenario 15
iterations in scenario 25
iterations in scenario 3

4.2. The Results and Analyses of Simulation Experiments
4.2.1. Simulation Results in Scenario 1

Firstly, we set Pm = 1 and compared the results of MPPWPA with different Num.
Since the dimension of the solution space was low, the exact solution of the problem
could be obtained using the exhaustive method in 756 s, and the minimum value of the
objective function was 28.71. The results of several heuristic algorithms involved in the
experiment are shown in Figure 16 and the statistics for the results are shown in Table 4
where the best results are marked in boldface. For four basic algorithms, it is clearly shown
that WPA performed better than PSO both in terms of accuracy and convergence speed,
performed better than the GA in terms of accuracy, but performed worse than the GA in
terms of convergence speed, and the WPA performed worse than the ABC both in terms
of accuracy and convergence speed. As an improvement of the WPA, the MPPWPA was
improved in terms of both accuracy and convergence speed. For the task assignment
problem with an eight-dimensional solution space, when Num ranged from 2 to 8, the
optimization performance gradually improved, but the performance did not continue to
improve when Num was 16. In addition, we found that the larger the Num was, the more
stable the convergence value would be. The results indicated that increasing the number
of sub-populations is conductive to exploiting the optimal solution and decreasing the
convergence time.
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Table 4. Objective function value and convergence time with different Num in scenario 1.

Algorithm Num
Objective Function Value (m) Convergence Time

(s)

Ave. Std. Ave. Std.

PSO - 29.49 0.78 10.40 8.44
GA - 31.10 1.58 1.64 3.23

ABC - 28.71 0 1.30 0.24
WPA - 29.65 1.23 2.22 3.76

MPPWPA

2 29.01 0.43 1.66 0.25
4 28.90 1.01 1.28 0.23
8 28.71 0 1.11 0.17

16 28.71 0 1.27 0.24

Then, we compared the influence of different Pm values on the optimization perfor-
mance. The results are shown in Figure 17 and the statistics for the results are shown in
Tables 5 and 6. When Num was 2, 4 or 8, a larger migration probability was useful to
fully search the solution space to obtain the optimal value. Interestingly, when Num = 16,
a stable optimal value could be obtained without population migration and it could be
obtained faster with a small Pm or a large Pm. Population migration with medium frequency
may have degraded the optimization performance. This indicated that the quadratic opti-
mization of elite-mass population distribution was an invisible population migration. It
also suggested that population migration was not always beneficial to the development
of sub-populations. In particular, when the population size was very small (10 individ-
uals when Num = 16), the adverse effects of population migration may not have been
eliminated by iteration.
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Figure 17. Average objective function values with different Num and Pm in scenario 1: (a) Num = 2; (b) Num = 4;
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Table 5. Objective function value with different Num and Pm in scenario 1.

Num 2 4 8 16

Pm Ave. Std. Ave. Std. Ave. Std. Ave. Std.

1 29.01 0.45 28.90 1.01 28.71 0 28.71 0
0.8 28.87 0.78 28.85 1.00 28.71 0 28.71 0
0.6 29.01 0.81 28.83 1.02 28.71 0 28.86 0.35
0.4 28.97 1.14 28.98 0.82 28.71 0 28.89 0.58
0.2 28.95 0.82 28.98 1.00 28.77 0.77 28.71 0
0 29.59 1.5 29.20 0.8 28.98 0.33 28.71 0
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Table 6. Convergence time with different Num and Pm in Scenario 1.

Num 2 4 8 16

Pm Ave. Std. Ave. Std. Ave. Std. Ave. Std.

1 1.66 0.25 1.28 0.23 1.11 0.17 1.27 0.24
0.8 1.62 0.18 1.16 0.13 1.27 0.24 1.28 0.36
0.6 1.56 0.14 1.16 0.15 1.27 0.24 1.24 0.26
0.4 1.55 0.22 1.26 0.29 1.27 0.30 1.40 0.34
0.2 1.59 0.20 1.28 0.74 1.23 0.34 1.30 0.22
0 1.57 0.17 1.21 0.22 1.16 0.37 1.47 0.22

4.2.2. Simulation Results in Scenario 2

We set Pm = 0.8 and compared the results of MPPWPA with different Num values.
When the dimension of the solution space in scenario 2 was enlarged to 30, the exhaustive
method failed. The results of heuristic algorithms involved in the experiment are shown in
Figure 18 and the statistics for the results are shown in Table 7. The WPA clearly performed
better than the PSO and GA and had a faster convergence speed compared to ABC. The
proposed MPPWPA had obvious advantages both in terms of accuracy and convergence
speed, compared with the four basic algorithms. For the task assignment problem with
eight-dimensional solution space, the MPPWPA improved the optimization performance both
in terms of accuracy and convergence speed. When Num ranged from 2 to 8, the optimization
performance gradually improved, while the convergence speed declined when Num reached
16. This was because frequent population migration caused great disturbances to small-size
sub-populations; it improved the exploitation but reduced the exploration. As shown in
Figure 18, the MPPWPA had an excellent convergence speed in the early stage of iteration.
This means that it could obtain better values in a short time compared with PSO, GA, ABC
and WPA, which is of great significance in practical applications.
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Table 7. Objective function value and convergence time with different Num in scenario 2.

Algorithm Num
Objective Function Value (m) Convergence Time

(s)

Ave. Std. Ave. Std.

PSO - 511.8 37 174.73 47.78
GA - 330.86 30.36 21.87 4.25

ABC - 269.78 5.8 170.73 42.86
WPA - 266.3 19.48 158.83 49.29

MPPWPA

2 252.6 15.1 109.2 47.0
4 257.1 19.3 72.1 24.2
8 250.6 13.6 63.7 22.5
16 257.2 13.5 64.9 12.3

Then, we compared the influence of different Pm on the optimization performance. The
results are shown in Figure 19 and the statistics for the results are shown in Tables 8 and 9.
Compared with the results in scenario 1, population migration was necessary to improve
the convergence speed and accuracy for the task assignment problem with 30-dimensional
solution space. When Num = 2 and Num = 4, the convergence trends under different Pm
were basically the same and there was no significant difference in optimization performance.
When Num = 8, excluding 0 and 1, a large Pm contributed to ensuring accuracy, while a
small Pm contributed to a shortening of convergence time. When Num = 16, the algorithm
preferred a small Pm, but not 0. Compared with the WPA, the MPPWPA could obtain a better
solution regardless of the value of Pm, which shows that the MPPWPA was robust to Pm.
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Table 8. Objective function value with different Pm in scenario 2.

Num 2 4 8 16

Pm Ave. Std. Ave. Std. Ave. Std. Ave. Std.

1 259.7 15.5 251.7 16.5 263.9 16.2 254.9 20.6
0.8 252.6 15.1 257.1 19.3 250.6 13.6 257.2 13.5
0.6 257.4 20.9 248.27 14.1 250.6 13.0 254.2 14.0
0.4 249.5 14.4 255.9 15.1 254.1 18.1 251.9 15.3
0.2 252.4 14.5 254.8 18.4 260.2 14.5 252.7 14.9
0 259.9 15.2 251.7 13.8 261.7 21.3 258.5 15.1

Table 9. Convergence time with different Pm in scenario 2.

Num 2 4 8 16

Pm Ave. Std. Ave. Std. Ave. Std. Ave. Std.

1 108.5 41.2 70.3 36.1 64.1 19.7 65.2 15.4
0.8 109.2 47.0 72.1 24.2 63.7 22.5 64.9 12.3
0.6 101.1 37.9 68.3 21.1 69.2 28.8 57.1 10.0
0.4 109.0 29.8 67.4 27.9 53.8 8.4 47.1 6.9
0.2 110.5 40.87 78.1 23.5 54.4 16.8 45.0 9.8
0 110.1 42.9 80.8 17.5 66.7 8.13 65.7 1.4

In terms of convergence performance, the algorithm with 16 mass sub-populations
performed better, as it could obtain a stable best solution in a shorter time, while the algorithm
with two mass sub-populations needed more time to obtain a best solution. In terms of
convergence trend, the algorithm with eight mass sub-populations performed better because
it converged faster in the early stage, and thus, was found to be suitable for application
requirements where a solution is needed in a specified short time such as 10 s or 20 s.

From Figure 19d, we can see that the optimization performance of the algorithm with
16 mass sub-populations was poor when Pm = 0, which was different from the performance
in scenario 1. The reason is that the optimization abilities of the sub-populations with
small sizes are insufficient when the solution space is 30-dimensional; thus population
migration is needed to improve the exploration of the solution space. This phenomenon
indicates that the population size of a heuristic optimization algorithm influences the
optimization performance.

4.2.3. Simulation Results in Scenario 3

According to the analysis of the optimization performance in the first two scenarios,
the proposed MPPWPA was effective in solving the task assignment problem and had
good robustness to control parameters. In order to verify its effectiveness for problems
with higher dimensional variables, we applied it in scenario 3, where the solution space
was 150-dimensional. As shown in Figure 20 and Table 10, MPPWPA exhibited satisfying
performance, especially in terms of convergence time, compared with the PSO, GA, ABC
and WPA. Through the statistical data, it was found that the convergence time of the
MPPWPA was 62% less than that of the WPA, which is of great significance to the research
of UAV swarm task assignment.
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Table 10. Objective function value and convergence time in scenario 3.

Algorithm
Objective Function Value Convergence Time

Ave. Std. Ave. Std.

PSO 8268 218 5579 1464
GA 2390 53 2581 503

ABC 2455 134 4643 644
WPA 1789 90.04 3262 753

MPPWPA 1552 50.49 1242 371

5. Conclusions

With the aim of reducing the optimization time for the problem of UAV swarm task
assignment, the multi-population parallel Wolf Pack Algorithm (MPPWPA) was proposed.
According to building of the task assignment model and the analysis of the WPA, the
multi-population optimization method, the communication structures and the parallel
propulsion mode, this paper proposed the following methods: (a) an elite-mass population
distribution to optimize better solutions twice; (b) a pretreatment of the population to
increase population diversity; (c) an approximate average division method to equalize the
quality of all sub-populations; (d) a parallel optimization structure to realize the MPPWPA.

Firstly, the proposed algorithm was verified as reasonable by means of simulation of a
problem with an eight-dimensional solution space, and it showed good performance in
for the problem with high dimensional variables. Then, we studied the influence of its
control parameters: Num and Pm. The results of simulation experiments indicated that
(1) when the dimension of the solution space was low, MPPWPA with different Num and
Pm could obtain the best solution; (2) when the dimension of the solution space was high,
Num and Pm had little effect on the convergence time, but they did not change the overall
effectiveness of the algorithm; (3) when the dimension of the solution space was very high,
the MPPWPA had satisfying performance, especially in terms of convergence time; (4) in
order to obtain a better optimization performance, the size of sub-population needed to
match the dimensions of the variable.

The parallel computing in this paper was implemented on a single computer, and
future work will focus on the feasibility of multi-computer distributed parallel computing
or cloud computing to solve large-scale task assignment. In addition, we set the Pm as a
constant in this work; we will study variable migration probabilities in future work. In the
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longer term, we also need to consider how to handle moving targets. Whether to track the
target according to the original assignment result or to re-assign the task is a question that
is worthy of further study.
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