
applied  
sciences

Article

Multi-Population Parallel Wolf Pack Algorithm for Task
Assignment of UAV Swarm

Yingtong Lu 1,2, Yaofei Ma 1,2,* and Jiangyun Wang 1

����������
�������

Citation: Lu, Y.; Ma, Y.; Wang, J.

Multi-Population Parallel Wolf Pack

Algorithm for Task Assignment of

UAV Swarm. Appl. Sci. 2021, 11,

11996. https://doi.org/10.3390/

app112411996

Academic Editor: Paola Pellegrini

Received: 12 November 2021

Accepted: 13 December 2021

Published: 16 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China;
luyingtong@buaa.edu.cn (Y.L.); wangjiangyun@buaa.edu.cn (J.W.)

2 Science and Technology on Electro-Optic Control Laboratory, Luoyang 471000, China
* Correspondence: ma_yaofei@buaa.edu.cn

Abstract: The effectiveness of the Wolf Pack Algorithm (WPA) in high-dimensional discrete op-
timization problems has been verified in previous studies; however, it usually takes too long to
obtain the best solution. This paper proposes the Multi-Population Parallel Wolf Pack Algorithm
(MPPWPA), in which the size of the wolf population is reduced by dividing the population into
multiple sub-populations that optimize independently at the same time. Using the approximate
average division method, the population is divided into multiple equal mass sub-populations whose
better individuals constitute an elite sub-population. Through the elite-mass population distribution,
those better individuals are optimized twice by the elite sub-population and mass sub-populations,
which can accelerate the convergence. In order to maintain the population diversity, population
pretreatment is proposed. The sub-populations migrate according to a constant migration probability
and the migration of sub-populations are equivalent to the re-division of the confluent population.
Finally, the proposed algorithm is carried out in a synchronous parallel system. Through the simula-
tion experiments on the task assignment of the UAV swarm in three scenarios whose dimensions
of solution space are 8, 30 and 150, the MPPWPA is verified as being effective in improving the
optimization performance.

Keywords: Wolf Pack Algorithm (WPA); multi-population optimization algorithms; Multi-Population
Parallel Wolf Pack Algorithm (MPPWPA); approximate average division method; elite-mass pop-
ulation distribution; population pretreatment; synchronous parallel system; task assignment of
UAV swarm

1. Introduction

During the Nagorno-Karabakh conflict in 2020, it was shocking to witness UAV
swarms being employed to attack the ground targets precisely and roundly. It is an
inevitable trend that Unmanned Aerial Vehicle (UAV) swarms will play an important role
in future war [1]. Consequently, the task assignment of UAV swarms has become a research
hotspot in recent decades.

There are two core problems in task assignment. One is to establish a model for a
specific operational process which has obtained abundant achievements after decades
of extensive research, such as TSP (Travelling Salesman Problem), VRP (Vehicle Routing
Problem), MILP (Mixed Integer Linear Programming), CMTAP (Cooperative Multiple Task
Assignment Problem) and their extensions. The other is to design an appropriate opti-
mization algorithm to solve the model. The quality of an optimization method determines
the quality of a UAV’s task sequence and then affects the overall combat effectiveness.
Although the development of optimization algorithms is also thriving, there are few exist-
ing studies that solve the task assignment with high dimensionality (task assignment for
100 UAVs, for instance).

In this paper, we proposed a novel heuristic method called the multi-population
parallel Wolf Pack Algorithm (MPPWPA), which is improved from the basic Wolf Pack

Appl. Sci. 2021, 11, 11996. https://doi.org/10.3390/app112411996 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app112411996
https://doi.org/10.3390/app112411996
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112411996
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112411996?type=check_update&version=1


Appl. Sci. 2021, 11, 11996 2 of 28

Algorithm (WPA) and is suitable for resolving the high-dimensional task assignment
problems. The main contribution of this paper is to incorporate the multi-population
optimization method and the parallel computing with WPA to reduce the convergence
time. The remainder of this paper is organized as follows. Section 2 mainly describes the
basic knowledge and corresponding literature review. MPPWPA is proposed in Section 3,
where the communication structures in multi-population optimization and the parallel
propulsion modes are described in detail. In Section 4, the performance of MPPWPA is
tested and compared with PSO, GA, ABC and WPA in three task assignment scenarios for
UAV swarms. Finally, Section 5 concludes the paper and briefly explores the outlook for
future work.

2. Basic Knowledge and Literature Review
2.1. Task Assignment Model

The background of the mission is to attack static present targets on the ground using a
UAV swarm consisting of isomorphic attack UAVs with limited weapons. The objective of
the mission is to attack all targets in the shortest time or with the least total fuel consumption.
When a UAV’s weapons are insufficient to cope with one target, multiple UAVs need to be
scheduled to attack the target at the same time. UAVs can control their speeds to achieve
the salvo attack. Any UAV needs to avoid obstacles and no-fly zones as it flies to the target.
In a specific mission, various constraints should be considered to assign the UAVs, such
as the mobility constraints, the weapon quantity constraints, the fuel quantity (or flying
range) constraints and the flyable zone constraints.

In this paper, a simplified task assignment model is described, which involves as
little uncertain information as possible, so as to facilitate the performance comparison
of optimization algorithms. The objective function is to minimize the costs of all tasks,
including the cost of the total range and the cost of the time to complete all tasks [2].

To formalize the problem, the following assumptions are set up.

1. There is no consideration of obstacles and no-fly zones, so the range between the UAV
and target can be expressed by their straight-line distance.

2. UAVs fly at fixed altitudes with the same constant velocity. Thus, the flight time can
be equivalent to the fight range.

3. The UAV drops the weapon directly above the target, so the task position is the
projection of the target position on the flight level. In other words, the UAV’s fight
range flying to the task position is the straight-line distance between the UAV’s
position and the target position in the horizontal plane, regardless of the altitude.

4. The time consumption involved in preparing and firing the weapon is not taken into
account. In other words, the time cost to complete a task includes only the flight time.

5. Each target can be attacked only once, while any UAV can attack multiple targets.
6. Targets’ initial positions are revealed.

The UAV swarm consists of NV attack UAVs, which can be expressed as V = {Vi|i =
1, , 2, · · · , NV}, and NT targets, which can be expressed as T =

{
Tj
∣∣j = 1, , 2, · · · , NT

}
.

The task sequence of UAV Vi ∈ V is

plani =
{

stage(k)i

∣∣∣k = 1, 2, · · · , Nsi

}
stage(k)i =

(
Tn, Rangei

m,n
)
, Tn ∈ T

(1)

where stage(k)i is the stage k of UAV Vi, Nsi is the task number assigned to UAV Vi, Tn is
the target of UAV Vi in the kth stage, and Rangei

m,n is the distance between Tm and Tj for
UAV Vi, where m = 0, 1, 2, · · ·NT and n = 1, 2, · · ·NT , T0 is a virtual target representing
the initial position of a UAV.

This task assignment problem is similar to the Vehicle Routing Problem (VRP) in
which UAVs equate to vehicles, targets equate to customers and the initial position of each
UAV equates to a depot. VRP [3] is a reasonably well-studied problem with extensive



Appl. Sci. 2021, 11, 11996 3 of 28

related derivative problems, such as the Capacitated Vehicle Routing Problem (CVRP) [4],
the Vehicle Routing Problem with Time Window (VRPTW) [5], the Split Delivery Vehicle
Routing Problem (SDVRP) [6], the Dynamic Vehicle Routing Problem (DVRP) [7], the
Vehicle Routing Problem with Simultaneous Delivery Pickup (VRPSDP) [8] and so on. At
present, the existing VPR models can basically meet the requirements for the modeling of
task assignment problems.

In this paper, we introduce the basic VRP to build the task assignment model. The
decision variable of task assignment is xi

m,n ∈ {0, 1}, representing whether UAV Vi attacks
target Tn after Tm; xi

m,n = 1 represents an attack, other values signify no attack.
The total range of all UAVs is

J1 =
NV

∑
i=1

NT

∑
m=0

NT

∑
n=1

xi
m,n · Rangei

m,n (2)

The time to complete all tasks refers to the maximum time taken by any UAV to
complete its own task sequence, and is expressed as

J2 = max
i∈NV

Timei (3)

where Timei is the time of UAV Vi to finish its all tasks and can be equivalent to the total
range of UAV Vi, so the time to complete all tasks can be represented as

J∗2 = max
i∈NV

NT

∑
m=0

NT

∑
n=1

xi
m,n · Rangei

m,n (4)

To keep the values of the two costs within the same order of magnitude, the total
range of all UAVs is equivalent to the average range, represented as

J∗1 =

NV
∑

i=1

NT
∑

m=0

NT
∑

n=1
xi

m,n · Rangei
m,n

NV
(5)

The optimization goal is to minimize both the total range of all UAVs and the maxi-
mum range among all UAVs.

Thus, the cost function of task assignment is

minJ = ω1 J∗1 + ω2 J∗2 = ω1

NV
∑

i=1

NT
∑

m=0

NT
∑

n=1
xi

m,n · Rangei
m,n

NV
+ ω2max

i∈NV

NT

∑
m=0

NT

∑
n=1

xi
m,n · Rangei

m,n

(6)

s.t. (1)
NV
∑

i=1

NT
∑

m=0
xi

m,n = 1

(2)
NV
∑

i=1

NT
∑

m=0

NT
∑

n=1
xi

m,n = NT

(7)

where ω1 and ω2 are weighting factors reflecting the importance of each performance
criterion, decided by the commander, and ω1 + ω2 = 1. Equation (7) indicates constraints:
each target can be attacked only once, and all targets must be attacked.

2.2. Optimization Methods

Optimization methods for the task assignment problem of UAV swarms are generally
studied in three categories.

The first category treats task assignment as a programming problem, such as the
Hungarian algorithm [9], the branch and bound search algorithm [10], dynamic program-
ming [11], the exhaustive method [12], Newton’s method [13], the gradient method [14]



Appl. Sci. 2021, 11, 11996 4 of 28

and so on. These methods can obtain the optimal solution if there is a solution, but it is
difficult to solve non-convex NP-hard problems. Generally, these methods need to abstract
the problem to establish a mathematical model, so high mathematical ability is required,
especially for large-scale problems. The methods that are easy to implement, such as the
exhaustive method and the branch and bound search algorithm, have high time and space
complexity. When the problem size increases, the difficulty of solving the problem increases
sharply, and the time consumption increases exponentially [15].

The second category includes mainly the distributed optimization methods, such as
the auction algorithm [16], the market-based decentralized algorithm [17], the contract net-
work [18], etc. These methods utilize a market-based decision strategy as the mechanism for
decentralized task selection and can naturally converge to a conflict-free solution. Luc Brunet
et al. [19] introduced consensus to the auction algorithm and proposed a consensus-based
auction algorithm (CBAA) and a consensus-based bundle algorithm (CBBA) to improve the
efficiency of conflict resolution. Yu X et al. [20] applied the CBAA to the task assignment
of complex space crafts and found that the algorithm can guarantee successful assignment.
These methods have excellent performance in small-scale distributed systems, but with the
increase in the numbers of individuals in communication networks, the computation and
time required for conflict resolution increase greatly. Hence, these methods are generally
applicable to the coordination tasks in small-scale communication networks. In addition,
these methods need build objective functions named bidding functions for individuals, and
the bidding function directly determines the success and quality of the solution.

The last category employs mainly bio-based heuristic algorithms, such as the Ant
Colony Optimization Algorithm (ACO) [21], the Genetic Algorithm (GA) [22,23], the
Particle Swarm Optimization Algorithm (PSO) [24], etc. Such methods are inspired by the
mechanism of natural evolution of biological populations and can approach optimal or
sub-optimal solutions with finite calculation costs. Due to the characteristics of simplicity,
robustness, parallelism, wide applicability and low structural requirements for the problem
model, they are widely applied to various optimization problems [25]. In this paper, we
focus on the application of heuristic algorithms in the task assignment of UAV swarms.
The traditional classical heuristic algorithms still occupy the main position of optimization
at present, and scholars have been committed to overcoming their defects of premature
convergence and have put forward a large number of variants to adapt to various problems.
In addition to the study of classical heuristic algorithms, many scholars are committed
to designing new algorithms, such as the Fish Swarm Algorithm (FSA) [26], Bacterial
Foraging Optimization (BFO) [27], the Shuffled Frog Leaping Algorithm (SFLA) [28], the
Artificial Bee Colony (ABC) algorithm [29], the Wolf Pack Algorithm (WPA) [30] and so
on. ABC has attracted much attention due to its simple optimization mechanism and the
ability to move beyond a local optimal. In [29], compared with PSO and GA, it was found
to perform well in solving five high dimensional numerical benchmark functions including
the Griewank, Rastrigin, Rosenbrock, Ackley and Schwefel functions. Similarly, WPA
also showed outstanding performance in high-dimensional and multimodal continuous
functions compared with PSO, GA and FSA in [30], and this was verified by 15 complex
benchmark continuous functions such as Easom, Matyas, Trid6, Sumsquares, Spere, Booth,
Bohachevsky1, Eggcrate, Schaffer, Six Hump Camel Back, Bohachevsky3, Bridge, Rastrigin,
Quadric and Ackley. This paper mainly studies the application and improvement of the
WPA to task assignment in UAV swarms. Because of the WPA’s outstanding performance in
high-dimensional continuous problems, we apply it to solve the task assignment problem.

2.3. The Basics of WPA

The WPA simulates the cooperative hunting of wolves according to their system of
dividing responsibilities. The prey represents the optimal solution and each wolf represents
a candidate solution. The wolf population consists of a leader wolf who is the current best
solution, a small number of exploring wolves who explore the solution space in a specific
way and a large number of fierce wolves who explore the solution space referring to the



Appl. Sci. 2021, 11, 11996 5 of 28

leader wolf. According to the laws of nature, the leader wolf is constantly replaced and the
worst wolves are removed and replaced by new wolves that are generated randomly.

The WPA has many control parameters, as listed in Table 1.

Table 1. Parameters of WPA and PSO-GA-DWPA.

Parameters Meaning Parameters Meaning

Imax Maximum iterations dnear
Threshold distance for calling

behavior

N Size of population α
Scale factor of exploring

wolves

stepa Walking step β
Scale factor of wolf
population update

stepb Raid step hmin Minimum walking directions

stepc Siege step hmax Maximum walking directions

Tmax Maximum cycles of walking behavior

2.3.1. Integer Matrix Coding

According to the task assignment model in this paper, the position of each wolf is
expressed by two-dimensional matrix coding as

Xi =

[
xi1 xi2 · · · xij · · · xiNT

yi1 yi2 · · · yij · · · yiNT

]
(8)

where Xi denotes the position of the wolf i ∈ N, N is the population size of the wolves,
the dimension of the variable is NT because all targets must and can only be attacked
once. The first row of the code is the index of UAVs (xij ∈ NV) and elements in this
row can be repeated because a UAV can attack multiple targets. The second row of the
code is the index of targets (yij ∈ NT) and the elements in this row are different. For any
UAV, the order of a target’s index is its task sequence. For instance, there are 3 UAVs

attacking 5 targets and the coding matrix is Xi =

[
1 1 2 1 2
3 2 5 4 1

]
, then the task assign-

ment scheme is as follows: plan1 =
{(

3, Range(1)1,3

)
,
(

2, Range(2)1,2

)
,
(

4, Range(3)1,4

)}
,plan2 ={(

5, Range(1)2,5

)
,
(

1, Range(2)2,1

)}
, plan3 = NULL.

2.3.2. The Optimization Mechanism of the WPA

The optimization process of the WPA is shown in Figure 1. There are three searching
processes for the optimal solution in one iteration.

Step 1: Walking behavior. Except the leader wolf, S (S = randint
[

N
α+1 , N

α

]
) best

wolves become exploring wolves and explore the solution space by individual mutation,
as Equation (9) and Figure 2 show. Then, the new position of wolf i will be the one that
determines the objective value minimum, as expressed in Equation (10). Any exploring
wolf better than the leader wolf will become the new leader wolf, then go to the next Step,
otherwise Step 1 will be repeated. For the walking behavior, this step is repeated Tmax
times at most.

Xp
i,temp = F1(Xi, stepa), p = {1, 2, · · · , h} (9)

Xi,new =


argmin

Xp
i,temp ,p∈h

J
(

Xp
i,temp

)
, i f minJ

(
Xp

i,temp

)
< J(Xi)

Xi, else
(10)

where h (h = randint(hmin, hmax)) means the number of variants of Xi and J(·) is the
objective function.



Appl. Sci. 2021, 11, 11996 6 of 28
Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 28  

Start

Walking behavior

New leader wolf
or

Maximum walk times

No

Calling behavior

Yes

d<dnear

New leader wolf

No

Yes

No

Sieging behavior

Update wolves

Maximum iteration
or

convergence

End 

Yes

Yes

No

Initialize

Select leader wolf

 
Figure 1. The optimization process of the WPA. 

Step 1: Walking behavior. Except the leader wolf, 𝑆  ( 𝑆 = 𝑟𝑎𝑛𝑑𝑖𝑛𝑡[ ேఈାଵ , ேఈ] ) best 
wolves become exploring wolves and explore the solution space by individual mutation, 
as Equation (9) and Figure 2 show. Then, the new position of wolf 𝑖 will be the one that 
determines the objective value minimum, as expressed in Equation (10). Any exploring 
wolf better than the leader wolf will become the new leader wolf, then go to the next Step, 
otherwise Step 1 will be repeated. For the walking behavior, this step is repeated 𝑇௫ 
times at most.  

3 2 3 1 4 5 2 4

1 3 4 2 8 5 7 6
iX

astep

3 2 2 1 4 5 2 4

1 3 2 4 8 5 7 6
,
p
i tempX1( , )i aX stepF

 
Figure 2. Operation in walking behavior. 𝐹ଵ(𝑋, 𝑠𝑡𝑒𝑝) randomly selects 𝑠𝑡𝑒𝑝 columns in 𝑋, the values of the first row 
in these columns are randomly selected from [1, 𝑁], while the values of the second row are randomly exchanged. 

𝑋,௧ = 𝐹ଵ(𝑋, 𝑠𝑡𝑒𝑝), 𝑝 = {1,2, ⋯ , ℎ} (9)

𝑋,௪ = ቐ argmin, ,∈ 𝐽(𝑋,௧ ) , 𝑖𝑓 min 𝐽(𝑋,௧ ) < 𝐽(𝑋)𝑋, 𝑒𝑙𝑠𝑒  (10)

where ℎ (ℎ = 𝑟𝑎𝑛𝑑𝑖𝑛𝑡(ℎ, ℎ௫)) means the number of variants of 𝑋 and 𝐽(∙) is the 
objective function. 

Step 2: Calling behavior. 𝑀 (𝑀 = 𝑁 − 𝑆 − 1) wolves are fierce wolves and copy part 
of the leader wolf’s position, as shown in Equations (11) and (12) and Figure 3. Any fierce 
wolf better than the leader replaces the leader wolf and Step 2 is repeated. Otherwise, the 

Figure 1. The optimization process of the WPA.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 28  

Start

Walking behavior

New leader wolf
or

Maximum walk times

No

Calling behavior

Yes

d<dnear

New leader wolf

No

Yes

No

Sieging behavior

Update wolves

Maximum iteration
or

convergence

End 

Yes

Yes

No

Initialize

Select leader wolf

 
Figure 1. The optimization process of the WPA. 

Step 1: Walking behavior. Except the leader wolf, 𝑆  ( 𝑆 = 𝑟𝑎𝑛𝑑𝑖𝑛𝑡[ ேఈାଵ , ேఈ] ) best 
wolves become exploring wolves and explore the solution space by individual mutation, 
as Equation (9) and Figure 2 show. Then, the new position of wolf 𝑖 will be the one that 
determines the objective value minimum, as expressed in Equation (10). Any exploring 
wolf better than the leader wolf will become the new leader wolf, then go to the next Step, 
otherwise Step 1 will be repeated. For the walking behavior, this step is repeated 𝑇௫ 
times at most.  

3 2 3 1 4 5 2 4

1 3 4 2 8 5 7 6
iX

astep

3 2 2 1 4 5 2 4

1 3 2 4 8 5 7 6
,
p
i tempX1( , )i aX stepF

 
Figure 2. Operation in walking behavior. 𝐹ଵ(𝑋, 𝑠𝑡𝑒𝑝) randomly selects 𝑠𝑡𝑒𝑝 columns in 𝑋, the values of the first row 
in these columns are randomly selected from [1, 𝑁], while the values of the second row are randomly exchanged. 

𝑋,௧ = 𝐹ଵ(𝑋, 𝑠𝑡𝑒𝑝), 𝑝 = {1,2, ⋯ , ℎ} (9)

𝑋,௪ = ቐ argmin, ,∈ 𝐽(𝑋,௧ ) , 𝑖𝑓 min 𝐽(𝑋,௧ ) < 𝐽(𝑋)𝑋, 𝑒𝑙𝑠𝑒  (10)

where ℎ (ℎ = 𝑟𝑎𝑛𝑑𝑖𝑛𝑡(ℎ, ℎ௫)) means the number of variants of 𝑋 and 𝐽(∙) is the 
objective function. 

Step 2: Calling behavior. 𝑀 (𝑀 = 𝑁 − 𝑆 − 1) wolves are fierce wolves and copy part 
of the leader wolf’s position, as shown in Equations (11) and (12) and Figure 3. Any fierce 
wolf better than the leader replaces the leader wolf and Step 2 is repeated. Otherwise, the 

Figure 2. Operation in walking behavior. F1(Xi, stepa) randomly selects stepa columns in Xi, the values of the first row in
these columns are randomly selected from [1, NV ], while the values of the second row are randomly exchanged.

Step 2: Calling behavior. M (M = N − S− 1) wolves are fierce wolves and copy part
of the leader wolf’s position, as shown in Equations (11) and (12) and Figure 3. Any fierce
wolf better than the leader replaces the leader wolf and Step 2 is repeated. Otherwise, the
next step involves continuing to copy the position of the leader wolf until the distance to
the leader wolf (d) is less than the threshold (dnear).

Xj,tepm = F2
(
Xj, Xleader, stepb

)
(11)

Xj,new =

{
Xj,tepm, i f minJ

(
Xj,tepm

)
< J
(
Xj
)

Xj, else
(12)



Appl. Sci. 2021, 11, 11996 7 of 28

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 28  

next step involves continuing to copy the position of the leader wolf until the distance to 
the leader wolf (d) is less than the threshold (𝑑). 

3 2 3 1 4 5 2 4

3 2 4 1 8 5 7 6

1 2 4 1 3 3 2 5

2 3 4 1 8 5 7 6

1 2 4 1 4 3 2 5

2 3 4 2 8 5 7 6

jX

4bstep =

leaderX

,tempjX

2 ( , , )j leader bF X X step

 

Figure 3. Operation in calling behavior. 𝑠𝑡𝑒𝑝  columns in 𝑋  are randomly selected and are 
replaced by the corresponding columns of the leader wolf, while the duplicate value in the second 
row is replaced with the original value in the changed column. 𝑋,௧ = 𝐹ଶ൫𝑋, 𝑋ௗ, 𝑠𝑡𝑒𝑝൯ (11)𝑋,௪ = ൜𝑋,௧, 𝑖𝑓 min 𝐽(𝑋,௧) < 𝐽(𝑋)𝑋, 𝑒𝑙𝑠𝑒  (12)

Step 3: Sieging behavior. Except for the leader wolf, all wolves copy little of the leader 
wolf’s position, as shown in Equations (13) and (14). The operation is similar to that of the 
calling behavior and the difference is that 𝑠𝑡𝑒𝑝 is much less than 𝑠𝑡𝑒𝑝. 𝑋,௧ = 𝐹ଶ(𝑋, 𝑋ௗ, 𝑠𝑡𝑒𝑝) (13)𝑋,௪ = ൜𝑋,௧, 𝑖𝑓 min 𝐽(𝑋,௧) < 𝐽(𝑋)𝑋, 𝑒𝑙𝑠𝑒  (14)

Step 4: Updating the wolf population. The 𝑅 (𝑅 = 𝑟𝑎𝑛𝑑𝑖𝑛𝑡[ ேఉାଵ , ேఉ]) worst wolves are 
removed and replaced with new wolves that are generated randomly. 

2.3.3. Analysis of WPA 
It can be seen from the optimization process that the algorithm integrates various 

optimization ideas and considers almost all the problems involved in heuristic methods. 
Walking behavior is the preliminary means of exploiting the solution space, and better 
candidate solutions are found through the tentative advances of exploring wolves around 
themselves. Calling behavior shows the ability to explore the solution space, and it is a 
global optimization to accelerate the convergence of the algorithm. While sieging behavior 
is a local optimization aiming at the current best solution to avoid falling prematurely into 
the local optimum. This behavior helps to improve the accuracy of candidate solutions. 
By removing the worst individuals and replacing them with new ones, the update of the 
wolf population increases the population diversity to some extent and exploits the solu-
tion space again. Although there are many control parameters in the WPA, small changes 
to parameters do not affect the optimization performance because the parameters have a 
wide range of values. In other words, the algorithm is robust to control parameters. 

Figure 3. Operation in calling behavior. stepb columns in Xj are randomly selected and are replaced
by the corresponding columns of the leader wolf, while the duplicate value in the second row is
replaced with the original value in the changed column.

Step 3: Sieging behavior. Except for the leader wolf, all wolves copy little of the leader
wolf’s position, as shown in Equations (13) and (14). The operation is similar to that of the
calling behavior and the difference is that stepc is much less than stepb.

Xi,temp = F2(Xi, Xleader, stepc) (13)

Xi,new =

{
Xi,tepm, i f minJ

(
Xi,tepm

)
< J(Xi)

Xi, else
(14)

Step 4: Updating the wolf population. The R (R = randint
[

N
β+1 , N

β

]
) worst wolves are

removed and replaced with new wolves that are generated randomly.

2.3.3. Analysis of WPA

It can be seen from the optimization process that the algorithm integrates various
optimization ideas and considers almost all the problems involved in heuristic methods.
Walking behavior is the preliminary means of exploiting the solution space, and better
candidate solutions are found through the tentative advances of exploring wolves around
themselves. Calling behavior shows the ability to explore the solution space, and it is a
global optimization to accelerate the convergence of the algorithm. While sieging behavior
is a local optimization aiming at the current best solution to avoid falling prematurely into
the local optimum. This behavior helps to improve the accuracy of candidate solutions.
By removing the worst individuals and replacing them with new ones, the update of the
wolf population increases the population diversity to some extent and exploits the solution
space again. Although there are many control parameters in the WPA, small changes to
parameters do not affect the optimization performance because the parameters have a wide
range of values. In other words, the algorithm is robust to control parameters.

Since the WPA was proposed in 2013, it has been applied to optimization problems in
many fields such as parameter optimization [31–33], the power coordinated optimization
model in Active Distribution Networks (ADNs) [34,35], image compression [36], image
fusion [37], etc.

A series of improvements to the basic WPA have been proposed. Wu et al. [38]
designed binary coding based on the WPA and proposed the Binary Wolf Pack Algorithm
(BWPA) to solve the 0–1 knapsack problem. Guo et al. [39] improved the BWPA by adopting
an adaptive step length and replacing duplicate best wolves with new wolves after each
iteration, which enhanced the global convergence and maintained the population diversity.
Li et al. [40] introduced the Oppositional Wolf Pack Algorithm (OWPA), in which the



Appl. Sci. 2021, 11, 11996 8 of 28

initial population is selected from two oppositional populations so as to enhance the global
convergence. Xian et al. [41] introduced chemotactic behavior and elimination-dispersal
behavior of bacterial foraging optimization (BFO) into the walking behavior of the WPA to
overcome the slow convergence speed and avoid entrapment into the local extremum. Lu
et al. [42] proposed the Discrete Wolf Pack Algorithm, with the principles of the Particle
Swarm Optimization and Genetic Algorithm (PSO-GA-DWPA), which melts the PSO into
walking behavior, and introduced the gene fragment replication method of GA into calling
behavior and sieging behavior; their simulation results showed that the proposed algorithm
was better than WPA both in convergence speed and accuracy. Xiu-Wu et al. [43] adopted
a variable step to improve the global search capability. Chen et al. [44] integrated the WPA
with GA to retain as many elite genes as possible and delete calling behavior to improve
the convergence speed. The above improvements improve the optimization performance
to a certain extent, but the problem of long convergence time for discrete problems with
high-dimensional solution space has not been effectively solved.

Compared with classical optimization algorithms such as GA and PSO, the WPA has
excellent performance in terms of both accuracy and time consumption. However, there
is still room to improve it, especially in discrete problems where its performance is not
as good as in continuous problems. Improving the details of the WPA leads to a limited
improvement in the performance. In order to solve the task assignment model faster, we
need to find a more effective method to modify the algorithm.

2.4. Multi-Population Optimization Method

The convergence speed and accuracy of the heuristic algorithms are greatly influenced
by population diversity, which reflects in the differences of candidate individuals. In single-
population algorithms, population diversity is determined in the initial population and
decreases as the individuals keep moving towards the global extreme. Multi-population
optimization methods are upgrades of heuristic algorithms based on the theory of co-
evolution [45]. The main advantage of multi-population methods is the maintaining of
population diversity as far as possible by making candidate individuals of sub-populations
spread over the entire search space.

2.4.1. The Basics of the Multi-Population Optimization Method

A population is divided into multiple small sub-populations who evolve with their
own evolution operations; every once in a while, sub-populations interact with each other
via merging and communication processes to maintain population diversity and avoid
premature convergence [46,47]. The general flow of the multi-population optimization
method is shown in Figure 4. Generally, the algorithm starts with initialization, including
the setting of parameters, the generation of an initial population of solutions and the evalu-
ation of the population. Then, the population is divided into multiple sub-populations and
each sub-population is optimized independently with its own algorithm within a certain
number of iterations. After that, sub-populations communicate to update themselves
according to some rules and this process is called population migration. This step is the
key to maintain diversity and accelerate the overall optimization progress. Finally, the
process stops once the termination condition is met.

The steps are described in detail as follows.
Step 1: Configuration of the parameters. The parameters of multi-population opti-

mization method include the maximum iterations, the size of the population, the number
of sub-populations, the parameters of the algorithm corresponding to each sub-population
and the parameters related to population migration.

Step 2: Generation of the initial population. An initial population of solutions is
created randomly or via some methods.

Step 3: Evaluation of the population. The fitness of each individual in the population
is calculated according to the objective function.



Appl. Sci. 2021, 11, 11996 9 of 28

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 28  

key to maintain diversity and accelerate the overall optimization progress. Finally, the 
process stops once the termination condition is met. 

Start

Generate an initial population

Evaluate the population

Divide the population

Sub-
population

1

Algorithm
1

Sub-
population

2

Algorithm
2

LoopsLoops …

Sub-
population

M

Algorithm
M

Loops

Satisfy the termination 
conditionPopulation migrate

End

Yes

No

Set parameters

 
Figure 4. General flow of the multi-population optimization algorithm. 

The steps are described in detail as follows. 
Step 1: Configuration of the parameters. The parameters of multi-population optimi-

zation method include the maximum iterations, the size of the population, the number of 
sub-populations, the parameters of the algorithm corresponding to each sub-population 
and the parameters related to population migration. 

Step 2: Generation of the initial population. An initial population of solutions is cre-
ated randomly or via some methods. 

Step 3: Evaluation of the population. The fitness of each individual in the population 
is calculated according to the objective function. 

Step 4: Division of the population into sub-populations. Sub-populations may have 
the same or different sizes. Individuals of the population are divided into sub-populations 
randomly or in the light of some criterion. 

Step 5: Sub-populations perform the optimization process simultaneously and inde-
pendently, which is the main step of the method. Within certain iterations, each sub-pop-
ulation searches the solution space according to its own algorithm and parameters. Ac-
cording to sub-population selections of the optimization algorithms, multi-population op-
timization methods can be divided into isomorphic multi-population optimization and 
heterogeneous multi-population optimization. In the former method, all sub-populations 
have the same optimization algorithm and parameters, while in the latter method, the 
optimization algorithms or optimization parameters of each sub-population are different. 

Step 6: Judging whether the termination condition is met. Once the termination con-
dition is met, the evolution process is stopped and the current best solution is output. 
Otherwise, Step 7 is begun. 

Figure 4. General flow of the multi-population optimization algorithm.

Step 4: Division of the population into sub-populations. Sub-populations may have
the same or different sizes. Individuals of the population are divided into sub-populations
randomly or in the light of some criterion.

Step 5: Sub-populations perform the optimization process simultaneously and in-
dependently, which is the main step of the method. Within certain iterations, each sub-
population searches the solution space according to its own algorithm and parameters.
According to sub-population selections of the optimization algorithms, multi-population
optimization methods can be divided into isomorphic multi-population optimization and
heterogeneous multi-population optimization. In the former method, all sub-populations
have the same optimization algorithm and parameters, while in the latter method, the
optimization algorithms or optimization parameters of each sub-population are different.

Step 6: Judging whether the termination condition is met. Once the termination
condition is met, the evolution process is stopped and the current best solution is output.
Otherwise, Step 7 is begun.

Step 7: Population migration, which is the key for multi-populations to maintain
diversity and accelerate optimization. Through specific communication mechanisms and
migration rules, each sub-population sends information on some individuals to other
sub-populations and receives external individuals to replace its own ones. This is a process
of fusion and renewal for sub-populations. Then, Step 5 is returned to.

In the last decade, multi-population optimization methods have been studied in many
fields, including cognitive radio networks [48], energy power [49], Cloud manufactur-
ing [50], mobile ad-hoc networks [51], job-shop scheduling [52], path planning [53] and
so on. Since each sub-population can run its own optimization algorithm independently,
multi-population optimization methods have strong flexibility in selecting algorithms. Hao
et al. [54] applied the same algorithm with multiple sets of parameters in different sub-
populations to generate high-quality and effective paths of robots. Through a high number
of sub-populations interacting in parallel, the effect of each sub-population’s parameters is
compensated by individuals selected from other populations [55]. Wang et al. [56] used



Appl. Sci. 2021, 11, 11996 10 of 28

the Fruit fly optimization algorithm (FOA) for all sub-populations, but preprocessed the
individuals of sub-populations with different methods including chaos theory and the fish
swarm algorithm, so that the whole population could maintain diversity while tending
to the optimal solution. Yoshida et al. [57] applied multi-population with PSO, where the
initial particles were cloned with differential evolution algorithm in each iteration and the
optimal particles were selected from all existed particles to the next iteration in order to
maintain population diversity and improve the ability to search the solution space. Nseef
et al. [58] proposed that the sub-population size can change adaptively with time, which
has a remarkable effect on the solving of the dynamic optimization problem.

2.4.2. Factors of Multi-Population Optimization Method

One important factor concerns how to divide the population; specifically, how many
sub-populations there should be and the size of each sub-population. Too many sub-
populations may waste the limited computation resources because of population migration,
while too few sub-populations may cause the advantage of multi-population optimization
not to be significant. The size of sub-population is closely related to specific optimization
algorithms. At present, the appropriate number and size of sub-populations are obtained
through simulation experiments.

The other factor is the migration strategy, which specifically involves three elements—
the migration mode, the trigger condition and the individuals participating in migration.

• Migration mode:

As shown in Figure 5, there are two migration modes. The first one, as shown in
Figure 5a, is circular migration, in which sub-populations transmit individual information
in one direction. This mode is simple to implement and requires no extra computational
cost, but it cannot guarantee the quality of population fusion. The second one, as shown in
Figure 5b, is interaction migration, in which each sub-population chooses some neighbors
to exchange individual information with. This mode is more flexible to maintain population
diversity, but it increases additional computational costs.

• Trigger condition:

Population migration can maintain population diversity, and the more frequent the
migration is, the better the accuracy of the solution will be, but the time of calculation
increases accordingly. Therefore, a compromise between the accuracy of the solution
and the calculation time is needed. Typically, the trigger condition is set to a certain
iteration interval. Events are also used as trigger conditions; sub-populations migrate once
a sub-population falls into a local optimum, for example.

• Individuals participating in migration:

This element involves two issues, the migration rate and individual selection. The
former issue concerns how many individuals participate in the migration, and the latter
issue concerns which individuals participate in the migration. These two problems are
difficult to solve through theoretical derivation. At present, the experience gained through
a large number of experiments is that the best individual of a sub-population is sent to
another sub-population and replaces its worst individual.

2.5. Basic Communication Structures for Multi-Population Optimization

The classical island model proposed in the early days is shown in Figure 6. In this
model, each sub-population and its corresponding optimization algorithm are integrated
together as a node. In other words, every node includes not only the state of the sub-
population but also the algorithmic process, and it sends and receives the state of specific
individuals during the communication with other nodes by point-to-point communication.
This undoubtedly increases the difficulty of communication and is not conducive to the
large-scale migration of individuals. Besides, the lack of flexibility makes it more difficult
to add or remove nodes at runtime.



Appl. Sci. 2021, 11, 11996 11 of 28
Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 28  

migrating in order

Sub-population 1 Sub-population 3

Sub-population 2

migrating in order

Sub-population 1 Sub-population 3

Sub-population 2

After 
migration

 
(a) 

After 
migrationmigrating with 

neighbors

Sub-population 1 Sub-population 3

Sub-population 2

Neighbor

migrating with 
neighbors

Sub-population 1 Sub-population 3

Sub-population 2

 
(b) 

Figure 5. Migration modes: (a) circular migration; (b) interaction migration. 

• Trigger condition: 
Population migration can maintain population diversity, and the more frequent the 

migration is, the better the accuracy of the solution will be, but the time of calculation 
increases accordingly. Therefore, a compromise between the accuracy of the solution and 
the calculation time is needed. Typically, the trigger condition is set to a certain iteration 
interval. Events are also used as trigger conditions; sub-populations migrate once a sub-
population falls into a local optimum, for example. 
• Individuals participating in migration: 

This element involves two issues, the migration rate and individual selection. The 
former issue concerns how many individuals participate in the migration, and the latter 
issue concerns which individuals participate in the migration. These two problems are 
difficult to solve through theoretical derivation. At present, the experience gained through 
a large number of experiments is that the best individual of a sub-population is sent to 
another sub-population and replaces its worst individual. 

2.5. Basic Communication Structures for Multi-Population Optimization 
The classical island model proposed in the early days is shown in Figure 6. In this 

model, each sub-population and its corresponding optimization algorithm are integrated 
together as a node. In other words, every node includes not only the state of the sub-
population but also the algorithmic process, and it sends and receives the state of specific 

Figure 5. Migration modes: (a) circular migration; (b) interaction migration.
To improve the means of communication, the Pool model [59], shown in Figure 7, uses

a central Pool to store the individuals and the Pool is accessible by all nodes. Each node
interchanges individuals with the Pool, so the communication between nodes will not be
affected when adding or removing nodes. Even so, the coupling between the population
state and the algorithm still exists; as a result, the framework of the population and algorithm
need to be rebuilt when adding a new node and both the size of the sub-population and the
parameters of the algorithm cannot be changed during the running time.

An improved Pool model [60] extends the capabilities of the Pool and decouples the
state of the sub-population and the algorithm as shown in Figure 8. In this model, the
state of all sub-populations is stored in the Pool and a sub-population, which is sent to the
corresponding algorithm as a parameter, which is generated by taking random samples
of the population. The unified storage of population states can support more methods of
population migration.



Appl. Sci. 2021, 11, 11996 12 of 28

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 28  

individuals during the communication with other nodes by point-to-point communica-
tion. This undoubtedly increases the difficulty of communication and is not conducive to 
the large-scale migration of individuals. Besides, the lack of flexibility makes it more dif-
ficult to add or remove nodes at runtime. 

Node:island

algorithmSub-population 
state

Node:island

algorithmSub-population 
state

Node:island

algorithmSub-population 
state

individuals individuals

individuals

 
Figure 6. Communication between nodes in the classical island model. 

To improve the means of communication, the Pool model [59], shown in Figure 7, 
uses a central Pool to store the individuals and the Pool is accessible by all nodes. Each 
node interchanges individuals with the Pool, so the communication between nodes will 
not be affected when adding or removing nodes. Even so, the coupling between the pop-
ulation state and the algorithm still exists; as a result, the framework of the population 
and algorithm need to be rebuilt when adding a new node and both the size of the sub-
population and the parameters of the algorithm cannot be changed during the running 
time. 

Pool
(exchanged  individuals of 

all sub-populations)

Node

algorithmSub-population 
state

Node

algorithmSub-population 
state

individuals individuals

 
Figure 7. Communication between nodes in the Pool model. 

An improved Pool model [60] extends the capabilities of the Pool and decouples the 
state of the sub-population and the algorithm as shown in Figure 8. In this model, the state 
of all sub-populations is stored in the Pool and a sub-population, which is sent to the cor-
responding algorithm as a parameter, which is generated by taking random samples of 

Figure 6. Communication between nodes in the classical island model.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 28  

individuals during the communication with other nodes by point-to-point communica-
tion. This undoubtedly increases the difficulty of communication and is not conducive to 
the large-scale migration of individuals. Besides, the lack of flexibility makes it more dif-
ficult to add or remove nodes at runtime. 

Node:island

algorithmSub-population 
state

Node:island

algorithmSub-population 
state

Node:island

algorithmSub-population 
state

individuals individuals

individuals

 
Figure 6. Communication between nodes in the classical island model. 

To improve the means of communication, the Pool model [59], shown in Figure 7, 
uses a central Pool to store the individuals and the Pool is accessible by all nodes. Each 
node interchanges individuals with the Pool, so the communication between nodes will 
not be affected when adding or removing nodes. Even so, the coupling between the pop-
ulation state and the algorithm still exists; as a result, the framework of the population 
and algorithm need to be rebuilt when adding a new node and both the size of the sub-
population and the parameters of the algorithm cannot be changed during the running 
time. 

Pool
(exchanged  individuals of 

all sub-populations)

Node

algorithmSub-population 
state

Node

algorithmSub-population 
state

individuals individuals

 
Figure 7. Communication between nodes in the Pool model. 

An improved Pool model [60] extends the capabilities of the Pool and decouples the 
state of the sub-population and the algorithm as shown in Figure 8. In this model, the state 
of all sub-populations is stored in the Pool and a sub-population, which is sent to the cor-
responding algorithm as a parameter, which is generated by taking random samples of 

Figure 7. Communication between nodes in the Pool model.

2.6. Parallel Propulsion Mode

The parallel propulsion strategies of multiple nodes are coupled and affect each other.
Common parallel propulsion modes include synchronous sequential propulsion, synchronous
parallel propulsion and asynchronous parallel propulsion, as shown in Figure 9.

In synchronous sequential propulsion, as shown in Figure 9a, each task node of the
system is executed in accordance with the specified order. During the whole progress,
only one task node can be executed, represented as the colored progress bar shown in
Figure 9a, while other task nodes are in the state of waiting, represented as the grey progress
bar shown in Figure 9a. The logic of this propulsion mode is simple without complex
synchronization mechanisms. Since the tasks are executed one by one and the result of the
previous task can be sent to the next task as a parameter, the entire progress has low traffic.
However, this mode is suitable for tasks nodes that are sequentially dependent. Otherwise,
it will cause unnecessary time consumption and worse operation efficiency because every
task node has large amounts of idle waiting time.



Appl. Sci. 2021, 11, 11996 13 of 28

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 28  

the population. The unified storage of population states can support more methods of 
population migration. 

Pool
(individuals of all
 sub-populations)

Node

algorithm

Node

algorithm

Sub-
population

Sub-
population

 
Figure 8. Communication between nodes in improved Pool model. 

2.6. Parallel Propulsion Mode 
The parallel propulsion strategies of multiple nodes are coupled and affect each 

other. Common parallel propulsion modes include synchronous sequential propulsion, 
synchronous parallel propulsion and asynchronous parallel propulsion, as shown in  
Figure 9. 

time

Task 1
Task 2
Task 3

(a)

time

(b)

time

(c)

Task 1
Task 2
Task 3

Task 1
Task 2
Task 3

 
Figure 9. Parallel propulsion modes: (a) synchronous sequential propulsion; (b) synchronous par-
allel propulsion; (c) asynchronous parallel propulsion. 

Figure 8. Communication between nodes in improved Pool model.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 28  

the population. The unified storage of population states can support more methods of 
population migration. 

Pool
(individuals of all
 sub-populations)

Node

algorithm

Node

algorithm

Sub-
population

Sub-
population

 
Figure 8. Communication between nodes in improved Pool model. 

2.6. Parallel Propulsion Mode 
The parallel propulsion strategies of multiple nodes are coupled and affect each 

other. Common parallel propulsion modes include synchronous sequential propulsion, 
synchronous parallel propulsion and asynchronous parallel propulsion, as shown in  
Figure 9. 

time

Task 1
Task 2
Task 3

(a)

time

(b)

time

(c)

Task 1
Task 2
Task 3

Task 1
Task 2
Task 3

 
Figure 9. Parallel propulsion modes: (a) synchronous sequential propulsion; (b) synchronous par-
allel propulsion; (c) asynchronous parallel propulsion. 

Figure 9. Parallel propulsion modes: (a) synchronous sequential propulsion; (b) synchronous parallel
propulsion; (c) asynchronous parallel propulsion.

In synchronous parallel propulsion, as shown in Figure 9b, all task nodes are executed
at the same time. Due to the different computing capacity of each task node, the propulsion
speeds are different. The task nodes with faster propulsion speeds need to spend certain
amount of time waiting to maintain synchronization with other task nodes. In this mode,
all tasks are in the state of synchronous parallel operation, so the solving efficiency is
greatly improved compared with synchronous sequential propulsion. Even if a task node
is blocked during a stage, other task nodes can still be executed. It is obvious that there



Appl. Sci. 2021, 11, 11996 14 of 28

needs to be a synchronization mechanism to keep the system robust. This mode is suitable
for task nodes that need to communicate with each other regularly.

In Figure 9c, all task nodes are executed in parallel at their own propulsion speeds
without any waiting time. This mode is more suitable for task nodes with high indepen-
dence. Otherwise, communication data between nodes will be chaotic.

3. The Proposed Multi-Population Parallel Wolf Pack Algorithm (MPPWPA)

According to the analysis of the WPA and the multi-population optimization method,
this section proposes a novel multi-population parallel Wolf Pack Algorithm (MPPWPA)
for task assignment modelling with high-dimensional solution space.

3.1. Elite-Mass Population Distribution

In order to make full use of excellent individuals to accelerate convergence, a virtual
sub-population, called the elite sub-population, is constructed on the upper layer of the
existing sub-populations, which are defined as mass sub-populations. The elite population
has the same size as any mass sub-population and collects the best individuals from the
total population. The composition of the elite sub-population does not change until the
mass sub-populations migrate. According to the approximate average division proposed
in Section 3.3, individuals of elite sub-population will be divided approximately equally to
all mass sub-populations. In every iteration, the elite sub-population consisting of these
individuals is optimized first, then the mass sub-populations, including these individuals,
are optimized. This is similar to the process in which a company centrally trains leaders
of departments and returns them to their respective positions to direct the departments.
The high-quality individuals, after quadratic optimization, are of great significance for
accelerating convergence. We define such a population distribution as an elite-mass
population distribution and the optimization process is shown in Figure 10.

3.2. Pretreatment of the Population

In order to enhance the exploration of the search space, the population is pretreated
before population division. The basis of the pretreatment is to double the population
size by adding variants of some individuals in the original population and to generate
new individuals randomly. Individuals with the same solution are called redundant in-
dividuals. If an individual cannot obtain a better solution after multiple iterations and
it does not contribute to the optimization, we define this individual as aging. In the
optimization process, too many redundant individuals aging will lead to premature conver-
gence. During the pretreatment, the redundant individuals of the population are removed
periodically to prevent premature convergence. The original population is expressed as
Pop = {wol fi|i = 1, 2, · · · , N}, where N is the size of population. The steps of pretreatment
are as follows:

Step 1: Sort the Pop in ascending order;
Step 2: The first τ·N individuals from the Pop form a mutant population expressed as

Popm = {wol fi|i = 1, 2, · · · , Nm}, where Nm = τ·N is the size of mutant population, and
τ ∈ [0, 1] is the mutation ratio. Individuals in Popm undergo minor variation, which is
similar to the walking behavior of WPA.

Step 3: Build a temporary population Popt = Pop + Popm, whose population size is
Nt = N + Nm. If the time interval (defined as ∆I) for redundancy removal is met, remove
the redundant individuals of Popt and the population size decreases to N′t ;

Step 4: Randomly generate a new population Popr with the size of (2·N − Nt) or
(2·N − N′t);

Step 5 Coalesce all populations Poptotal = Pop + Popm + Popr. Sort the Poptotal in
ascending order and the first N individuals form the new Pop that replaces the original Pop.



Appl. Sci. 2021, 11, 11996 15 of 28Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 28  

Elite
Sub-population

Ind. 1 Ind. 1*

Ind. 2*

Ind. 3*

Ind. 6*

Ind. 7*

optimization

Ind. 1*

Ind. 4*

Ind. 5*

Ind. 8

Ind. 9

Ind. 2*

Ind. 3*

Ind. 6

Ind. 7

Ind. 10

optimization

optimization

Mass Sub. 1

Mass Sub. 2

Ind. 1**

Ind. 4**

Ind. 5**

Ind. 8*

Ind. 9*

Ind. 2**

Ind. 3**

Ind. 6*

Ind. 7*

Ind. 10*

Ind. 2

Ind. 3

Ind. 4

Ind. 5

Next iteration

 
Figure 10. Optimization process of elite-mass population distribution. 

3.2. Pretreatment of the Population  
In order to enhance the exploration of the search space, the population is pretreated 

before population division. The basis of the pretreatment is to double the population size 
by adding variants of some individuals in the original population and to generate new 
individuals randomly. Individuals with the same solution are called redundant individ-
uals. If an individual cannot obtain a better solution after multiple iterations and it does 
not contribute to the optimization, we define this individual as aging. In the optimization 
process, too many redundant individuals aging will lead to premature convergence. Dur-
ing the pretreatment, the redundant individuals of the population are removed periodi-
cally to prevent premature convergence. The original population is expressed as 𝑃𝑜𝑝 ={𝑤𝑜𝑙𝑓|𝑖 = 1,2, ⋯ , 𝑁}, where 𝑁 is the size of population. The steps of pretreatment are as 
follows: 

Step 1: Sort the 𝑃𝑜𝑝 in ascending order; 
Step 2: The first 𝜏 ∙ 𝑁 individuals from the 𝑃𝑜𝑝 form a mutant population expressed 

as 𝑃𝑜𝑝 = {𝑤𝑜𝑙𝑓|𝑖 = 1,2, ⋯ , 𝑁}, where 𝑁 = 𝜏 ∙ 𝑁 is the size of mutant population, and 𝜏 ∈ [0,1] is the mutation ratio. Individuals in 𝑃𝑜𝑝 undergo minor variation, which is 
similar to the walking behavior of WPA. 

Step 3: Build a temporary population 𝑃𝑜𝑝௧ = 𝑃𝑜𝑝 + 𝑃𝑜𝑝, whose population size is 𝑁௧ = 𝑁 + 𝑁. If the time interval (defined as ∆𝐼) for redundancy removal is met, remove 
the redundant individuals of 𝑃𝑜𝑝௧ and the population size decreases to 𝑁௧ᇱ; 

Step 4: Randomly generate a new population 𝑃𝑜𝑝 with the size of (2 ∙ 𝑁 − 𝑁௧) or (2 ∙ 𝑁 − 𝑁௧ᇱ); 
Step 5 Coalesce all populations 𝑃𝑜𝑝௧௧ = 𝑃𝑜𝑝 + 𝑃𝑜𝑝 + 𝑃𝑜𝑝. Sort the 𝑃𝑜𝑝௧௧ in 

ascending order and the first 𝑁 individuals form the new 𝑃𝑜𝑝 that replaces the original 𝑃𝑜𝑝. 
  

Figure 10. Optimization process of elite-mass population distribution.

3.3. Approximate Average Division Method

As is known, the optimization performance of heuristic algorithms is closely related
to population size. Within a certain range, the more individuals the population includes,
the better the optimization performance will be [45]. In essence, multi-population op-
timization reduces the population size of an optimization unit and makes up for the
performance loss by absorbing high-quality individuals from other optimization units.
The contribution of a sub-population to global optimization depends on the quality of
its best individuals, because high-quality individuals can affect the exploration of global
optimal solutions. In MPPWPA, all sub-populations are optimized by the WPA, so the size
of each sub-population is the same. In order to equalize the quality of all sub-populations,
an approximate average division method is proposed. The number of sub-populations
is set as Num. All individuals are sorted in ascending order and every Num individuals
constitute a segment, then the individuals in each segment are randomly assigned to mass
sub-populations. In this way, the population can be divided almost uniformly.

Detailed steps are shown in Figure 11.
Step 1: The population Pop is sorted in ascending order;
Step 2: The first N

Num individuals are labeled as members of the elite sub-population;
Step 3: Pop is divided into multiple segments with the same length Num;
Step 4: Num individuals in each segment are randomly assigned to Num mass sub-

populations.
The proposed pretreatment and approximate average division method maximize

the competitiveness of each sub-population, and thus, they can be used in population
migration. Mass sub-populations to are coalesced to Pop, and then pretreated and re-
divided. The problems of migration rate and individual selection in population migration
are also avoided successfully.



Appl. Sci. 2021, 11, 11996 16 of 28

Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 28  

3.3. Approximate Average Division Method 
As is known, the optimization performance of heuristic algorithms is closely related 

to population size. Within a certain range, the more individuals the population includes, 
the better the optimization performance will be [45]. In essence, multi-population optimi-
zation reduces the population size of an optimization unit and makes up for the perfor-
mance loss by absorbing high-quality individuals from other optimization units. The con-
tribution of a sub-population to global optimization depends on the quality of its best 
individuals, because high-quality individuals can affect the exploration of global optimal 
solutions. In MPPWPA, all sub-populations are optimized by the WPA, so the size of each 
sub-population is the same. In order to equalize the quality of all sub-populations, an ap-
proximate average division method is proposed. The number of sub-populations is set as 𝑁𝑢𝑚. All individuals are sorted in ascending order and every 𝑁𝑢𝑚 individuals constitute 
a segment, then the individuals in each segment are randomly assigned to mass sub-pop-
ulations. In this way, the population can be divided almost uniformly.  

Detailed steps are shown in Figure 11. 

POP

Mass  Sub.1

Value

Ind. 3 Ind. 1 Ind. 5 Ind. 4 Ind. 7 Ind. 2 Ind. 6 Ind. 10 Ind. 8 Ind. 9

1 2 3 4 5 6 7 8 9 10

Segment 1 Segment 2 Segment 3 Segment 4 Segment 5

Elite  Sub. Mass  Sub.2

Ind. 3 Ind. 1 Ind. 5

Ind. 4 Ind. 7

Ind. 3 Ind. 1 Ind. 5Ind. 4 Ind. 7Ind. 2

Ind. 6 Ind. 10Ind. 8 Ind. 9

 
Figure 11. The process of approximate average division. 

Step 1: The population 𝑃𝑜𝑝 is sorted in ascending order; 
Step 2: The first ேே௨ individuals are labeled as members of the elite sub-population; 
Step 3: 𝑃𝑜𝑝 is divided into multiple segments with the same length 𝑁𝑢𝑚; 
Step 4: 𝑁𝑢𝑚 individuals in each segment are randomly assigned to 𝑁𝑢𝑚 mass sub-

populations. 
The proposed pretreatment and approximate average division method maximize the 

competitiveness of each sub-population, and thus, they can be used in population migra-
tion. Mass sub-populations to are coalesced to 𝑃𝑜𝑝, and then pretreated and re-divided. 
The problems of migration rate and individual selection in population migration are also 
avoided successfully. 

It should be noted that the migration probability (𝑃) is used to determine whether 
to carry out population migration after each iteration. If 𝑟𝑎𝑛𝑑() < 𝑃, all mass sub-popu-
lations fuse and the population will be re-divided; otherwise, all sub-populations continue 
to be optimized. The flow of the MPPWPA is shown in Figure 12. 

Figure 11. The process of approximate average division.

It should be noted that the migration probability (Pm) is used to determine whether
to carry out population migration after each iteration. If rand() < Pm, all mass sub-
populations fuse and the population will be re-divided; otherwise, all sub-populations
continue to be optimized. The flow of the MPPWPA is shown in Figure 12.

3.4. System for MPPWPA

Introducing the improved Pool model in Figure 8, the system for MPPWPA is pro-
posed, as Figure 13 shows. The system consists of one managing process and multiple
working processes that actually perform algorithms.

The managing process has four main responsibilities: (1) Control all processes.
(2) Manage all parameters. (3) Pretreat and divide the population in stages of initialization
and population migration. (4) Execute the optimization of the elite sub-population.

Each algorithm is encapsulated into a module, whose inputs are parameters of the
algorithm and the state of population, and the output is the state of the sub-population
after iteration. Each working process only needs to call and run the required algorithm
module, saving a lot of computational costs for processing data.

3.5. Parallel Propulsion Mode for MPPWPA

By analyzing the features and the applicable scope of three modes, combined with
the flow of the multi-population parallel optimization algorithm, a synchronous parallel
propulsion mode is introduced to MPPWPA, as shown in Figure 14.

In the synchronous parallel propulsion mode, the managing process is performed first,
which then generates three working processes with its result. After that, the managing
process waits for all working processes to finish and receives the results from the working
processes to prepare for the next stage. Three working processes are performed with the
synchronous parallel propulsion because their propulsion speeds are similar and their
results need to be handled by the managing process at the same time.



Appl. Sci. 2021, 11, 11996 17 of 28Appl. Sci. 2021, 11, x FOR PEER REVIEW 17 of 28  

Generate original population

Pretreat the population

Set parameters

Approximate average division

 Optimize the elite Sub.

 Optimize the mass Sub. 1  Optimize the mass Sub. M…

Meet the end conditions

Start

End

Yes

I=I+1

I=1

() mrand P< Mass Sub-populations 
fuse

N0

YesNo

Mutate best individuals

% 0I IΔ ==

Redundancy removal

Generate new 
individuals

Select best  N 
induviduals

Yes

No

Flow of pretreation

 
Figure 12. The flow of the MPPWPA. 

3.4. System for MPPWPA 
Introducing the improved Pool model in Figure 8, the system for MPPWPA is pro-

posed, as Figure 13 shows. The system consists of one managing process and multiple 
working processes that actually perform algorithms.  

Managing process

• State of sub-population
• Parameters of algorithm

Working process 1

Algorithm:

• initialize
• iterative optimization 

Working process M

• Manage operational process
• Manage parameters of working processes
• Population pretreatment
• Population migration
• Optimize the elite sub-population

……

• State of sub-population
• Parameters of algorithm

State of sub-population

State of sub-population

Algorithm:

• initialize
• iterative optimization 

 
Figure 13. System for MPPWPA. 

Figure 12. The flow of the MPPWPA.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 17 of 28  

Generate original population

Pretreat the population

Set parameters

Approximate average division

 Optimize the elite Sub.

 Optimize the mass Sub. 1  Optimize the mass Sub. M…

Meet the end conditions

Start

End

Yes

I=I+1

I=1

() mrand P< Mass Sub-populations 
fuse

N0

YesNo

Mutate best individuals

% 0I IΔ ==

Redundancy removal

Generate new 
individuals

Select best  N 
induviduals

Yes

No

Flow of pretreation

 
Figure 12. The flow of the MPPWPA. 

3.4. System for MPPWPA 
Introducing the improved Pool model in Figure 8, the system for MPPWPA is pro-

posed, as Figure 13 shows. The system consists of one managing process and multiple 
working processes that actually perform algorithms.  

Managing process

• State of sub-population
• Parameters of algorithm

Working process 1

Algorithm:

• initialize
• iterative optimization 

Working process M

• Manage operational process
• Manage parameters of working processes
• Population pretreatment
• Population migration
• Optimize the elite sub-population

……

• State of sub-population
• Parameters of algorithm

State of sub-population

State of sub-population

Algorithm:

• initialize
• iterative optimization 

 
Figure 13. System for MPPWPA. Figure 13. System for MPPWPA.



Appl. Sci. 2021, 11, 11996 18 of 28

Appl. Sci. 2021, 11, x FOR PEER REVIEW 18 of 28  

The managing process has four main responsibilities: (1) Control all processes. (2) 
Manage all parameters. (3) Pretreat and divide the population in stages of initialization 
and population migration. (4) Execute the optimization of the elite sub-population. 

Each algorithm is encapsulated into a module, whose inputs are parameters of the 
algorithm and the state of population, and the output is the state of the sub-population 
after iteration. Each working process only needs to call and run the required algorithm 
module, saving a lot of computational costs for processing data. 

3.5. Parallel Propulsion Mode for MPPWPA 
By analyzing the features and the applicable scope of three modes, combined with 

the flow of the multi-population parallel optimization algorithm, a synchronous parallel 
propulsion mode is introduced to MPPWPA, as shown in Figure 14. 

time

Working process 1
Working process 2
Working process 3

Managing process

 
Figure 14. Parallel propulsion for MPPWPA. 

In the synchronous parallel propulsion mode, the managing process is performed 
first, which then generates three working processes with its result. After that, the manag-
ing process waits for all working processes to finish and receives the results from the 
working processes to prepare for the next stage. Three working processes are performed 
with the synchronous parallel propulsion because their propulsion speeds are similar and 
their results need to be handled by the managing process at the same time.  

4. Experiments of Task Assignment for UAV Swarm Using MPPWPA 
To verify the effectiveness of the proposed MPPWPA, we chose the basic WPA  

(Figure 3), PSO [2,30], GA [23] and ABC algorithm [29] for comparison. The PSO and GA 
are widely used heuristic algorithms while the basic WPA and ABC algorithm are rela-
tively new but have received much attention in recent years. 

The algorithms were coded in Python, and all simulations were run on a 2.50-GHz 
computer with a quad-core Intel i5 CPU and 4 GB of RAM. A Monte Carlo study, consist-
ing of 20 runs, is used in this section to compare the performance of the PSO, GA, ABC, 
WPA and MPPWPA with different parameters.  

4.1. Preparation for Simulation Experiments 
A Monte Carlo study, consisting of 20 independent runs, was used to compare the 

performance of the PSO, GA, ABC, WPA and MPPWPA with different parameters for the 
cost function of Equation (6) where 𝜔ଵ = 𝜔ଶ = 0.5.  

Three scenarios were: five UAVs against eight targets, 20 UAVs against 30 targets 
and 100 UAVs against 150 targets. The dimensions of the variable in the three scenarios 
were 8, 30 and 150 respectively. The initial locations of the UAVs and targets were gener-
ated randomly and projected onto a two-dimensional plane, as shown in Figure 15.  

Figure 14. Parallel propulsion for MPPWPA.

4. Experiments of Task Assignment for UAV Swarm Using MPPWPA

To verify the effectiveness of the proposed MPPWPA, we chose the basic WPA
(Figure 3), PSO [2,30], GA [23] and ABC algorithm [29] for comparison. The PSO and
GA are widely used heuristic algorithms while the basic WPA and ABC algorithm are
relatively new but have received much attention in recent years.

The algorithms were coded in Python, and all simulations were run on a 2.50-GHz
computer with a quad-core Intel i5 CPU and 4 GB of RAM. A Monte Carlo study, consisting
of 20 runs, is used in this section to compare the performance of the PSO, GA, ABC, WPA
and MPPWPA with different parameters.

4.1. Preparation for Simulation Experiments

A Monte Carlo study, consisting of 20 independent runs, was used to compare the
performance of the PSO, GA, ABC, WPA and MPPWPA with different parameters for the
cost function of Equation (6) where ω1 = ω2 = 0.5.

Three scenarios were: five UAVs against eight targets, 20 UAVs against 30 targets and
100 UAVs against 150 targets. The dimensions of the variable in the three scenarios were
8, 30 and 150 respectively. The initial locations of the UAVs and targets were generated
randomly and projected onto a two-dimensional plane, as shown in Figure 15.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 19 of 28  

(a) (b) (c) 
Figure 15. Initial positions of UAV swarm and targets. (a) Scenario 1: 5 UAVs and 8 targets were randomly distributed in 
a space of 100 × 100 m. (b) Scenario 2: 20 UAVs and 30 targets were randomly distributed in a space of 1000 × 1000 m. (c) 
Scenario 3: 100 UAVs and 150 targets were randomly distributed in a space of 10,000 × 10,000 m. 

The parameters of the WPA for different scenarios were set as shown in Table 2. 

Table 2. Parameters of WPA in three scenarios. 

Parameters Scenario 1 Scenario 2 Scenario 3 

maxI  200 400 1000 

N 160 160 160 

astep  2 2 2 

bstep  4 14 70 

cstep  1 1 1 

maxT  10 10 10 

neard  2 14 70 
α  4 4 4 
β  5 5 5 

minh  1 1 1 

maxh  5 5 5 

The control parameters of the MPPWPA are shown in Table 3. This research mainly 
studied the influence of 𝑁𝑢𝑚 and 𝑃 on the optimization performance. Other parame-
ters related to WPA were the same with those in Table 2. 

Table 3. Control parameters of MPPWPA. 

Parameters Meaning Values 𝑁𝑢𝑚 The number of mass sub-populations 2, 4, 8, 16 𝑃 Probability of migration 1, 0.8, 0.6, 0.4, 0.2, 0 τ Mutation ratio 20% ∆𝐼 Interval of redundancy removal  
2 iterations in scenario 1 
5 iterations in scenario 2 
5 iterations in scenario 3 

4.2. The Results and Analyses of Simulation Experiments 
4.2.1. Simulation Results in Scenario 1 

Firstly, we set 𝑃 = 1 and compared the results of MPPWPA with different 𝑁𝑢𝑚. 
Since the dimension of the solution space was low, the exact solution of the problem could 
be obtained using the exhaustive method in 756 s, and the minimum value of the objective 
function was 28.71. The results of several heuristic algorithms involved in the experiment 
are shown in Figure 16 and the statistics for the results are shown in Table 4 where the 

Figure 15. Initial positions of UAV swarm and targets. (a) Scenario 1: 5 UAVs and 8 targets were randomly distributed in
a space of 100 × 100 m. (b) Scenario 2: 20 UAVs and 30 targets were randomly distributed in a space of 1000 × 1000 m.
(c) Scenario 3: 100 UAVs and 150 targets were randomly distributed in a space of 10,000 × 10,000 m.

The parameters of the WPA for different scenarios were set as shown in Table 2.



Appl. Sci. 2021, 11, 11996 19 of 28

Table 2. Parameters of WPA in three scenarios.

Parameters Scenario 1 Scenario 2 Scenario 3

Imax 200 400 1000

N 160 160 160

stepa 2 2 2

stepb 4 14 70

stepc 1 1 1

Tmax 10 10 10

dnear 2 14 70

α 4 4 4

β 5 5 5

hmin 1 1 1

hmax 5 5 5

The control parameters of the MPPWPA are shown in Table 3. This research mainly
studied the influence of Num and Pm on the optimization performance. Other parameters
related to WPA were the same with those in Table 2.

Table 3. Control parameters of MPPWPA.

Parameters Meaning Values

Num The number of mass sub-populations 2, 4, 8, 16

Pm Probability of migration 1, 0.8, 0.6, 0.4, 0.2, 0

τ Mutation ratio 20%

∆I Interval of redundancy removal
2 iterations in scenario 15
iterations in scenario 25
iterations in scenario 3

4.2. The Results and Analyses of Simulation Experiments
4.2.1. Simulation Results in Scenario 1

Firstly, we set Pm = 1 and compared the results of MPPWPA with different Num.
Since the dimension of the solution space was low, the exact solution of the problem
could be obtained using the exhaustive method in 756 s, and the minimum value of the
objective function was 28.71. The results of several heuristic algorithms involved in the
experiment are shown in Figure 16 and the statistics for the results are shown in Table 4
where the best results are marked in boldface. For four basic algorithms, it is clearly shown
that WPA performed better than PSO both in terms of accuracy and convergence speed,
performed better than the GA in terms of accuracy, but performed worse than the GA in
terms of convergence speed, and the WPA performed worse than the ABC both in terms
of accuracy and convergence speed. As an improvement of the WPA, the MPPWPA was
improved in terms of both accuracy and convergence speed. For the task assignment
problem with an eight-dimensional solution space, when Num ranged from 2 to 8, the
optimization performance gradually improved, but the performance did not continue to
improve when Num was 16. In addition, we found that the larger the Num was, the more
stable the convergence value would be. The results indicated that increasing the number
of sub-populations is conductive to exploiting the optimal solution and decreasing the
convergence time.



Appl. Sci. 2021, 11, 11996 20 of 28

Appl. Sci. 2021, 11, x FOR PEER REVIEW 20 of 28  

best results are marked in boldface. For four basic algorithms, it is clearly shown that WPA 
performed better than PSO both in terms of accuracy and convergence speed, performed 
better than the GA in terms of accuracy, but performed worse than the GA in terms of 
convergence speed, and the WPA performed worse than the ABC both in terms of accu-
racy and convergence speed. As an improvement of the WPA, the MPPWPA was im-
proved in terms of both accuracy and convergence speed. For the task assignment prob-
lem with an eight-dimensional solution space, when 𝑁𝑢𝑚 ranged from 2 to 8, the opti-
mization performance gradually improved, but the performance did not continue to im-
prove when 𝑁𝑢𝑚 was 16. In addition, we found that the larger the 𝑁𝑢𝑚 was, the more 
stable the convergence value would be. The results indicated that increasing the number 
of sub-populations is conductive to exploiting the optimal solution and decreasing the 
convergence time.  

 
Figure 16. Average objective function values with different 𝑁𝑢𝑚 in scenario 1. 

Table 4. Objective function value and convergence time with different 𝑁𝑢𝑚 in scenario 1. 

Algorithm 𝑵𝒖𝒎 
Objective Function Value (m) 

Convergence Time 
(s) 

Ave. Std. Ave. Std. 
PSO - 29.49 0.78 10.40 8.44 
GA - 31.10 1.58 1.64 3.23 

ABC - 28.71 0 1.30 0.24 
WPA - 29.65 1.23 2.22 3.76 

MPPWPA 

2 29.01 0.43 1.66 0.25 
4 28.90 1.01 1.28 0.23 
8 28.71 0 1.11 0.17 
16 28.71 0 1.27 0.24 

Then, we compared the influence of different 𝑃 values on the optimization perfor-
mance. The results are shown in Figure 17 and the statistics for the results are shown in 
Tables 5 and 6. When 𝑁𝑢𝑚 was 2, 4 or 8, a larger migration probability was useful to fully 
search the solution space to obtain the optimal value. Interestingly, when 𝑁𝑢𝑚 = 16, a 
stable optimal value could be obtained without population migration and it could be ob-
tained faster with a small 𝑃 or a large 𝑃. Population migration with medium frequency 
may have degraded the optimization performance. This indicated that the quadratic op-
timization of elite-mass population distribution was an invisible population migration. It 
also suggested that population migration was not always beneficial to the development 

Figure 16. Average objective function values with different Num in scenario 1.

Table 4. Objective function value and convergence time with different Num in scenario 1.

Algorithm Num
Objective Function Value (m) Convergence Time

(s)

Ave. Std. Ave. Std.

PSO - 29.49 0.78 10.40 8.44
GA - 31.10 1.58 1.64 3.23

ABC - 28.71 0 1.30 0.24
WPA - 29.65 1.23 2.22 3.76

MPPWPA

2 29.01 0.43 1.66 0.25
4 28.90 1.01 1.28 0.23
8 28.71 0 1.11 0.17

16 28.71 0 1.27 0.24

Then, we compared the influence of different Pm values on the optimization perfor-
mance. The results are shown in Figure 17 and the statistics for the results are shown in
Tables 5 and 6. When Num was 2, 4 or 8, a larger migration probability was useful to
fully search the solution space to obtain the optimal value. Interestingly, when Num = 16,
a stable optimal value could be obtained without population migration and it could be
obtained faster with a small Pm or a large Pm. Population migration with medium frequency
may have degraded the optimization performance. This indicated that the quadratic opti-
mization of elite-mass population distribution was an invisible population migration. It
also suggested that population migration was not always beneficial to the development
of sub-populations. In particular, when the population size was very small (10 individ-
uals when Num = 16), the adverse effects of population migration may not have been
eliminated by iteration.



Appl. Sci. 2021, 11, 11996 21 of 28

Appl. Sci. 2021, 11, x FOR PEER REVIEW 21 of 28  

of sub-populations. In particular, when the population size was very small (10 individuals 
when 𝑁𝑢𝑚 = 16), the adverse effects of population migration may not have been elimi-
nated by iteration. 

  

(a) (b) 

  
(c) (d) 

Figure 17. Average objective function values with different 𝑁𝑢𝑚  and 𝑃  in scenario 1: (a) 𝑁𝑢𝑚 = 2; (b) 𝑁𝑢𝑚 = 4; 
(c) 𝑁𝑢𝑚 = 8; (d) 𝑁𝑢𝑚 = 16. 

Table 5. Objective function value with different 𝑁𝑢𝑚 and 𝑃 in scenario 1. 𝑵𝒖𝒎 2 4 8 16 𝑷𝒎 Ave. Std. Ave. Std. Ave. Std. Ave. Std. 
1 29.01 0.45 28.90 1.01 28.71 0 28.71 0 

0.8 28.87 0.78 28.85 1.00 28.71 0 28.71 0 
0.6 29.01 0.81 28.83 1.02 28.71 0 28.86 0.35 
0.4 28.97 1.14 28.98 0.82 28.71 0 28.89 0.58 
0.2 28.95 0.82 28.98 1.00 28.77 0.77 28.71 0 
0 29.59 1.5 29.20 0.8 28.98 0.33 28.71 0 

  

Figure 17. Average objective function values with different Num and Pm in scenario 1: (a) Num = 2; (b) Num = 4;
(c) Num = 8; (d) Num = 16.

Table 5. Objective function value with different Num and Pm in scenario 1.

Num 2 4 8 16

Pm Ave. Std. Ave. Std. Ave. Std. Ave. Std.

1 29.01 0.45 28.90 1.01 28.71 0 28.71 0
0.8 28.87 0.78 28.85 1.00 28.71 0 28.71 0
0.6 29.01 0.81 28.83 1.02 28.71 0 28.86 0.35
0.4 28.97 1.14 28.98 0.82 28.71 0 28.89 0.58
0.2 28.95 0.82 28.98 1.00 28.77 0.77 28.71 0
0 29.59 1.5 29.20 0.8 28.98 0.33 28.71 0



Appl. Sci. 2021, 11, 11996 22 of 28

Table 6. Convergence time with different Num and Pm in Scenario 1.

Num 2 4 8 16

Pm Ave. Std. Ave. Std. Ave. Std. Ave. Std.

1 1.66 0.25 1.28 0.23 1.11 0.17 1.27 0.24
0.8 1.62 0.18 1.16 0.13 1.27 0.24 1.28 0.36
0.6 1.56 0.14 1.16 0.15 1.27 0.24 1.24 0.26
0.4 1.55 0.22 1.26 0.29 1.27 0.30 1.40 0.34
0.2 1.59 0.20 1.28 0.74 1.23 0.34 1.30 0.22
0 1.57 0.17 1.21 0.22 1.16 0.37 1.47 0.22

4.2.2. Simulation Results in Scenario 2

We set Pm = 0.8 and compared the results of MPPWPA with different Num values.
When the dimension of the solution space in scenario 2 was enlarged to 30, the exhaustive
method failed. The results of heuristic algorithms involved in the experiment are shown in
Figure 18 and the statistics for the results are shown in Table 7. The WPA clearly performed
better than the PSO and GA and had a faster convergence speed compared to ABC. The
proposed MPPWPA had obvious advantages both in terms of accuracy and convergence
speed, compared with the four basic algorithms. For the task assignment problem with
eight-dimensional solution space, the MPPWPA improved the optimization performance both
in terms of accuracy and convergence speed. When Num ranged from 2 to 8, the optimization
performance gradually improved, while the convergence speed declined when Num reached
16. This was because frequent population migration caused great disturbances to small-size
sub-populations; it improved the exploitation but reduced the exploration. As shown in
Figure 18, the MPPWPA had an excellent convergence speed in the early stage of iteration.
This means that it could obtain better values in a short time compared with PSO, GA, ABC
and WPA, which is of great significance in practical applications.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 22 of 28  

Table 6. Convergence time with different 𝑁𝑢𝑚 and 𝑃 in Scenario 1. 𝑵𝒖𝒎 2 4 8 16 𝑷𝒎 Ave. Std. Ave. Std. Ave. Std. Ave. Std. 
1 1.66 0.25 1.28 0.23 1.11 0.17 1.27 0.24 

0.8 1.62 0.18 1.16 0.13 1.27 0.24 1.28 0.36 
0.6 1.56 0.14 1.16 0.15 1.27 0.24 1.24 0.26 
0.4 1.55 0.22 1.26 0.29 1.27 0.30 1.40 0.34 
0.2 1.59 0.20 1.28 0.74 1.23 0.34 1.30 0.22 
0 1.57 0.17 1.21 0.22 1.16 0.37 1.47 0.22 

4.2.2. Simulation Results in Scenario 2 
We set 𝑃 = 0.8 and compared the results of MPPWPA with different 𝑁𝑢𝑚 values. 

When the dimension of the solution space in scenario 2 was enlarged to 30, the exhaustive 
method failed. The results of heuristic algorithms involved in the experiment are shown 
in Figure 18 and the statistics for the results are shown in Table 7. The WPA clearly per-
formed better than the PSO and GA and had a faster convergence speed compared to 
ABC. The proposed MPPWPA had obvious advantages both in terms of accuracy and 
convergence speed, compared with the four basic algorithms. For the task assignment 
problem with eight-dimensional solution space, the MPPWPA improved the optimization 
performance both in terms of accuracy and convergence speed. When 𝑁𝑢𝑚 ranged from 
2 to 8, the optimization performance gradually improved, while the convergence speed 
declined when 𝑁𝑢𝑚 reached 16. This was because frequent population migration caused 
great disturbances to small-size sub-populations; it improved the exploitation but re-
duced the exploration. As shown in Figure 18, the MPPWPA had an excellent convergence 
speed in the early stage of iteration. This means that it could obtain better values in a short 
time compared with PSO, GA, ABC and WPA, which is of great significance in practical 
applications. 

 
Figure 18. Average objective function values with different 𝑁𝑢𝑚 in scenario 2. 

  

Figure 18. Average objective function values with different Num in scenario 2.



Appl. Sci. 2021, 11, 11996 23 of 28

Table 7. Objective function value and convergence time with different Num in scenario 2.

Algorithm Num
Objective Function Value (m) Convergence Time

(s)

Ave. Std. Ave. Std.

PSO - 511.8 37 174.73 47.78
GA - 330.86 30.36 21.87 4.25

ABC - 269.78 5.8 170.73 42.86
WPA - 266.3 19.48 158.83 49.29

MPPWPA

2 252.6 15.1 109.2 47.0
4 257.1 19.3 72.1 24.2
8 250.6 13.6 63.7 22.5
16 257.2 13.5 64.9 12.3

Then, we compared the influence of different Pm on the optimization performance. The
results are shown in Figure 19 and the statistics for the results are shown in Tables 8 and 9.
Compared with the results in scenario 1, population migration was necessary to improve
the convergence speed and accuracy for the task assignment problem with 30-dimensional
solution space. When Num = 2 and Num = 4, the convergence trends under different Pm
were basically the same and there was no significant difference in optimization performance.
When Num = 8, excluding 0 and 1, a large Pm contributed to ensuring accuracy, while a
small Pm contributed to a shortening of convergence time. When Num = 16, the algorithm
preferred a small Pm, but not 0. Compared with the WPA, the MPPWPA could obtain a better
solution regardless of the value of Pm, which shows that the MPPWPA was robust to Pm.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 23 of 28  

Table 7. Objective function value and convergence time with different 𝑁𝑢𝑚 in scenario 2. 

Algorithm 𝑵𝒖𝒎 
Objective Function Value (m) 

Convergence Time 
(s) 

Ave. Std. Ave. Std. 
PSO - 511.8 37 174.73 47.78 
GA - 330.86 30.36 21.87 4.25 

ABC - 269.78 5.8 170.73 42.86 
WPA - 266.3 19.48 158.83 49.29 

MPPWPA 

2 252.6 15.1 109.2 47.0 
4 257.1 19.3 72.1 24.2 
8 250.6 13.6 63.7 22.5 
16 257.2 13.5 64.9 12.3 

Then, we compared the influence of different 𝑃 on the optimization performance. 
The results are shown in Figure 19 and the statistics for the results are shown in Tables 8 
and 9. Compared with the results in scenario 1, population migration was necessary to 
improve the convergence speed and accuracy for the task assignment problem with 30-
dimensional solution space. When 𝑁𝑢𝑚 = 2 and 𝑁𝑢𝑚 = 4, the convergence trends un-
der different 𝑃were basically the same and there was no significant difference in optimi-
zation performance. When 𝑁𝑢𝑚 = 8, excluding 0 and 1, a large 𝑃 contributed to ensur-
ing accuracy, while a small 𝑃 contributed to a shortening of convergence time. When 𝑁𝑢𝑚 = 16, the algorithm preferred a small 𝑃, but not 0. Compared with the WPA, the 
MPPWPA could obtain a better solution regardless of the value of 𝑃, which shows that 
the MPPWPA was robust to 𝑃. 

  

(a) (b) 

Appl. Sci. 2021, 11, x FOR PEER REVIEW 24 of 28  

  

(c) (d) 

Figure 19. Average objective function values with different 𝑁𝑢𝑚  and 𝑃  in scenario 2: (a) 𝑁𝑢𝑚 = 2; (b) 𝑁𝑢𝑚 = 4; 
(c) 𝑁𝑢𝑚 = 8; (d) 𝑁𝑢𝑚 = 16. 

Table 8. Objective function value with different 𝑃 in scenario 2. 𝐍𝐮𝐦 2 4 8 16 𝑷𝒎 Ave. Std. Ave. Std. Ave. Std. Ave. Std. 
1 259.7 15.5 251.7 16.5 263.9 16.2 254.9 20.6 

0.8 252.6 15.1 257.1 19.3 250.6 13.6 257.2 13.5 
0.6 257.4 20.9 248.27 14.1 250.6 13.0 254.2 14.0 
0.4 249.5 14.4 255.9 15.1 254.1 18.1 251.9 15.3 
0.2 252.4 14.5 254.8 18.4 260.2 14.5 252.7 14.9 
0 259.9 15.2 251.7 13.8 261.7 21.3 258.5 15.1 

Table 9. Convergence time with different 𝑃 in scenario 2. 𝐍𝐮𝐦 2 4 8 16 𝑷𝒎 Ave. Std. Ave. Std. Ave. Std. Ave. Std. 
1 108.5 41.2 70.3 36.1 64.1 19.7 65.2 15.4 

0.8 109.2 47.0 72.1 24.2 63.7 22.5 64.9 12.3 
0.6 101.1 37.9 68.3 21.1 69.2 28.8 57.1 10.0 
0.4 109.0 29.8 67.4 27.9 53.8 8.4 47.1 6.9 
0.2 110.5 40.87 78.1 23.5 54.4 16.8 45.0 9.8 
0 110.1 42.9 80.8 17.5 66.7 8.13 65.7 1.4 

In terms of convergence performance, the algorithm with 16 mass sub-populations 
performed better, as it could obtain a stable best solution in a shorter time, while the al-
gorithm with two mass sub-populations needed more time to obtain a best solution. In 
terms of convergence trend, the algorithm with eight mass sub-populations performed 
better because it converged faster in the early stage, and thus, was found to be suitable for 
application requirements where a solution is needed in a specified short time such as 10 s 
or 20 s. 

From Figure 19d, we can see that the optimization performance of the algorithm with 
16 mass sub-populations was poor when 𝑃 = 0, which was different from the perfor-
mance in scenario 1. The reason is that the optimization abilities of the sub-populations 
with small sizes are insufficient when the solution space is 30-dimensional; thus popula-
tion migration is needed to improve the exploration of the solution space. This phenome-
non indicates that the population size of a heuristic optimization algorithm influences the 
optimization performance. 

Figure 19. Average objective function values with different Num and Pm in scenario 2: (a) Num = 2; (b) Num = 4;
(c) Num = 8; (d) Num = 16.



Appl. Sci. 2021, 11, 11996 24 of 28

Table 8. Objective function value with different Pm in scenario 2.

Num 2 4 8 16

Pm Ave. Std. Ave. Std. Ave. Std. Ave. Std.

1 259.7 15.5 251.7 16.5 263.9 16.2 254.9 20.6
0.8 252.6 15.1 257.1 19.3 250.6 13.6 257.2 13.5
0.6 257.4 20.9 248.27 14.1 250.6 13.0 254.2 14.0
0.4 249.5 14.4 255.9 15.1 254.1 18.1 251.9 15.3
0.2 252.4 14.5 254.8 18.4 260.2 14.5 252.7 14.9
0 259.9 15.2 251.7 13.8 261.7 21.3 258.5 15.1

Table 9. Convergence time with different Pm in scenario 2.

Num 2 4 8 16

Pm Ave. Std. Ave. Std. Ave. Std. Ave. Std.

1 108.5 41.2 70.3 36.1 64.1 19.7 65.2 15.4
0.8 109.2 47.0 72.1 24.2 63.7 22.5 64.9 12.3
0.6 101.1 37.9 68.3 21.1 69.2 28.8 57.1 10.0
0.4 109.0 29.8 67.4 27.9 53.8 8.4 47.1 6.9
0.2 110.5 40.87 78.1 23.5 54.4 16.8 45.0 9.8
0 110.1 42.9 80.8 17.5 66.7 8.13 65.7 1.4

In terms of convergence performance, the algorithm with 16 mass sub-populations
performed better, as it could obtain a stable best solution in a shorter time, while the algorithm
with two mass sub-populations needed more time to obtain a best solution. In terms of
convergence trend, the algorithm with eight mass sub-populations performed better because
it converged faster in the early stage, and thus, was found to be suitable for application
requirements where a solution is needed in a specified short time such as 10 s or 20 s.

From Figure 19d, we can see that the optimization performance of the algorithm with
16 mass sub-populations was poor when Pm = 0, which was different from the performance
in scenario 1. The reason is that the optimization abilities of the sub-populations with
small sizes are insufficient when the solution space is 30-dimensional; thus population
migration is needed to improve the exploration of the solution space. This phenomenon
indicates that the population size of a heuristic optimization algorithm influences the
optimization performance.

4.2.3. Simulation Results in Scenario 3

According to the analysis of the optimization performance in the first two scenarios,
the proposed MPPWPA was effective in solving the task assignment problem and had
good robustness to control parameters. In order to verify its effectiveness for problems
with higher dimensional variables, we applied it in scenario 3, where the solution space
was 150-dimensional. As shown in Figure 20 and Table 10, MPPWPA exhibited satisfying
performance, especially in terms of convergence time, compared with the PSO, GA, ABC
and WPA. Through the statistical data, it was found that the convergence time of the
MPPWPA was 62% less than that of the WPA, which is of great significance to the research
of UAV swarm task assignment.



Appl. Sci. 2021, 11, 11996 25 of 28

Appl. Sci. 2021, 11, x FOR PEER REVIEW 25 of 28  

4.2.3. Simulation Results in Scenario 3 
According to the analysis of the optimization performance in the first two scenarios, 

the proposed MPPWPA was effective in solving the task assignment problem and had 
good robustness to control parameters. In order to verify its effectiveness for problems 
with higher dimensional variables, we applied it in scenario 3, where the solution space 
was 150-dimensional. As shown in Figure 20 and Table 10, MPPWPA exhibited satisfying 
performance, especially in terms of convergence time, compared with the PSO, GA, ABC 
and WPA. Through the statistical data, it was found that the convergence time of the 
MPPWPA was 62% less than that of the WPA, which is of great significance to the research 
of UAV swarm task assignment. 

 
Figure 20. Average objective function values in scenario 3. 

Table 10. Objective function value and convergence time in scenario 3. 

Algorithm 
Objective Function Value Convergence Time 
Ave. Std. Ave. Std. 

PSO 8268 218 5579 1464 
GA 2390 53 2581 503 

ABC 2455 134 4643 644 
WPA 1789 90.04 3262 753 

MPPWPA 1552 50.49 1242 371 

5. Conclusions 
With the aim of reducing the optimization time for the problem of UAV swarm task 

assignment, the multi-population parallel Wolf Pack Algorithm (MPPWPA) was pro-
posed. According to building of the task assignment model and the analysis of the WPA, 
the multi-population optimization method, the communication structures and the parallel 
propulsion mode, this paper proposed the following methods: (a) an elite-mass popula-
tion distribution to optimize better solutions twice; (b) a pretreatment of the population 
to increase population diversity; (c) an approximate average division method to equalize 
the quality of all sub-populations; (d) a parallel optimization structure to realize the 
MPPWPA.  

Firstly, the proposed algorithm was verified as reasonable by means of simulation of 
a problem with an eight-dimensional solution space, and it showed good performance in 
for the problem with high dimensional variables. Then, we studied the influence of its 
control parameters: 𝑁𝑢𝑚 and 𝑃. The results of simulation experiments indicated that 

Figure 20. Average objective function values in scenario 3.

Table 10. Objective function value and convergence time in scenario 3.

Algorithm
Objective Function Value Convergence Time

Ave. Std. Ave. Std.

PSO 8268 218 5579 1464
GA 2390 53 2581 503

ABC 2455 134 4643 644
WPA 1789 90.04 3262 753

MPPWPA 1552 50.49 1242 371

5. Conclusions

With the aim of reducing the optimization time for the problem of UAV swarm task
assignment, the multi-population parallel Wolf Pack Algorithm (MPPWPA) was proposed.
According to building of the task assignment model and the analysis of the WPA, the
multi-population optimization method, the communication structures and the parallel
propulsion mode, this paper proposed the following methods: (a) an elite-mass population
distribution to optimize better solutions twice; (b) a pretreatment of the population to
increase population diversity; (c) an approximate average division method to equalize the
quality of all sub-populations; (d) a parallel optimization structure to realize the MPPWPA.

Firstly, the proposed algorithm was verified as reasonable by means of simulation of a
problem with an eight-dimensional solution space, and it showed good performance in
for the problem with high dimensional variables. Then, we studied the influence of its
control parameters: Num and Pm. The results of simulation experiments indicated that
(1) when the dimension of the solution space was low, MPPWPA with different Num and
Pm could obtain the best solution; (2) when the dimension of the solution space was high,
Num and Pm had little effect on the convergence time, but they did not change the overall
effectiveness of the algorithm; (3) when the dimension of the solution space was very high,
the MPPWPA had satisfying performance, especially in terms of convergence time; (4) in
order to obtain a better optimization performance, the size of sub-population needed to
match the dimensions of the variable.

The parallel computing in this paper was implemented on a single computer, and
future work will focus on the feasibility of multi-computer distributed parallel computing
or cloud computing to solve large-scale task assignment. In addition, we set the Pm as a
constant in this work; we will study variable migration probabilities in future work. In the



Appl. Sci. 2021, 11, 11996 26 of 28

longer term, we also need to consider how to handle moving targets. Whether to track the
target according to the original assignment result or to re-assign the task is a question that
is worthy of further study.

Author Contributions: Conceptualization, Y.L.; methodology, Y.L.; software, Y.L.; validation, Y.L.,
Y.M. and J.W.; formal analysis, Y.L.; investigation, Y.L.; resources, Y.L., Y.M. and J.W.; data curation,
Y.L.; writing—original draft preparation, Y.L.; writing—review and editing, Y.L. and Y.M.; visual-
ization, Y.L.; supervision, Y.M. and J.W.; project administration, Y.M.; funding acquisition, Y.M. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Science and Technology on Electro-optic Control Laboratory
and the Aviation Science Fund, grant number 20175151024.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the anonymous reviewers for their constructive
comments and suggestions, which improved the quality of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wu, H.; Li, H.; Xiao, R.; Liu, J. Modeling and simulation of dynamic ant colony’s labor division for task allocation of UAV swarm.

Phys. A Stat. Mech. Appl. 2018, 491, 127–141. [CrossRef]
2. Liang, G.; Kang, Y.; Xing, Z.; Yin, G. UAV cooperative multi- task assignment based on discrete particle swarm optimization

algorithm. Comput. Simul. 2018, 35, 22–28.
3. Samuel, R. Routing and scheduling of vehicles and crews: The state of the art. Comput. Oper. Res. 1983, 10, 63–211.
4. Mazzeo, S.; Loiseau, I. An ant colony algorithm for the capacitated vehicle routing. Electron. Notes Discret. Math. 2004, 18, 181–186.

[CrossRef]
5. Solomon, M.M. Algorithms for the vehicle routing and scheduling problem with time window constraints. Oper. Res. 1987, 32,

254–265. [CrossRef]
6. Dror, M.; Trudeau, P. Savings by split delivery routing. Transp. Sci. 1989, 23, 141–145. [CrossRef]
7. Zhang, H.; Ge, H.; Yang, J.; Tong, Y. Review of vehicle routing problems: Models, classification and solving algorithms. Arch.

Comput. Methods Eng. 2021, 28, 1–27. [CrossRef]
8. Min, H. The multiple vehicle routing problem with simultaneous delivery and pick-up points. Transp. Res. A Gen. 1989, 23,

377–386. [CrossRef]
9. Kuhn, H.W. The Hungarian method for the assignment problem. Nav. Res. Logist. Q. 1955, 2, 83–97. [CrossRef]
10. Shima, T.; Rasmussen, S.J. Tree search algorithm for assigning cooperating UAVs to multiple tasks. Int. J. Robust Nonlinear Control

2008, 18, 135–153.
11. Alighanbari, M.; How, J. Cooperative task assignment of unmanned aerial vehicles in adversarial environments. In Proceedings

of the American Control Conference, Portland, OR, USA, 8–15 June 2005; pp. 4661–4666.
12. Ling, X. The approximate optimal solution of the traveling salesman problem is obtained by the optimal exhaustive method.

Comput. Appl. Res. 1998, 15, 82–83.
13. Lipson, J.D. Newton’s method: A great algebraic algorithm. In Proceedings of the Third ACM Symposium on Symbolic &

Algebraic Computation, Yorktown Heights, NY, USA, 10 August 1976; pp. 260–270.
14. Ji, S.; Ye, J. An accelerated gradient method for trace norm minimization. In Proceedings of the 26th Annual International

Conference on Machine Learning, Montreal QC, Canada, 1 January 2009; pp. 457–464.
15. Mao, H.; Tian, S.; Chao, A. UAV Mission Planning; National Defense Industry Press: Beijing, China, 2015. (In Chinese)
16. Di, B.; Zhou, R.; Wu, J. Distributed coordinated heterogeneous task allocation for unmanned aerial vehicles. Control Decis. 2013,

28, 274–278.
17. Oh, G.; Kim, Y.; Ahn, J.; Choi, H. Market-based task assignment for cooperative timing missions in dynamic environments. J.

Intell. Robot. Syst. 2017, 87, 97–123. [CrossRef]
18. Zhang, J.; Wang, Y.; Li, F.; Zhou, T. Dynamic task assignment problem of multi-agent. Electron. Technol. Softw. Eng. 2018, 18,

255–258.
19. Brunet, L.; Choi, H.; How, J. Consensus-based auction approaches for decentralized task assignment. In Proceedings of the AIAA

Guidance, Navigation and Control Conference and Exhibit, Honolulu, HI, USA, 18–21 August 2008.
20. Yu, X.; Guo, J.; Zheng, H. Extended-CBBA-based task allocation algorithm for on-orbit assembly spacecraft. Unmanned Syst.

Technol. 2019, 4, 46–53.

http://doi.org/10.1016/j.physa.2017.08.094
http://doi.org/10.1016/j.endm.2004.06.029
http://doi.org/10.1287/opre.35.2.254
http://doi.org/10.1287/trsc.23.2.141
http://doi.org/10.1007/s11831-021-09574-x
http://doi.org/10.1016/0191-2607(89)90085-X
http://doi.org/10.1002/nav.3800020109
http://doi.org/10.1007/s10846-017-0493-x


Appl. Sci. 2021, 11, 11996 27 of 28

21. Boveiri, H.R. An incremental ant colony optimization based approach to task assignment to processors for multiprocessor
scheduling. Front. Inf. Technol. Electron. Eng. 2017, 18, 498–510. [CrossRef]

22. Shima, T.; Rasmussen, S.J.; Sparks, A.G. UAV cooperative multiple task assignments using genetic algorithms. In Proceedings of
the American Control Conference, Portland, OR, USA, 8–15 June 2005; pp. 2989–2994.

23. Xiao, K.; Lu, J.; Nie, Y.; Ma, L.; Wang, X.; Wang, G. A benchmark for multi-UAV task assignment of an extended team orienteering
problem. arXiv 2020, arXiv:2009.00363v1.

24. Sujit, P.B.; George, J.M.; Beard, R. Multiple UAV task allocation using particle swarm optimization. In Proceedings of the AIAA
Guidance, Navigation and Control Conference and Exhibit, Honolulu, HI, USA, 18–21 August 2008; pp. 1–9.

25. Bousad, I.; Lepagnot, J.; Siarry, P. A survey on optimization metaheuristics. Inf. Sci. 2013, 237, 82–117. [CrossRef]
26. Li, X.; Shao, Z.; Qian, J. An optimizing method based on autonomous animats: Fish-swarm algorithm. Syst. Eng.-Theory Pract.

2002, 22, 32–38.
27. Passino, K. Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst. Mag. 2002, 22, 52–67.
28. Eusuff, M.M.; Lansey, K.E. Optimization of water distribution network design using the shuffled frog leaping algorithm. J. Water

Resour. Plan. Manag. 2003, 129, 210–225. [CrossRef]
29. Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC)

algorithm. J. Glob. Optim. 2007, 39, 459–471. [CrossRef]
30. Wu, H.; Zhang, F.; Wu, L. New swarm intelligence algorithm—Wolf pack algorithm. Syst. Eng. Electron. 2013, 35, 2430–2437.
31. Wu, H.; Zhang, F. An uncultivated wolf pack algorithm for high dimensional functions and its application in parameters

optimization of PID controller. In Proceedings of the 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, China,
6–11 July 2014; pp. 1477–1482.

32. Gao, C.; Yu, X.; Zhu, Y. Optimization of hydraulic turbine governor parameters based on WPA. In Proceedings of the 2018 IOP
Conference Series: Earth and Environmental Science, Chongqing, China, 25–26 November 2017; Volume 108, p. 052011.

33. Zhang, X. Short-term load forecasting for electric bus charging stations based on fuzzy clustering and least squares support
vector machine optimized by wolf pack algorithm. Energies 2018, 11, 1449. [CrossRef]

34. Zhuang, H.; Jiang, X. A wolf pack algorithm for active and reactive power coordinated optimization in active distribution
network. In Proceedings of the 2016 IOP Conference Series: Earth and Environmental Science, Beijing, China, 19–22 August 2016;
Volume 40, pp. 1–9.

35. Ding, C.-Q.; Li, C.-P.; Liu, B.; Jiang, X.-P.; Tang, Y.-H.; Sun, H.; Zhou, W. Multi-objective congestion dispatch of active distribution
network based on source-load coordination. Autom. Electr. Power Syst. 2017, 41, 88–95.

36. Menassel, R.; Nini, B.; Mekhaznia, T. An improved fractal image compression using wolf pack algorithm. J. Exp. Theor. Artif.
Intell. 2018, 30, 429–439. [CrossRef]

37. Feng, X.; Hu, K.; Lou, X. Infrared and visible image fusion based on the total variational model and adaptive wolf pack algorithm.
IEEE Access 2020, 8, 2348–2361. [CrossRef]

38. Wu, H.; Zhang, F.; Zhan, R.; Wang, S.; Zhang, C. A binary wolf pack algorithm for solving 0–1 knapsack problem. Syst. Eng.
Electron. 2014, 36, 1660–1667.

39. Guo, L.; Liu, S. An improved binary wolf pack algorithm based on adaptive step length and improved update strategy for 0–1
knapsack problems. In Proceedings of the Communications in Computer and Information Science, Changsha, China, 22–24
September 2017.

40. Li, H.; Wu, H. An oppositional wolf pack algorithm for parameter identification of the chaotic systems. Optik 2016, 127, 9853–9864.
[CrossRef]

41. Xian, S.; Li, T.; Cheng, Y. A novel fuzzy time series forecasting model based on the hybrid wolf pack algorithm and ordered
weighted averaging aggregation operator. Int. J. Fuzzy Syst. 2020, 22, 1832–1850. [CrossRef]

42. Lu, Y.; Ma, Y.; Wang, J.; Han, L. Task assignment of UAV swarm based on wolf pack algorithm. Appl. Sci. 2020, 10, 8335.
[CrossRef]

43. Yu, X.; Yu, H.; Liu, Y.; Xiao, R. A clustering routing algorithm based on wolf pack algorithm for heterogeneous wireless sensor
networks. Comput. Netw. 2020, 167, 106994.

44. Chen, Y.; Mei, Y.; Yu, J.; Su, X.; Xu, N. Three-dimensional unmanned aerial vehicle path planning using modified wolf pack search
algorithm. Neurocomputing 2017, 266, 445–457.

45. Jiao, L.; Liu, J.; Zhong, W. Co-Evolutionary Computing and Multi-Agent Systems; SciencePress: Beijing, China, 2006.
46. Zhang, Y.; Zhang, H. Dynamic scheduling of blocking flow-shop based on multi-population ACO algorithm. Int. J. Simul. Model.

2020, 19, 529–539. [CrossRef]
47. Park, J.; Park, M.W.; Kim, D.W.; Lee, J. Multi-population genetic algorithm for multilabel feature selection based on label

complementary communication. Entropy 2020, 22, 876. [CrossRef]
48. Chen, L.; Li, Q.; Zhao, X.; Fang, Z.; Peng, F.; Wang, J. Multi-population coevolutionary dynamic multi-objective particle swarm

optimization algorithm for power control based on improved crowding distance archive management in CRNs. Comput. Commun.
2019, 145, 146–160. [CrossRef]

49. Digalakis, J.G.; Margaritis, K.G. A multipopulation cultural algorithm for the electrical generator scheduling problem. Math.
Comput. Simul. 2002, 60, 293–301. [CrossRef]

http://doi.org/10.1631/FITEE.1500394
http://doi.org/10.1016/j.ins.2013.02.041
http://doi.org/10.1061/(ASCE)0733-9496(2003)129:3(210)
http://doi.org/10.1007/s10898-007-9149-x
http://doi.org/10.3390/en11061449
http://doi.org/10.1080/0952813X.2017.1409281
http://doi.org/10.1109/ACCESS.2019.2962560
http://doi.org/10.1016/j.ijleo.2016.07.056
http://doi.org/10.1007/s40815-020-00906-w
http://doi.org/10.3390/app10238335
http://doi.org/10.2507/IJSIMM19-3-CO15
http://doi.org/10.3390/e22080876
http://doi.org/10.1016/j.comcom.2019.06.009
http://doi.org/10.1016/S0378-4754(02)00021-6


Appl. Sci. 2021, 11, 11996 28 of 28

50. Yang, B.; Wang, S.; Cheng, Q.; Jin, T. Scheduling of field service resources in cloud manufacturing based on multi-population
competitive-cooperative GWO. Comput. Ind. Eng. 2021, 154, 107104. [CrossRef]

51. Turky, A.; Sabar, N.R.; Song, A. A multi-population memetic algorithm for dynamic shortest path routing in mobile ad-hoc
networks. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July
2016; pp. 4119–4126.

52. Zhang, W.; Wen, J.B.; Zhu, Y.C.; Hu, Y. Multi-objective scheduling simulation of flexible job-shop based on multi-population
genetic algorithm. Int. J. Simul. Model. 2017, 16, 313–321. [CrossRef]

53. Arantes, M.; Arantes, J.; Toledo, C.; Williams, B. A hybrid multi-population genetic algorithm for UAV path planning. In
Proceedings of the Genetic and Evolutionary Computation Conference, Denver, CO, USA, 20–24 July 2016; pp. 853–860.

54. Hao, K.; Zhao, J.; Yu, K.; Li, C.; Wang, C. Path planning of mobile robots based on a multi-population migration genetic algorithm.
Sensors 2020, 20, 5873. [CrossRef]

55. Li, X.; Ma, S.; Wang, Y. Multi-population based ensemble mutation method for single objective bilevel optimization problem.
IEEE Access 2016, 4, 7262–7274. [CrossRef]

56. Wang, X.; Chen, H.; Heidari, A.A.; Zhang, X.; Xu, J.; Xu, Y.; Huang, H. Multi-population following behavior-driven fruit fly
optimization: A Markov chain convergence proof and comprehensive analysis. Knowl.-Based Syst. 2020, 210, 106437. [CrossRef]

57. Yoshida, H.; Fukuyama, Y. Parallel multi-population differential evolutionary particle swarm optimization for voltage and
reactive power control in electric power systems. In Proceedings of the 2017 56th Annual Conference of the Society of Instrument
and Control Engineers of Japan (SICE), Kanazawa, Japan, 19–22 September 2017.

58. Nseef, S.K.; Abdullah, S.; Turky, A.; Kendall, G. An adaptive multi-population artificial bee colony algorithm for dynamic
optimisation problems. Knowl.-Based Syst. 2016, 104, 14–23. [CrossRef]

59. Merelo, J.J.; Mora, A.M.; Fernandes, C.M.; Esparcia-Alcazar, A.I.; Laredo, J.L. Pool vs. island based evolutionary algorithms:
An initial exploration. In Proceedings of the 2012 Seventh International Conference on P2P, Parallel, Grid, Cloud and Internet
Computing (3PGCIC), Victoria, BC, Canada, 12–14 November 2012; pp. 19–24.

60. García-Valdez, M.; Trujillo, L.; Merelo, J.J.; de Vega, F.F.; Olague, G. The EvoSpace Model for Pool-Based Evolutionary Algorithms.
J. Grid Comput. 2015, 13, 329–349. [CrossRef]

http://doi.org/10.1016/j.cie.2021.107104
http://doi.org/10.2507/IJSIMM16(2)CO6
http://doi.org/10.3390/s20205873
http://doi.org/10.1109/ACCESS.2016.2617738
http://doi.org/10.1016/j.knosys.2020.106437
http://doi.org/10.1016/j.knosys.2016.04.005
http://doi.org/10.1007/s10723-014-9319-2

	Introduction 
	Basic Knowledge and Literature Review 
	Task Assignment Model 
	Optimization Methods 
	The Basics of WPA 
	Integer Matrix Coding 
	The Optimization Mechanism of the WPA 
	Analysis of WPA 

	Multi-Population Optimization Method 
	The Basics of the Multi-Population Optimization Method 
	Factors of Multi-Population Optimization Method 

	Basic Communication Structures for Multi-Population Optimization 
	Parallel Propulsion Mode 

	The Proposed Multi-Population Parallel Wolf Pack Algorithm (MPPWPA) 
	Elite-Mass Population Distribution 
	Pretreatment of the Population 
	Approximate Average Division Method 
	System for MPPWPA 
	Parallel Propulsion Mode for MPPWPA 

	Experiments of Task Assignment for UAV Swarm Using MPPWPA 
	Preparation for Simulation Experiments 
	The Results and Analyses of Simulation Experiments 
	Simulation Results in Scenario 1 
	Simulation Results in Scenario 2 
	Simulation Results in Scenario 3 


	Conclusions 
	References

