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Abstract: Alert dwell time, defined as the time elapsed from the generation of an interruptive alert to
its closure, has rarely been used to describe the time required by clinicians to respond to interruptive
alerts. Our study aimed to develop a tool to retrieve alert dwell times from a homegrown CPOE
(computerized physician order entry) system, and to conduct exploratory analysis on the impact of
various alert characteristics on alert dwell time. Additionally, we compared this impact between
various professional groups. With these aims, a dominant window detector was developed using
the Golang programming language and was implemented to collect all alert dwell times from the
homegrown CPOE system of a 726-bed, Taiwanese academic medical center from December 2019
to February 2021. Overall, 3,737,697 interruptive alerts were collected. Correlation analysis was
performed for alerts corresponding to the 100 most frequent alert categories. Our results showed that
there was a negative correlation (ρ = −0.244, p = 0.015) between the number of alerts and alert dwell
times. Alert dwell times were strongly correlated between different professional groups (physician
vs. nurse, ρ = 0.739, p < 0.001). A tool that retrieves alert dwell times can provide important insights
to hospitals attempting to improve clinical workflows.

Keywords: computerized physician order entry; interruptive alert; alert dwell time; alert fatigue

1. Introduction

Interruptive alerts, in the form of suspended pop-up windows, have been widely used
in clinical decision support (CDS) and computerized physician order entry (CPOE) systems
to prevent medical errors during diagnosis and treatment [1–3]. In contrast to soft-stop and
passive alerts, interruptive alerts require the physician to take one or more actions to close
the alert dialog box. Although several studies have shown that interruptive alerts are an
effective way to prevent dangerous prescriptions by ensuring that physicians are likely to
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see them, they can also lead to unintended consequences [4–7], such as additional cognitive
burden, delays in the delivery of appropriate therapy [8–10], and general alert fatigue.

Alert fatigue, defined as “the mental state that is the result of too many alerts con-
suming time and mental energy [11,12]”, usually occurs when interruptive alert systems
unnecessarily and frequently distract clinicians from their thought processes [13]. Con-
sequently, both clinically important and unimportant alerts may be ignored. Causes of
alert fatigue include, but are not limited to: (1) a large number of alerts [14]; (2) clinically
irrelevant alerts or alerts of low clinical value [15,16]; and (3) miscommunication or lack of
communication of the meaning of the alert [17].

Previous studies have primarily used alert override rates (total number of alerts
that do not change the physician’s prescribing behavior divided by the total number of
alerts presented to the physician) to evaluate alert efficiency [18–20]. However, using alert
override rates to evaluate alert efficiency still assumes that users read alerts to determine
their relevance [21]. In this study, we assess “alert dwell time” instead, defined as the time
elapsed from an interruptive alert being generated to it being closed or overridden, which
more broadly quantifies the time required for clinicians to respond to interruptive alerts,
whether they read them or not [22].

To date, few studies have used alert dwell time to evaluate the efficiency of their alert
system, with the majority focusing only on clinical alerts (e.g., prescribing and drug-drug
interactions) [21–23]. However, CPOE systems like ours generate both clinical and admin-
istrative (low or no clinical relevance) alerts [24–27], with up to 80% being administrative
as reported in our previous study [16]. Therefore, neglecting administrative alerts may
limit the improvements that can be made to the alert system, especially in relation to
alert fatigue.

Here, we studied alert dwell times for both administrative and clinical alerts. To do so,
we developed a window retrieval technique, which detects how much time the user stays
in every program window while operating the computer. Using data collected by the alert
log collector (ALC, a method used to collect alerts in a homegrown CPOE system) [16], the
specific alert dwell times for each alert could be identified. Additionally, we conducted an
exploratory analysis of the impact of common alert characteristics (i.e., number of alerts
and alert message length) on the alert dwell time, as well as potential differences between
professional groups (physician, nurse, other).

2. Materials and Methods
2.1. The Implementation of Alert Log Collector and Dominant Window Detector

The implementation of an alert log collector was described in our previous study [16].
The Go (Golang) programming language (Version 1.15.7) was used to build the dominant
window detector, operating independently from the hospital’s CPOE system. The database
was maintained on MySQL. A demonstration of the dominant window detector program
is on GitHub: https://github.com/alanjian/DominantWindowDetector (accessed on 16
March 2021). The dominant window detector was first implemented in the Taipei Municipal
Wan Fang Hospital (WFH) in December 2019, running continuously on the computer unless
terminated by the user or from an unexpected system crash. The dominant window is
defined as the one that is currently active at the forefront of the computer screen. The
principal processes of the dominant window detector are in Supplementary Materials.
When the user changed the dominant window, the dominant window detector recorded
data relevant to this study, and transmitted them to the database for further analysis.

2.2. Data Combination Process

We used an alert log collector alongside a dominant window detector to collect relevant
data [16]. However, the alert log collector only logs the alerts without their respective
alert dwell times; meanwhile, the dominant window detector records all alert dwell times
without the contents of the alert messages (Figure 1). Therefore, we combined these data.

https://github.com/alanjian/DominantWindowDetector
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Figure 1. The process of DWD and ALC running on the computer.

First, the data merging program checks for consistency in the computer’s IP address
and dates between records of user-selected windows (collected by the dominant window
detector) and alert log records (collected by the alert log collector) (Figure 2). If consistent,
the time gap between the two records is calculated.

Figure 2. The flowchart of the data merging process.

The process of calculating the time gaps between the respective ALC (Alert Log
Collector) and DWD (Dominant Window Detector) records is shown in Figure 3. The
smallest time gaps between the dominant window records and the alert log records were
interpreted to indicate that these records had been derived from the same alert window
(thicker line).
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Figure 3. A schematic diagram of the time gap calculation. Rectangles with different colors, red circles, and blue dashed
arrows represent dominant window records, alert log records, and time gaps, respectively. In this example, the time gaps
were −118 s, −62 s, −27 s, +0.2 s, etc. In this case, the minimal time gap between the ALC and DWD records of the relevant
alert is 0.2 s.

For each alert category, titles have corresponding message contents. For example, the
message content corresponding to “Alternative medication remind” is “[Drug A] has been
suspended. Do you want to use [Drug B] as an alternative option?” (Table S1). However,
the content may contain different drugs. Thus, we use “(*)” as a Regular Expression to
indicate that this position can be any drug name. Finally, the data merging program checks
whether the title of the dominant window and the alert content correspond to predefined
pairs of categories. There were 501 predefined pairs in this study. If the window title and
alert content were validated, the records were merged successfully. The data merging
program keeps checking and merging data until all records have been compared. For our
study, the data combination process took about four days to complete.

2.3. Data Analysis

The MySQL Relational Database Management System (RDBMS) was used to store
and manage all data. The outpatient clinic alerts and window-switching event records
in WFH were stored. We tested for normality among variables related to different alert
characteristics using Kolmogorov-Smirnov and Shapiro-Wilk tests. We assessed correla-
tion using Spearman’s rho (ρ) coefficient. Ranges of absolute ρ (rho) values were used
to define strong correlation (0.70–0.99), moderate correlation (0.30–0.69), and weak corre-
lation (0.0–0.29) [28]. IBM’s SPSS Statistics 19 (Armonk, NY, USA) was used to compute
descriptive statistics, normality tests, and correlation analyses.

3. Results
3.1. Alert Distribution

We successfully developed a dominant window detector using the Golang program-
ming language, and retrieved alert dwell times in the homegrown CPOE system of an
academic medical center in Taiwan. The alert log collector was implemented on 11 Novem-
ber 2017, in WFH: in total, 3,737,697 triggered alerts were collected in the 14-month study
period (from 25 December 2019, to 20 February 2021). The numbers of alerts were highly
concentrated to the top 100 most frequent categories, consistent with the results of our
previous study [16]. First, in the data combination process, 462,463 alerts were excluded
due to missing alert dwell time values because some clinicians would terminate the dom-
inant window detector before starting the visits. The missingness is 12% for all data, so
we believed that removing these data with missing values would not affect our results. A
further 28,763 alerts were excluded for being outside the top 100 most frequent categories.
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Ultimately, 3,246,471 alerts relating to the top 100 most frequent categories were included
in our study (Figure 4).

Figure 4. Schematic outline of inclusion and exclusion criteria in this study.

3.2. Normality Test and Descriptive Statistics

The normality tests showed that the alert dwell time, the number of alerts, the length
of the alert message, alert dwell time (physician), alert dwell time (nurse), and alert dwell
time (other professional group) were not normally distributed (Kolmogorov-Smirnov test
statistic p = 0.001; Shapiro-Wilk normality test p = 0.001) (Table S2). Thus, the median was
used for average values of each alert characteristic.

The descriptive statistics are shown in Table 1. All the different alert characteristics
were represented across 100 unique alert categories. The median number of alerts was
5380 times (range, 1201–760,690 times), and the mean number of alerts was 32,465 times. In
order to know whether users spend more time reading alerts with longer messages, the alert
message length was calculated as the number of words in the message. Only meaningful
words were counted; blanks, punctuation marks, and line breaks were excluded. The
median alert message length was 15 words (range, 4–278 words). The mean alert message
length was 23 words. The median alert dwell time was 1.3 s (range, 0.03–3 s), and the mean
alert dwell time was 1.3 s. The median alert dwell time for physicians, nurses, and other
professional groups were 1.3 s (range, 0.03–2.3 s), 1.4 secs (range, 0.03–3.1 s), and 1.3 secs
(range, 0.00–3.1 s), respectively. The mean alert dwell times for physicians, nurses, and
other professional groups were 1.3 s, 1.5 s, and 1.3 s, respectively.

Table 1. The descriptive statistics for each alert characteristic (N = 100).

Mean SD(σ) MIN Q1 MED Q3 MAX

Number of alerts 32,465 111,836 1201 2420 5380 11,927 760,690
Alert Message Length 23 20 4 10 15 28 278

Alert Dwell Time 1.3 0.4 0.03 1.2 1.3 1.4 3
Physician 1.3 0.3 0.03 1.2 1.3 1.4 2.3

Nurse 1.5 0.5 0.03 1.2 1.4 1.7 3.1
Other 1.3 0.4 0.00 1.2 1.3 1.4 3.1

Note: SD = Standard Deviation; MIN = Minimum; Q1 = First quartile; MED = Median; Q3 = Third quartile;
MAX = Maximum; N = Categories.

3.3. Top 10 Most Frequent Alert Categories and Correlation Analysis

The top 10 most frequent alert categories are displayed in Table 2. Most of the alerts
were triggered on the physician’s computer (8 out of 10), and most of the alert dwell times
were between 1 s and 10 s. For the top 10 most frequent alert categories, the median alert
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dwell times ranged from 0.027 s to 2.635 s. However, the maximum alert dwell time was
up to 9186.9 s, a clear outlier that occurred due to the user being away from the keyboard.

Table 2. Different alert characteristics for the top 10 categories of alert message content.

# Title & Message
Content (Categories)

Number of Alerts Dwell Time (Secs)

Total
(100%)

Professional Group Dwell Time
MED Mean MIN MAX

PHY NU OTH <1 sec 1~10
Secs

10~100
Secs

>100
Secs

1

Notification of online
health insurance
open function!

760,690

516,099 123,857 120,734 231,505 516,160 11,122 1903

1.169 2.40 0.017 6283.24Failed to open the
online medication

record, please check the
card reader!

67.8% 16.3% 15.9% 30.4% 67.9% 1.5% 0.3%

2
TOCC fill

733,417
565,791 65,850 101,776 151,243 564,200 15,935 2039

1.297 2.80 0.016 4761.46Please fill in the
patient’s TOCC
record indeed!

77.1% 9.0% 13.9% 20.6% 76.9% 2.2% 0.3%

3

Remind
348,655

151,904 156,218 40,533 174,764 169,623 3805 463

1.000 1.86 0.015 4855.09Are you sure you want
to cancel? It will not
save while the health

insurance card
is removed.

43.6% 44.8% 11.6% 50.1% 48.7% 1.1% 0.1%

4
Remind

220,916
1914 210,237 8765 54,444 96,756 60,743 8973

2.635 19.54 0.018 9186.90The data has been saved
on the health insurance
card, now you may take

it out.
0.9% 95.2% 4.0% 24.6% 43.8% 27.5% 4.1%

5 Remind 127,627 98,305 5561 23,761 41,501 83,814 2049 263 1.160 2.29 0.016 1038.24This is a primary
healthcare diagnosis! 77.0% 4.4% 18.6% 32.5% 65.7% 1.6% 0.2%

6

Alternative
medication remind

96,084
82,349 3539 10,196 15,466 79,086 1467 65

1.391 2.19 0.020 726.14[Drug A] has been
suspended. Do you

want to use [Drug B] as
an alternative option?

85.7% 3.7% 10.6% 16.1% 82.3% 1.5% 0.1%

7 Remind! 87,561 72,612 3303 11,646 7744 77,912 1867 38 1.476 2.42 0.020 1284.53Do you want to
prescribe the drug at the
patient’s own expense?

82.9% 3.8% 13.3% 8.8% 89.0% 2.1% 0.0%

8 Remind! 78,554 51,956 15,264 11,334 76,384 2159 11 0 0.027 0.12 0.010 28.49Do you want to reprint
the invoice? 66.1% 19.4% 14.4% 97.2% 2.7% 0.0% 0.0%

9

Notification of Online
health insurance
open function!

59,919

46,078 3910 9931 7888 49,321 2534 176

1.445 3.58 0.018 3284.53The information of the
patient and IC card did

not match. Please
confirm whether the IC

card is his/her card?

76.9% 6.5% 16.6% 13.2% 82.3% 4.2% 0.3%

10

Remind!

45,780

39,953 515 5312 13,594 30,892 1222 72

1.338 2.70 0.018 600.54

[Drug A] was prescribed
by another physician to
[YYYYMMDD] and still

has [N] days of
medication remaining.

Do you want to
continue prescribing?

87.3% 1.1% 11.6% 29.7% 67.5% 2.7% 0.2%

Note: PHY = Physician; NU = Nurse; OTH = Other; MIN = Minimum; MAX = Maximum; MED =Median.

There was a weak negative correlation (ρ = −0.244, p = 0.015 < 0.05) between the
number of alerts and alert dwell time. This suggests that clinicians tend to spend less time
reading the alerts that were triggered more frequently. The examples of less frequent alert
categories with longer alert dwell times are in Table S3. Examples of alert categories with
higher clinical relevance are in Table S4.

In terms of the impact of alert message length on alert dwell time, this was not
statistically significant (p = 0.097 > 0.05). However, there was a strong positive correlation
between the alert dwell times of different professional groups, namely physician vs. nurse
(ρ = 0.739, p < 0.001), physician vs. other (ρ = 0.811, p < 0.001), and nurse vs. other (ρ = 0.733,
p < 0.001). Alert dwell times were strongly correlated between different professional groups.
There was a weak positive correlation between alert message length and the number of
alerts (ρ = 0.277, p = 0.005 < 0.01).
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4. Discussion

In this study, we successfully developed a dominant window detector through the
Golang programming language, which was utilized to retrieve the alert dwell times within
the CPOE system of an academic medical center in Taiwan. Few studies to date have
reported alert dwell times [21–23]. We showed that alert dwell times can be used to assess
which categories of administrative and clinical alerts are most time-consuming, and/or are
being ignored. By looking for potentially resolvable problems of the CPOE alert system in
this way, the clinical workflow can ultimately be improved.

Most CPOE systems use alerts to prevent clinical errors and to optimize the safety
and quality of clinical decisions [29], such as improving physician compliance with guide-
lines [30] and reducing unintentional duplicate orders [31]. Previous studies have shown
that it takes physicians 8 to 10 s to completely read alerts. However, in our study, the
most common alert dwell time was around one second, suggesting that our physicians had
become victims of alert fatigue, or that they had learned to reflexively disregard messages
of low or no clinical importance [32]. One indication of alert fatigue is when clinicians
spend less time per alert, sometimes going as far as not reading the alert at all [33]. The
most frequent alerts in our CPOE alert system were administrative, highlighting the need
to optimize them preferentially.

Intuitively, the most frequent alerts have the advantage of clinician familiarity. Our
study showed that more frequent alerts have lower alert dwell times, which may be
suggestive of the phenomenon of alert fatigue existing in relation to our hospital’s current
CPOE system. Previous studies have indicated that alert relevance (i.e., accuracy of
automation) had no impact on alert dwell time [21]. Interestingly, we found that there was
also no association between alert message length and alert dwell time. We hypothesize that
this was because physicians did not read the alert message completely no matter how long
the content. Since physicians frequently received clinically irrelevant alerts, they probably
learned to override them expeditiously to optimize clinical workflow.

Our results also showed that the alert dwell times among different professional groups
remained consistent. One possible contributor to this observation is that clinical processes
affecting different professional groups in the hospital are analogous to one another. Another
potential explanation is that the different professional groups receive alerts with a similar
distribution of clinical importance. By identifying alerts with low dwell times owing to
negligible clinical importance, dwell times can provide additional support for changing or
even removing them [34,35].

Numerous studies of physician behavior have employed a wide array of analytical
methods, including questionnaires, interviews, and observations [36–38]. The eventual goal
of these studies is to understand the features of alerts that contribute to alert fatigue, and
thus help to optimize the overall clinical workflow. The dominant window detector that
we developed for this study not only retrieves the alert dwell times, but also analyzes the
time spent by clinicians in different program windows during the consultation. This opens
up the opportunity to analyze various elements of the clinical workflow, such as the time
spent on different programs, and the identification of the most time-consuming software.
Furthermore, by visualizing how computers are being used during various digitized clinical
processes, any bottlenecks in the computerized elements of clinical workflow potentially
become easier to discover and improve. By using a dominant window detector like ours
in studies of clinician behavior on CPOE systems, the medical prescribing process may
be ameliorated by decreasing alert fatigue, with potentially beneficial consequences for
patient safety [39–41].

Limitations

This study has several limitations. First, although the dominant window detector is
convenient to implement, additional data combination procedures were needed to calculate
the alert dwell times. An automated, AI-based alert classification method will be applied
in the next version of the dominant window detector. Second, the present study only
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showed the impact of fundamental alert characteristics on the alert dwell time; more
variables such as medical specialties, individual variables (age, gender, clinical experience),
categories, and clinical importance of alerts should be explored. Third, we focused on
the alert dwell time, although alert acceptance is also an efficiency indicator of CPOE
alert system performance and could not be recorded through our current program. Lastly,
although we have collected and analyzed a large number of alerts, our data were collected
from a single academic medical center in Taiwan. This may limit the generalizability of our
findings. To address this, datasets of alerts collected in other hospitals should be used for
external validation.

5. Conclusions

We have successfully developed a novel method to retrieve the alert dwell times from
a homegrown CPOE system, and demonstrated its ability to help analyze the impact of
several alert characteristics on alert dwell time, including categories of alert content and
alert message length. Additionally, our study suggested that alert fatigue might occur
for higher-frequency alerts with lower alert dwell times, and that the alert dwell times
remained consistent across different clinical professional groups. Our dominant window
detector can potentially expand the functionality of the hospital’s homegrown CPOE
system, providing important insights for system designers and hospital administrators
looking to optimize clinical workflow.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/app112412004/s1, Figure S1: Framework of the dominant window detector (HWND= Handle
to the window), Table S1: The example of alert title and alert content in predefined pairs, Table S2:
Normality test result, Table S3: The example of less frequent alert categories with longer alert dwell
times, Table S4: The example of alert categories with highly clinically relevant.
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