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Abstract: Purpose: A deep learning technique was used to analyze the triceps surae muscle. The
devised interpolation method was used to determine muscle’s volume and verify the usefulness of
the method. Materials and Methods: Thirty-eight T1-weighted cross-sectional magnetic resonance
images of the triceps of the lower leg were divided into three classes, i.e., gastrocnemius lateralis (GL),
gastrocnemius medialis (GM), and soleus (SOL), and the regions of interest (ROIs) were manually
defined. The supervised images were classified as per each patient. A total of 1199 images were
prepared. Six different datasets separated patient-wise were prepared for K-fold cross-validation. A
network model of the DeepLabv3+ was used for training. The images generated by the created model
were divided as per each patient and classified into each muscle types. The model performance
and the interpolation method were evaluated by calculating the Dice similarity coefficient (DSC)
and error rates of the volume of the predicted and interpolated images, respectively. Results: The
mean DSCs for the predicted images were >0.81 for GM and SOL and 0.71 for GL. The mean error
rates for volume were approximately 11% for GL, SOL, and total error and 23% for GL. DSCs in
the interpolated images were >0.8 for all muscles. The mean error rates of volume were <10% for
GL, SOL, and total error and 18% for GM. There was no significant difference between the volumes
obtained from the supervised images and interpolated images. Conclusions: Using the semantic
segmentation of the deep learning technique, the triceps were detected with high accuracy and the
interpolation method used in this study to find the volume was useful.

Keywords: deep learning; semantic segmentation; triceps surae muscle

1. Introduction

Deep learning technology has been widely used in recent years for automatic driving,
drones, weather forecasting, and games [1–4]. The deep learning techniques include classifi-
cation [5], object detection [6], and semantic segmentation. Semantic segmentation has been
used to visualize the three-dimensional (3D) anatomical structures of multiple organs in
3D computed tomography images [7], to facilitate the quantitative coronary angiography-
based diagnosis of major vessels in X-ray coronary angiography [8], and to quantitate
whole breast image analysis in diffusion-weighted images [9]. An applied method using
Conditional Generative Adversarial Networks (cGANs) has been reported [10] to be highly
accurate for in segmenting peri-knee tissue using magnetic resonance imaging (MRI).
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These techniques are used in various body parts and modalities. This study focused on
semantic segmentation of the triceps surae muscle, which consists of the gastrocnemius
and soleus (SOL) muscles. The gastrocnemius is a biceps muscle that comprises the gas-
trocnemius lateralis (GL) and gastrocnemius medialis (GM). The triceps is an important
muscle because it makes activities, such as walking and standing, possible by its repeated
contraction and relaxation. Triceps muscle weakness increases the risk of falling and pre-
vents these essential activities [11]. The muscle volume is commonly used as a measure of
the muscle size, and it is frequently measured in studies because it correlates with various
functional parameters [12]. In a study by Thom et al., the volume of the triceps femoris
muscle was calculated to assess the loss of muscle mass with aging [13]. The volume
was calculated by the product of the cross-sectional area and slice thickness obtained by
manual segmentation using an imaging software; however, this procedure takes a long
time [14]. Friedberger et al. [15] showed that it is now possible to perform semi-automatic
volume calculations using the Random Forest classifier for hand muscle segmentation.
However, this method is still semi-automatic, and even though it reduces the effort of
manual segmentation, it still requires modifications and is significantly time-consuming.
In addition, since magnetic resonance imaging of the lower extremities is often performed
with thicker slices and more spacing between images, volume calculations using only the
acquired images are likely to differ significantly from the actual volume. Therefore, it was
believed that by slice interpolating the MRI images and calculating the volume using the
interpolated images, this difference from the actual image could be reduced.

Many studies have been conducted on the segmentation of quadriceps [16–21], there
have been no previous studies focusing on the segmentation of triceps with deep learning.
In a study conducted by Essafi et al. [22], the authors performed the segmentation of the
medial gastrocnemius, one of the triceps muscles, without deep learning and reported
that the average Dice similarity coefficient (DSC) in 25 subjects was 0.55. In the studies
of thigh muscle segmentation using deep learning [16–19], the higher the DSC > 0.9, the
higher the accuracy of muscle detection. Furthermore, in the studies of segmentation of
thigh muscles without deep learning [20,21], there are examples of detection with relatively
high accuracy, although not as high compared with studies that have used deep learning.
Based on these results, that the triceps could be detected with high accuracy using the deep
learning method.

In this study, deep learning was used to detect the triceps surae muscle. Then, the
devised interpolation method was used to determine the muscle volume and verify the
usefulness of the method.

The manuscript is structured as follows. Section 2 outlines the preprocessing of
the dataset and the methodology and evaluations for transfer learning and the image
interpolation method for semantic segmentation. Section 3 describes the created models
and the evaluation of the image interpolation method. In Section 4, the results obtained
in this study are compared with those of other papers, and the limitations of this study
are discussed. Finally, the conclusions and future directions of this study are presented
in Section 5.

2. Materials and Methods
2.1. Subjects

The 38 consecutive patients who underwent a noncontrast-enhanced lower leg MRI
examination were retrospectively evaluated. The Digital Imaging and Communications
in Medicine (DICOM) images were subsequently converted to anonymized DICOM files
from the image server. These images have been approved by the Ethics Committee of the
Hokkaido University Hospital. The details information of the obtained images is shown
in Table 1.
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Table 1. The details information of the obtained images (N = 38).

Mean ± SD [Min–Max]

Number of slices 17.9 ± 4.9 [3–29]
Field of view [mm] 342.1 × 295.0 [160 × 160–500 × 425]

Acquisition matrix size [pixel] 446.0 × 402.4 [320 × 224–672 × 672]
Pixel size [mm] 0.764 × 0.764 [0.559 × 0.559–0.928 × 0.928]

Slice thickness [mm] 5.8 ± 0.5 [4–6]
Slice gap [mm] 13.6 ± 4.7 [4.8–22.8]

Length of acquisition [mm] 231.0 ± 76.2 [42–342]

2.2. Preprocessing

For supervised image creation, the DICOM images were converted to 8-bit using
the MATLAB (The MathWorks, Inc., Natick, MA, USA) “mat2gray” function because the
bit depth of DICOM images is 16-bit. Those with only one leg captured were resized to
256 × 256 portable network graphics (PNG) images, whereas those with both legs captured
were trimmed to the appropriate size for each leg and resized to 256 × 256. The left leg
was reversed and oriented in the same way as the right leg (Figure 1). The coordinates of
the trimmed area were also recorded to estimate the pixel size and the number of pixels in
a trimmed image for volume calculation. Images of 67 leg muscles were obtained from 38
patients. The trimmed images were used for training and evaluation.

Figure 1. The conversion process from DICOM to PNG image.

2.3. Dataset

These images were saved as PNG images by dividing the triceps into three classes
(GM, GL, and SOL) with an in-house MATLAB software; the regions of interest (ROIs)
were also manually defined (Figure 2). The ROIs were manually defined by the author
alone and were then verified by two radiological technologists with 5 (T.Y.) and 20 years
of experience (H.S.), respectively. A total of 1199 images were prepared from 38 patients,
and the Train:Test was set to 10:2. The 38 patients were classified into six groups, and
six datasets were created so that one could be used as a test (Figure 2). Six different
datasets with 1199 images were prepared for K-fold cross-validation so that the number of



Appl. Sci. 2021, 11, 12006 4 of 13

tests would be approximately 200. Data augmentation for improving the training [6] was
performed on the training images, and they were rotated by 5◦ from −45 to 45◦, increasing
the number of images by 19 times.

Figure 2. Six divided datasets and 6-fold cross-validation.

2.4. Training for Creating Models

The software was developed with MATLAB software, and a computer with NVIDIA
GeForce GTX 1080Ti 12GB (NVIDIA Corporation, Santa Clara, CA, USA) was used.
DeepLabv3+ was used for the architecture for implementation of image segmentation
models. The model was inputted with 2D images taken by MRI. The following training
parameters were used: the batch size for the number of training samples was 32, the
number of epochs was 100, and the initial learning rate was 0.0001. Using this network
model, six different datasets were trained to create six models.

2.5. Interpolation

The supervised images and the images generated using the devised model were
divided in each patient and classified into three muscle types (GM, GL, and SOL). Only the
images with muscles present in the supervised images were extracted and interpolated
by excluding even-numbered images from the predicted images in the same position
(Figures 3 and 4). The interpolation method is described in Figure 5. Interpolation was
performed in the slice direction from two images of the muscle. The contours of the two
muscles were represented by points. The centroid of the larger muscle was calculated
and connected to the centroid by a point on the larger muscle. The distance between the
connecting line and all points on the smaller muscle was calculated, and the point with
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the smallest distance was adopted. Moreover, the midpoint was calculated by connecting
the adopted point to a point on the larger muscle. The same process was performed for all
points of the larger muscle, and by connecting all the calculated midpoints, the interpolated
image of the muscle was completed.

Figure 3. Classifying muscles into three for interpolation.

Figure 4. Creating the interpolated images from the predicted images based on the presence or absence of muscles in the
supervised images. (A) Muscles in supervised images; (B) Predictive muscles using segmentation model; (C) Interpolated
muscles using the interpolation method by thinning out the even number of predicted images; (D) Muscles with even-
numbered predicted images thinned out and slice thickness doubled without using the interpolation method; 1–9; The
number of the slice where the muscle is located.



Appl. Sci. 2021, 11, 12006 6 of 13

Figure 5. Procedure of interpolation: (1) The outline with dots and the calculated centroid of the muscle with the most dots
were expressed; (2) a line was drawn connecting the red dot and the centroid; (3) measured the distance between all the blue
points and the yellow line, found the nearest blue point from yellow line; (4) the midpoint of the red dot and the selected
blue dot was marked; (5) a different red dot was selected and steps 2 through 4 were repeated for as many red dots as there
are red dots, connecting all the yellow dots.

2.6. Indicators Used for Evaluation
2.6.1. DSC

When the supervised images were set as A and the predicted images were set as B, the
following formula was used to calculate DSC. This value is an index to check the agreement
between the images, and the closer the value is to 1, the better the agreement is.

DSC =
2 × |A ∩ B|
|A| + |B| (1)

2.6.2. Calculation of the Volume and Error Rate

The spacing between the slices and pixels were obtained from the DICOM data.
The number of pixels used in the labeled muscle was determined, and the volume was
calculated from the product of these values. The error rate was calculated to compare the
volume of the supervised images with that of the predicted images. The error rate was
calculated using the following formula.∣∣∣∣Volume o f predicted images − Volume o f supervised images

Volume o f supervised images

∣∣∣∣ × 100 (%) (2)

2.7. Evaluation of the Created Models

DSCs were calculated for each muscle using the abovementioned formula, and the
averages were calculated for each dataset to show the overall average. All images were
used for this evaluation. The volumes were calculated for each patient and muscle, and
the average error rates of the datasets were calculated using the mentioned formula. For
this evaluation, only the images with muscle present in both the supervised and predicted
images were used to calculate the error rate.
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2.8. Evaluation of the Interpolation Method

Only the interpolated images were used to obtain DSCs, and the average DSC for
each muscle was calculated. DSCs were calculated from the interpolated image and the
supervised image of the same number (Figure 4C). The volumes were calculated from the
interpolated images, and the error rates were calculated for comparison with the volumes
of the supervised images. To confirm that the interpolation method is useful in terms
of reducing volumetric errors, the error rate was calculated by comparing the volume of
the supervised image and the volume of the image with the spacing between its slices
doubled without interpolation while excluding even numbered images (Figure 4D). All
patients with all three muscles and all predicted images that could be interpolated were
used for these evaluations. Statistical tests were performed to compare the interpolated
and supervised volumes. First, the Shapiro–Wilk test was applied to evaluate normality; if
normality was accepted, the t-test was used; otherwise, the Wilcoxon signed-ranked test, a
nonparametric test, was used. The differences in the statistical analyses were considered
statistically significant when p was <0.05.

3. Results
3.1. Evaluation of the Created Models

The DSC values per dataset are shown in Table 2. The following table shows the DSC
values of all 67 leg muscles. GM and SOL were detected with relatively high accuracy.
However, the DSCs of GL were lower than those of the others. The following are some
representative examples of segmentation successes and failures (Figures 6 and 7)

Table 2. Average DSC values per dataset for the predicted images.

Position Dataset1 Dataset2 Dataset3 Dataset4 Dataset5 Dataset6 Mean ± SD

GM 0.897 0.754 0.876 0.830 0.776 0.745 0.813 ± 0.064
GL 0.804 0.591 0.765 0.773 0.639 0.704 0.713 ± 0.084

SOL 0.889 0.820 0.791 0.823 0.840 0.844 0.835 ± 0.033
GM: gastrocnemius medialis, GL: gastrocnemius lateralis, SOL: soleus, SD: standard deviation.

Figure 6. Representative examples of accurately predicted images.
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Figure 7. Representative examples of partially incorrectly predicted images.

The error rates of volume per dataset are shown in Table 3. The following table
shows the error rates of the volumes of all 67 legs that were present in the supervised and
predicted images. The total error represents the error rate of all three muscle volumes. The
error rate of MG, SOL, and sum was 10% but that of the GL volume was large.

Table 3. The error rate of volume per dataset for the predicted images.

Position Dataset1 Dataset2 Dataset3 Dataset4 Dataset5 Dataset6 Mean ± SD

GM 5.68 11.84 8.96 10.28 8.80 24.48 11.67 ± 6.60
GL 27.46 23.03 18.74 27.14 32.71 12.36 23.57 ± 7.22

SOL 11.71 17.22 14.60 6.87 5.92 9.24 10.93 ± 4.43
total error 11.07 13.38 11.87 7.27 7.84 12.43 10.64 ± 2.51

[%], GM: gastrocnemius medialis, GL: gastrocnemius lateralis, SOL: soleus, SD: standard deviation.

3.2. Evaluation of the Interpolation Method

The DSC values of the interpolated images are shown in Table 4. The following table
shows the DSC of 60 GMs, 54 GLs, and 66 SOLs in the interpolated images. All muscles
had mean DSC larger than 0.8.

Table 4. The DSC values of the interpolated images.

Position DSC

GM 0.877 ± 0.134
GL 0.809 ± 0.170

SOL 0.867 ± 0.078
GM: gastrocnemius medialis, GL: gastrocnemius lateralis, SOL: soleus, DSC: Dice similarity coefficient.

The error rates of volume for the interpolated images are shown in Table 5. The follow-
ing table shows the error rate between the volume of the supervised images (Figure 4A)
and the volume calculated from the 52 legs to which all the three muscles could be in-
terpolated (Figure 4C). For GM, SOL, and the total error, the percentage was <10%. In



Appl. Sci. 2021, 11, 12006 9 of 13

fact, the percentage of the total error was as low as 7.5%. The usefulness of this inter-
polation method in reducing volume calculation errors was evaluated by comparing the
error rate between the volume of the supervised image (Figure 4A) and the volume of
the non-interpolated image (Figure 4D). In the comparison between the supervised and
non-interpolated muscles, all muscles were >12%. Both volumes were calculated for each
leg and were then statistically tested. p value results showed that there were no significant
differences between the volumes of the supervised and interpolated muscles. the same
sequence for the supervised and non-interpolated muscle were performed, and the p value
results also showed that there were no significant differences.

Table 5. The error rate of volume for the interpolated images.

Comparison Target Position Error Rate [%] p Value

Supervised muscle and
interpolated muscle

GM 9.41 ± 7.65 0.5052
GL 17.89 ± 6.37 0.3098

SOL 9.43 ± 5.07 0.7280
total error 7.69 ± 3.49 -

Supervised muscle and
non-interpolated muscle

GM 20.28 ± 9.68 0.1499
GL 33.93 ± 7.54 0.2539

SOL 12.70 ± 5.79 0.3442
total error 14.97 ± 3.98 -

GM: gastrocnemius medialis; GL: gastrocnemius lateralis; SOL: soleus. Supervised muscle: Figure 4A; interpolated
muscle: Figure 4C; non-interpolated muscle: Figure 4D.

4. Discussion

With regards to the evaluation of the created models, DSCs were used to compare
the agreement of the images and evaluate whether the detection was correct in the two
dimensions. Based on the results of the evaluation of the created models, MG and SOL
were detected with higher accuracy than GL, with DSCs exceeding 0.8. As for MG and SOL,
the DSC of segmentation in the thigh muscle, which exceeded 0.8 in many previous studies,
were found to be lower than the respective values in DSCs, but the values themselves
cannot be compared because the target areas were different. However, this study could
detect MGs with a higher accuracy than the reported segmentation of MGs without using
deep learning [22]. For GM and SOL, there were many large muscles present, but there
were some false positives, which were detected with a DSC of >0.8 on average. As for the
DSCs of GL, GL was shorter in the craniocaudal direction than the other two muscles, and
the number of slices in which GL exists is small. The slices at the edge of the GLs were so
small that it was difficult for the human eye to recognize them, and the ratio of the number
of small GLs slices was higher than that of other muscles. In small muscles where the other
muscles and surrounding fat tissues are mistakenly detected as GL, false positives were
more common and this was believed to be the cause of the decline in DSCs. Figure 7 is a
representative example of partially incorrectly predicted images. Not only are there false
detections of the SOL as the GL and GM, but there are also examples of inaccurate location.
As per Ding’s study [17], when false positives, which were not present in the surveillance
images, appeared in the prediction images, DSC was zero and affected the average DSC. In
addition, some images used in the test were blurry, and false positives were particularly
common in these. The triceps surae is a long muscle that exists in a craniocaudal direction,
and the shape of the muscle changes, particularly at the level of the knee and calf. In
this study, the number of slices was uneven in each position; therefore, the number of
slices at the knee level was small, which affected DSCs. As there were no reports on the
segmentation of the triceps surae, the results were compared with those of the quadriceps.
In a study by Kemnitz et al. [16], using T1-weighted 250 images of thighs, including the
quadriceps, hamstrings, sutures, adductor muscles, and others, were prepared and trained
with U-Net, which reported a muscle-only DSC of >0.9. However, as this was only a result
for a specific anatomical location, it may not be suitable for the volume calculation and
interpolation that were performed in this study. In a report by Ding et al. [17], 46 thigh



Appl. Sci. 2021, 11, 12006 10 of 13

4968-slice Fat-water decomposition MRI images were trained with U-Net. The mean DSC
of the quadriceps, hamstrings, sutures, and thin muscles was 0.89, and the mean percent
difference in volume was 7.57%. A similar study was conducted to determine DSC and
error rates for different image types and regions used; the results showed a similar trend to
the present study, indicating the validity of the present results. With regards to volumetry
without interpolation, the agreement was represented in three dimensions by calculating
the error rates of the volume.

Based on the average error rates of volumes per dataset, the error rate of GM, SOL,
and sum was 10%. The error rate in the GL volume was large, probably due to the presence
of many false positives as in DSC. In addition, the predicted images were overestimated in
all muscles, which might be due to the false positives because they were surrounded by
other muscles and fat. Of the images used for training, the images with all three muscles
present were the most common; however, there were few images at the level of the knee
where only the gastrocnemius muscle was present, and the quadriceps muscles were
mistakenly detected as gastrocnemius. In addition, images with contrast and roughness
were also detected that made it difficult to see the boundaries between the muscles, and
false positives were frequent in these images.

The interpolation method was evaluated in-plane by calculating the DSC of the
supervised and interpolated images. All muscles had mean DSC larger than 0.8. The
evaluation of Table 4 was DSC evaluated only with interpolated images; hence, it can be
said that the interpolation was performed with high accuracy. In this interpolation method,
the centroid of the larger muscle contour was discovered, and the centroid was connected
to the dots that make up the contour; the dot with the shortest distance between the line
and that of the smaller muscle contour were adopted. If a dot in the false positive area was
adopted, the DSC was lowered. Even if they were not considered in this interpolation, all
of them were >0.8, so the correct dot with a higher probability among the corresponding
dots in the small contour was selected. In a study by Yap Abdullah et al. [23], the results of
an interpolation to measure the intracranial volume were comparable to those of manual
segmentation, and its use led to the development of a software for rapid measurement.
In a study by Nordez et al. [24], to calculate the volume of the quadriceps muscle in MRI
images, four different methods were used to calculate the error rate; it was reported that the
interpolation method was the best. These results using the interpolation method showed
the same trend as these studies.

The interpolation method was evaluated along the slice direction by calculating and
comparing the error rates of muscle volumes, including the supervised and interpolated
images. The volume contained interpolated images generated from the two images but
with low error rates. Therefore, the results in Table 5 demonstrate that the interpolation
method is effective in reducing the volumetric error. The percentages of GM, SOL, and total
errors were >10%; for the total error, the percentage was as low as 7.5% because if there
were no false positives in the images before and after the interpolated images, there were
no false positives in the interpolated images. This was believed to lead to a decreased error
rate because of the possibility of reduced false positives. Even if false positives existed, it
seemed that the probability of adopting dots that constitute false positives was low. There
was no significant difference between the volumes of the supervised and interpolated
images, indicating that this method can be used without any problems in calculating the
volume. From the results in Tables 4 and 5, interpolation was performed by excluding the
even numbered images from the subsequent evaluation. As these findings underline that
the interpolation was accomplished with high accuracy, while observing at the same time
the effect of volume reduction, the error with the actual volume could be further reduced
by interpolating the actual captured images that were found.

This study has some limitations. First, this study was unable to interpolate all images
used in the test. Because muscles were present in the supervised images and the even
number of those present in the predicted images were excluded, if the muscles were
small in the supervised images, they could not be detected and the images could not be
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complemented. Therefore, the solution is to improve the detection capability by training
more images or to prepare a test image where the number of interpolatable images exists.
Second, the error rate of the volume calculated in this study could not be calculated in
the legs without gastrocnemius or SOL muscles. Therefore, to get a more correct error
rate, it would be necessary to have all the three muscle types in the legs used for training
or testing. Third, most studies on quadriceps segmentation used U-Net [16–18]. In these
studies [25,26], network models were compared for segmentation, and deeplabv3puls
was shown to have the highest detection ability. Therefore, DeepLabv3+ was used for
segmentation instead of U-Net because Deeplabv3+, which has a higher detection capability,
was more likely to be able to detect muscles with higher accuracy than U-net. Using this
algorithm, the triceps could be detected immediately and determine its volume. However,
the recent advances in the channel and spatial attention mechanisms [27–29] have definitely
led to the evolution of semantic segmentation using U-Net. Therefore, a further study on
CNNs in the state of the art is needed. Fourth, the hyperparameters were not adjusted
because this study did not aim to tune the hyperparameters as in the study by Chieh
et al. [30]. Setting and training the optimal hyperparameters may lead to more accurate
detection with Bayesian Optimization. Fifth, the sample size of data is small. Not only
is it difficult to guarantee generalization performance with small sample size, but it is
also possible to improve accuracy by increasing sample size. Additionally, in this study,
training and test images were divided 10:2 for six-fold cross validation, but five- or ten-fold
is general [31,32]. This value was obtained by dividing the data by person, and it is thought
that cross-validation can be performed with general values by increasing the sample size.
Sixth, there are no studies of triceps surae muscle segmentation using Deep Learning.
Therefore, this study was compared with a study of quadriceps segmentation [15–20]
and a study of triceps surae muscle segmentation that did not use deep learning [21].
The results showed that the DSC of the quadriceps was higher than the DSC of this
study, which suggests that this study has room for DSC improvement. In addition, it
was more accurate than the reported segmentation of the triceps surae muscle. This
interpolation method can be used to calculate their volume without any problems found.
Although muscle perimeter length and cross-sectional area, which are correlated with
muscle volume [33,34], are sometimes used as indices, it is more accurate to calculate
volume from images of the entire muscle [35]. However, it is more accurate to calculate the
volume from the whole muscle image. Therefore, this study, which can calculate the actual
volume by immediately calculating the volume and interpolating between slices, suggests
the possibility of advancing research in the field of physical therapy. The technique of
detecting the triceps and calculating their volume can be used to other parts and organs,
and it was assumed that the interpolation method can be used to determine the volume
more accurately. The interpolation technique may also be useful in smoothing out the
images captured with a thicker slice for multiplanar reconstruction processing and 3D
visualization.

5. Conclusions

This deep learning segmentation technique could detect the triceps with relatively
high DSCs. This eliminates the time needed to manually identify the muscles, and thus
enables us to immediately calculate the respective volume. The ability to immediately
calculate the volume of the triceps muscle will provide a distinct contribution to research
studies in the field of physical therapy, including the ability to immediately perform the
quantitative evaluations of rehabilitation devices in leg muscles. The interpolation method
used in this study to determine the volume was useful. Using the interpolation method
allowed us to find that the difference between the volume calculated by the interpolation
method and the actual measurement could be smaller than the volume calculated solely
from the captured image. In the future, this interpolation method can be used to calculate
the volume of other muscles and organs as well, thereby making it possible to calculate the
respective volume in a more accurate manner.
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