S and P Dual-Doped Carbon Nanospheres as Anode Material for High Rate Performance Sodium-Ion Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Synthesis
2.2. Material Characterization
2.3. Electrochemical Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brezesinski, T.; Wang, J.; Tolbert, S.H.; Dunn, B. Ordered Mesoporous A-Moo 3 with Iso-Oriented Nanocrystalline Walls for Thin-Film Pseudocapacitors. Nat. Mater. 2010, 9, 146–151. [Google Scholar] [CrossRef]
- Kim, D.-Y.; Kim, H.-V.; Kang, J. In situ synthesis of silicon–carbon composites and application as lithium-ion battery anode materials. Materials 2019, 12, 2871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, J.; Kim, H.V.; Chae, S.A.; Kim, K.H. A New Strategy for Maximizing the Storage Capacity of Lithium in Carbon Materials. Small 2018, 20, 1704394. [Google Scholar] [CrossRef]
- Chao, D.; Zhu, C.; Yang, P.; Xia, X.; Liu, J.; Wang, J.; Fan, X.; Savilov, S.V.; Lin, J.; Fan, H.J.; et al. Array of Nanosheets Render Ultrafast and High-Capacity Na-Ion Storage by Tunable Pseudocapacitance. Nat. Commun. 2016, 7, 12122. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Liu, Q.; Hu, Z.; Zhang, Y.; Xing, G.; Tang, Y.; Chou, S.L. Designing Advanced Vanadium-Based Materials to Achieve Electrochemically Active Multielectron Reactions in Sodium/Potassium-Ion Batteries. Adv. Energy Mater. 2020, 10, 2002244. [Google Scholar] [CrossRef]
- Chen, W.; Wan, M.; Liu, Q.; Xiong, X.; Yu, F.; Huang, Y. Heteroatom-Doped Carbon Materials: Synthesis, Mechanism, and Application for Sodium-Ion Batteries. Small Methods 2019, 3, 1800323. [Google Scholar] [CrossRef]
- Crabtree, G. Perspective: The Energy-Storage Revolution. Nature 2015, 526, S92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunn, B.; Kamath, H.; Tarascon, J.M. Electrical Energy Storage for the Grid: A Battery of Choices. Science 2011, 334, 928–935. [Google Scholar] [CrossRef] [Green Version]
- Hwang, J.Y.; Myung, S.T.; Sun, Y.K. Sodium-Ion Batteries: Present and Future. Chem. Soc. Rev. 2017, 46, 3529–3614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jana, S.; Thomas, S.; Lee, C.H.; Jun, B.; Lee, S.U. Rational Design of a Pc3 Monolayer: A High-Capacity, Rapidly Charging Anode Material for Sodium-Ion Batteries. Carbon 2020, 157, 420–426. [Google Scholar] [CrossRef]
- Jian, Z.; Bommier, C.; Luo, L.; Li, Z.; Wang, W.; Wang, C.; Greaney, P.A.; Ji, X. Insights on the Mechanism of Na-Ion Storage in Soft Carbon Anode. Chem. Mater. 2017, 29, 2314–2320. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, J. Definitions of Pseudocapacitive Materials: A Brief Review. Energy Environ. Mater. 2019, 2, 30–37. [Google Scholar] [CrossRef] [Green Version]
- Jing, M.; Chen, Z.; Li, Z.; Li, F.; Chen, M.; Zhou, M.; He, B.; Chen, L.; Hou, Z.; Chen, X. Facile Synthesis of Zns/N, S Co-Doped Carbon Composite from Zinc Metal Complex for High-Performance Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2018, 10, 704–712. [Google Scholar] [CrossRef]
- Kang, J.; Kim, D.Y.; Chae, S.A.; Saito, N.; Choi, S.Y.; Kim, K.H. Maximization of Sodium Storage Capacity of Pure Carbon Material Used in Sodium-Ion Batteries. J. Mater. Chem. A 2019, 7, 16149–16160. [Google Scholar] [CrossRef]
- Kim, D.Y.; Kim, D.H.; Kim, S.H.; Lee, E.K.; Park, S.K.; Lee, J.W.; Yun, Y.S.; Choi, S.Y.; Kang, J. Nano Hard Carbon Anodes for Sodium-Ion Batteries. Nanomaterials 2019, 9, 793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.Y.; Li, O.L.; Kang, J. Maximizing the Rate Capability of Carbon-Based Anode Materials for Sodium-Ion Batteries. J. Power Sources 2021, 481, 228973. [Google Scholar] [CrossRef]
- Kim, D.Y.; Li, O.L.; Kang, J. Novel Synthesis of Highly Phosphorus-Doped Carbon as an Ultrahigh-Rate Anode for Sodium Ion Batteries. Carbon 2020, 168, 448–457. [Google Scholar] [CrossRef]
- Kim, H.; Yun, Y.; Lee, Y.C.; Lee, M.H.; Saito, N.; Kang, J. Synthesis of Silicon–Carbon Black Composite as Anode Material for Lithium Ion Battery. Jpn. J. Appl. Phys. 2017, 57, 0102B2. [Google Scholar] [CrossRef]
- Kundu, D.; Talaie, E.; Duffort, V.; Nazar, L.F. The Emerging Chemistry of Sodium Ion Batteries for Electrochemical Energy Storage. Angew. Chem. Int. Ed. 2015, 54, 3431–3448. [Google Scholar] [CrossRef]
- Manoj, B.; Kunjomana, A.G. Study of stacking structure of amorphous carbon by X-ray diffraction technique. Int. J. Electrochem. Sci. 2012, 7, 3127–3134. [Google Scholar]
- Li, W.; Zhou, M.; Li, H.; Wang, K.; Cheng, S.; Jiang, K. A High Performance Sulfur-Doped Disordered Carbon Anode for Sodium Ion Batteries. Energy Environ. Sci. 2015, 8, 2916–2921. [Google Scholar] [CrossRef]
- Liu, J. Addressing the Grand Challenges in Energy Storage. Adv. Funct. Mater. 2013, 23, 924–928. [Google Scholar] [CrossRef]
- Liu, Y.; Merinov, B.V.; Goddard, W.A. Origin of Low Sodium Capacity in Graphite and Generally Weak Substrate Binding of Na and Mg among Alkali and Alkaline Earth Metals. Proc. Natl. Acad. Sci. USA 2016, 113, 3735–3739. [Google Scholar] [CrossRef] [Green Version]
- Moriwake, H.; Kuwabara, A.; Fisher, C.A.; Ikuhara, Y. Why Is Sodium-Intercalated Graphite Unstable? RSC Adv. 2017, 7, 36550–36554. [Google Scholar] [CrossRef] [Green Version]
- Slater, M.D.; Kim, D.; Lee, E.; Johnson, C.S. Sodium-Ion Batteries. Adv. Funct. Mater. 2013, 23, 947–958. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, X.; Wu, D.; Zhao, X.; Zhou, Z. S-Doped N-Rich Carbon Nanosheets with Expanded Interlayer Distance as Anode Materials for Sodium-Ion Batteries. Adv. Mater. 2017, 29, 1604108. [Google Scholar] [CrossRef]
- Ye, J.; Zhao, H.; Song, W.; Wang, N.; Kang, M.; Li, Z. Enhanced Electronic Conductivity and Sodium-Ion Adsorption in N/S Co-Doped Ordered Mesoporous Carbon for High-Performance Sodium-Ion Battery Anode. J. Power Sources 2019, 412, 606–614. [Google Scholar] [CrossRef]
- Yu, F.; Liu, Z.; Zhou, R.; Tan, D.; Wang, H.; Wang, F. Pseudocapacitance Contribution in Boron-Doped Graphite Sheets for Anion Storage Enables High-Performance Sodium-Ion Capacitors. Mater. Horiz. 2018, 5, 529–535. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.-S.; Kim, S.-W.; Kim, K.-H.; Yoon, S.-H.; Ha, M.-J.; Kang, J. S and P Dual-Doped Carbon Nanospheres as Anode Material for High Rate Performance Sodium-Ion Batteries. Appl. Sci. 2021, 11, 12007. https://doi.org/10.3390/app112412007
Yang H-S, Kim S-W, Kim K-H, Yoon S-H, Ha M-J, Kang J. S and P Dual-Doped Carbon Nanospheres as Anode Material for High Rate Performance Sodium-Ion Batteries. Applied Sciences. 2021; 11(24):12007. https://doi.org/10.3390/app112412007
Chicago/Turabian StyleYang, Hyeon-Su, Si-Wan Kim, Kwang-Ho Kim, Sung-Hwan Yoon, Min-Jae Ha, and Jun Kang. 2021. "S and P Dual-Doped Carbon Nanospheres as Anode Material for High Rate Performance Sodium-Ion Batteries" Applied Sciences 11, no. 24: 12007. https://doi.org/10.3390/app112412007
APA StyleYang, H. -S., Kim, S. -W., Kim, K. -H., Yoon, S. -H., Ha, M. -J., & Kang, J. (2021). S and P Dual-Doped Carbon Nanospheres as Anode Material for High Rate Performance Sodium-Ion Batteries. Applied Sciences, 11(24), 12007. https://doi.org/10.3390/app112412007