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Abstract: Using seismic data, logging information, geological interpretation data, and petrophysical
data, it is possible to estimate the stratigraphic texture and elastic parameters of a study area via
a seismic inversion. As such, a seismic inversion is an indispensable tool in the field of oil and
gas exploration and development. However, due to unknown natural factors, seismic inversions
are often ill-conditioned problems. One way to work around this unknowable information is to
determine the solution to the seismic inversion using regularization methods after adding further a
priori constraints. In this study, the nonconvex L1−2 regularization method is innovatively applied to
the three-parameter prestack amplitude variation angle (AVA) inversion. A forward model is first
derived based on the Fatti approximate formula and then low-frequency models for P impedance, S
impedance, and density are established using logging and horizon data. In the Bayesian inversion
framework, we derive the objective function of the prestack AVA inversion. To further improve
the accuracy and stability of the inversion results, we remove the correlations between the elastic
parameters that act as initial constraints in the inversion. Then, the objective function is solved by the
nonconvex L1−2 regularization method. Finally, we validate our inversion method by applying it
to synthetic and observational data sets. The results show that our nonconvex L1−2 regularization
seismic inversion method yields results that are highly accurate, laterally continuous, and can be
used to identify and locate reservoir formation boundaries. Overall, our method will be a useful tool
in future work focused on predicting the location of reservoirs.

Keywords: seismic inversion; AVA inversion; Bayesian inversion; nonconvex L1−2 regularization

1. Introduction

Prestack amplitude variation angle (AVA) inversion methods can be used to estimate
multiple elastic parameters in a given study area by including observational logging and
petrophysical data [1]. Those methods are of great interest to those in the field of reservoir
fluid identification and evaluation. There are two main types of prestack seismic inversions:
prestack direct inversion and elastic impedance inversion.

Prestack direct inversion, also known as AVA/AVO inversion, is based on the P-wave
approximate reflectivity formulas in the Zoeppritz equation and uses angle gather data
as constraints in the prestack elastic parameter inversion [2,3]. For example, Downton
improved the accuracy of the AVO inversion results by using the covariance matrix to
remove the correlation between the initial elastic parameter constraints [4]. To improve
the identification of thin interbeds, Zhang et al. derived a detailed multi-angle prestack
forward model by extending the theory of poststack reflectivity decomposition(the dipole
decomposition principle)to the inversion of prestack P/S velocities and densities [5,6].
However, due to the lack of far-angle gather seismic data, the density parameters were
used as the initial inversion constraints in those specific application examples. To highlight
the “blocky” inversion effect, Pérez et al. performed a three-parameter prestack inversion
using a weighted L1,2 mixed norm [7]. In this inversion method, both the correlation of the
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inversion parameters and the correlation of the model parameters are considered; using
the fast iterative shrinkage-thresholding algorithm (FISTA), they were able to solve the
inversion objective function and achieve high-resolution inversion results [8]. In a later
study, Li et al. quantified the Young’s modulus, Poisson’s ratio, and density values using a
combination of L1, L2, and total variation (TV) norm regularization methods [9]. Of these
three types of methods, L1 norm regularization reflects the sparsity of the inversion results,
L2 norm regularization forces the inversion results to conform to the initial constraints, and
TV norm regularization enhances the lateral continuity of the inversion results. To eliminate
the P/S velocity ratio as a parameter in the traditional approximate reflectivity equation,
Fu et al. first re-derived the reflectivity equation to define the P/S impedance and then
developed the P/S impedance inversion method [10]. Using high-order TV regularization,
She et al. ran multiple three-parameter prestack inversions that accounted for various topo-
graphical characteristics in multiple study areas [11]. Those methods are sensitive to noise
and the amount and quality of the observational data used in the inversion. To improve
the stability of the inversion method, Nie et al. proposed a novel P/S impedance inversion
used in conjunction with L1−2 regularization, and they demonstrated the applicability and
feasibility of their method, however, which method also faces difficulties in producing
accurate density values [12].

The other types of prestack seismic inversion methods are elastic impedance inversion.
Those methods are undertaken in two parts. In the first part, the elastic impedance
is inverted from partially angularly stacked seismic data. In the second part, the to-be-
inverted prestack elastic parameters are extracted from the elastic impedance. The concept
of elastic impedance was introduced by Connolly and later extended by Whitcombe
to provide a theoretical basis for prestack inversion [13,14]. Zong et al. derived the
Zoeppritz approximate equation for P/S-wave moduli and performed an inversion to
determine the prestack P/S-wave moduli [15]. In a later study, Zong et al. derived the
approximate reflectivity equations for Young’s modulus, Poisson’s ratio, and density based
on the assumption of plane wave incidence, and obtained Young’s modulus and Poisson’s
ratio, further enriching the prestack inversion method [16]. Liu et al. performed an
inversion to quantify the Gassmann fluid term and the shear modulus by applying the
basis pursuit decomposition technique and the theory of dipole reflectivity decomposition
to a prestack inversion. Using this inversion method, they also conducted a sensitivity
analysis to determine how the elastic parameters changed in the presence of various
reservoir fluids [17]. Furthermore, they made significant improvements to the prestack
AVO inversion method; by refining the Zoeppritz approximate equation, they located
and characterized hydrocarbon-bearing subsurface reservoirs using an inversion that was
constrained by various elastic parameters such as the Young’s modulus, Poisson’s ratio,
Gassmann fluid term, and brittleness index values [18–20]. Zhang et al. first inverted the
reflectivity of seismic data with different angles and then extracted the brittleness index
from those reflectivity values [21]. Wang et al. used nonconvex L1−2 regularization to
extract stable elastic impedance values from seismic data and then employed a Bayesian
inversion framework to back out the P/S velocities and the densities from the elastic
impedance values [22]. However, this method requires the use of logging data to establish
the relationship between the elastic impedance and the inverted parameters. Therefore,
the reliability, accuracy, and precision of this inversion method must be determined in
future studies.

Meanwhile, the high dimensionality of multi-angle seismic data increases the ill-
posedness and decreases the stability of a prestack AVA inversion. Typically, this issue is
resolved using regularization methods such as the Tikhonov and many variations of the L1
regularization methods. However the Tikhonov regularization method often results in
over-smoothed solutions, it is not an ideal technique to use with applications related to
identifying and characterizing formation boundaries. More importantly, some existing
AVO inversion methods that use L1 regularization techniques fail to generate the optimal
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sparse solutions because they exacerbate the existing prestack AVA high dimensionality
issue by requiring additional model constraints.

With the potential to generate inversion results that are both optimally sparse and
highly accurate, nonconvex optimization algorithms have become quite popular in recent
years. Lai et al. proposed an Lp-norm minimization algorithm that is solved by itera-
tively reweighting the least-squares solution [23]. Yin et al. proposed L1/L2 and L1−2
minimization algorithms and confirmed the superiority of nonconvex optimization algo-
rithms in terms of solution accuracy and efficiency using both theoretical examples and
actual case studies [24]. Because of its good performance in promoting sparsity, nonconvex
optimization algorithms have been widely applied to geophysical problems. Zhong et al.
proposed a L1/2 norm regularization to reconstruct highly incomplete seismic data and
obtained obviously better results [25]. Recently, Huang et al. used L1−2 norm regularized
logarithmic absolute misfit function to improve the stability and fidelity of the prestack
seismic inversion [26]. In the same year, they combined with the logarithmic absolute-
criterion-based misfit function with L1−2 norm-based penalty for P-P and P-SV waves joint
inversion and achieved good performance in both resolution and accuracy [27].

With this motivation, we employ nonconvex L1−2 regularization to simultaneous
P/S-impedance and density inversion from pre-stack seismic data. In this study, we
derive the multi-angle, multi-reflection interface prestack AVA forward model using the
approximate reflectivity equation given by Fatti [2]. We assemble the covariance matrix
to remove the correlation between the parameters that act as constraints in our method.
We then use low-frequency model to determine the prestack inversion objective function
in a Bayesian inversion framework and complete the inversion by applying a nonconvex
L1−2 regularization algorithm. In our validation experiments, we not only quantify the
performance of our method in synthetic tests and in field data test, but we also explore
how our method addresses existing issues such as prestack AVA inversion instability and
the difficulties that arise in inverting for the density.

2. Method
2.1. The Forward Problem

Fatti’s three-term formula, which approximates the relationship between the seismic
reflectivity of the P/S impedance and the density for a given data set, is expressed as [2]:

r(θ) = A(θ)
∆Ip

Īp
+ B(θ)

∆Is

Īs
+ C(θ)

∆ρ

ρ̄
(1)

where, A(θ) = 1
2
(
1 + tan2 θ

)
, B(θ) = −4 V2

s
V2

p
sin2 θ, C(θ) = − 1

2

(
tan2 θ − 4 V2

s
V2

p
sin2 θ

)
,

Īp =
It+1
p +It

p
2 , Īs = It+1

s +It
s

2 , ρ̄ = ρt+1+ρt

2 , ∆Ip = It+1
p − It

p, ∆Is = It+1
s − It

s , ∆ρ = ρt+1 − ρt,
where t is sampling time point, θ is the angle of incidence, It

p, It
s , ρt are the P impedance, S

impedance, and density at t, respectively. The matrix form of Equation (1) is

r(θ) =
[

A(θ) B(θ) C(θ)
]

∆Ip
Īp

∆Is
Īs

∆ρ
ρ̄

 (2)

In the case of multiple sampling points, Equation (2) is extended as follows:
r1(θ)
r2(θ)

...
rt(θ)

 =


A(θ) B(θ) C(θ)
A(θ) B(θ) C(θ)

...
...

...
A(θ) B(θ) C(θ)

×
 rp

rs
rρ

 (3)
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where, rp =
∆Ip
Īp

, rs =
∆Is
Īs

, rρ = ∆ρ
ρ̄ . With multiple sampling points and N incident angles,

the matrix form of the approximate reflectivity equation is defined as:
R(θ1)
R(θ2)

...
R(θN)


︸ ︷︷ ︸

R

=


Cp(θ1) Cs(θ1) Cρ(θ1)
Cp(θ2) Cs(θ2) Cρ(θ2)

...
...

...
Cp(θN) Cs(θN) Cρ(θN)


︸ ︷︷ ︸

C

×

 rp
rs
rρ


︸ ︷︷ ︸

r

(4)

where R(θN) =
[

r1(θN) r2(θN) · · · rt(θN)
]T , rp, rs, and rρ are the reflectivity series

of the P impedance, S impedance, and density, respectively. Cp(θN), Cs(θN), and Cρ(θN)
are the diagonal coefficient matrices composed ofA(θ), B(θ), and C(θ), respectively; for
brevity, we have not included the forms of these matrices.

According to the seismic convolution model, the relationship between the prestack
angle gather seismic data and the reflectivity is expressed as

s(θ1)
s(θ2)

...
s(θN)


︸ ︷︷ ︸

s


w(θ1)

w(θ2)
. . .

w(θN)


︸ ︷︷ ︸

W

×


R(θ1)
R(θ2)

...
R(θN)


︸ ︷︷ ︸

R

(5)

where w(θN)is the wavelet matrix corresponding to the N th angle seismic data.
Equations (4) and (5) can be written concisely in matrix form as

s = WCr (6)

where s =
[

s(θ1) s(θ2) · · · s(θN)
]T is a multi-angle seismic data series,W is a multi-

angle wavelet matrix with the various w(θN) matrices on its diagonal, and C is a coefficient
matrix comprised of Cp(θ),Cs(θ), and Cρ(θ).

2.2. Establishment of Low-Frequency Model Constraints

To enhance the lateral continuity and stability of the inversion results, our low-
frequency P impedance model must satisfy the following equation:

LBrp = ξp− low (7)

where ξp− low is the low-frequency P impedance model determined using the logging data,
and L is the low-frequency filter matrix. B is the integral operator. Similarly, the low-
frequency S impedance and density models must satisfy Equations (8) and (9), respectively:

LBrs = ξs− low (8)

LBrρ = ξρ− low (9)

where ξs− low and ξρ− low are the low-frequency S impedance and density models established
from the logging data, respectively.

In augmented matrix form, these three constraints are expressed as follows: LB 0 0
0 LB 0
0 0 LB︸ ︷︷ ︸

Φ

 rp
rs
rρ


︸ ︷︷ ︸

r

=

 ξp− low
ξs− low
ξρ− low


︸ ︷︷ ︸

ξ

(10)
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where the simplified matrix form of this expression is

Φr = ξ (11)

2.3. Construction of the Inversion Objective Function

According to Bayesian inversion theory and the definition of the L1−2 regularized
prior distribution function, the inversion objective function that simultaneously satisfies
the P impedance, S impedance, and density constraints is expressed as (see Appendix A
for details):

m̂ = arg min
{

1
2
‖WCr− s‖2

2 +
β

2
‖Φr− ξ‖2

2 + λ(‖r‖1 − ‖r‖2)

}
(12)

where β is the weight coefficient for the low-frequency P impedance, S impedance, and
density models and λ is the regularization tuning parameter that controls the sparsity of
the parameters that will be used as input values in the inversion.

If we define G =

[
WC√

βΦ

]
and b =

[
S√
βξ

]
, then Equation (12) can be further

simplified into a nonconvex L1−2 regularization criterion:

r̂ = arg min
{

1
2
‖Gr− b‖2

2 + λ(‖r‖1 − ‖r‖2)

}
(13)

2.4. Decorrelation Processing of Inversion Parameters

According to prior work in this field and statistical analyses of logging curve data,
it has been determined that the P impedance, S impedance, and density values that are
input into the above forward model are not independent of one another. An additional
problem arises because these three parameters have different dimensions. To improve
the accuracy of our inversion results, we decorrelate the P impedance, S impedance, and
density parameters using singular value decomposition (SVD).

The relative changes in the parameters to be inverted are expressed in matrix form as

X =

 e1
p e2

p · · · eN
p

e1
s e2

s · · · eN
s

e1
ρ e2

ρ · · · eN
ρ

 (14)

where N is the number of sampling points and ep, es , and eρ are the natural logarithmic
series of the P impedance, S impedance, and density values obtained from the logging
curve, respectively. Based on Equation (18), we define the symmetric covariance matrix as:

Cx =
XXT

N − 1
=

 c11 c12 c13
c21 c22 c23
c31 c32 c33

 (15)

The SVD of this matrix is

Cx = vuv−1 = vuvT (16)

Substituting Equation (15) into Equation (16) and rearranging the variables yields:

u = vTCxv =

 σ2
p

σ2
s

σ2
ρ

 =
vTXXTv

N − 1
(17)
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where v =

 v11 v12 v13
v21 v22 v23
v31 v32 v33


For a single-layer interface, u =

 σ2
p

σ2
s

σ2
ρ

 can be used as a priori constraints.

However, with a multi-layer interface, we first obtain r′ via decorrelation during the
actual inversion process. Next, we convert r′ into r :

r = Ṽr′ (18)

where, Ṽ =

 V11 V12 V13
V21 V22 V23
V31 V32 V33

 and Vij = diag
(

v1
ijv

2
ij, · · · vN

ij

)
, for i,j = 1,2,3.

Once the decorrelation is completed, we can redefine the inversion objective function
shown in Equation (19):

x = arg min
{

1
2

∥∥G′x− b
∥∥2

2 + λ(‖x‖1 − ‖x‖2)

}
(19)

where G′ = GṼ ,x = r′.

2.5. Resolving the Inversion Objective Function

To find the solution of the above objective function, we apply the convex function
difference algorithm in order to decompose Equation (19) into F(x) = G(x)− H(x) , where{

G(x) = 1
2‖G′x− b‖2

2 + λ‖x‖1
H(x) = λ‖x‖2

(20)

When x 6= 0, ‖x‖2 can be expressed as x
‖x‖2

; when x = 0 , 0 ∈ ∂‖x‖2. We then expand
Equation (24) into its iterative solution form:

xn+1 =

{
arg min 1

2‖G′x− b‖2
2 + λ‖x‖1, xn = 0

arg min 1
2‖G′x− b‖2

2 + λ‖x‖1− < x, λ xn

‖xn‖2
>, xn 6= 0

(21)

According to the DCA iterative formula [28], the nonconvex L1−2regularized inversion
objective function can be simplified as

x̂ = arg min
{

1
2

∥∥G′x− b
∥∥2

2 + λ‖x‖1 + 〈v, x〉
}

(22)

where v , which is a constant vector defined as v = −λ xn

‖xn‖2
, x 6= 0, is the gradient of H(x)

at Xn.
After introducing an intermediate dummy variable z, we can restate the inversion

objective function in Equation (23) as

xn+1 = arg min
x∈Rn

{
1
2

∥∥G′x− b
∥∥2

2 + 〈v, x〉+ λ‖z‖1

}
s.t. x− z = 0 (23)

Using the augmented Lagrange multiplier method, the final inversion objective func-
tion is

Lδ(x, z, y) =
1
2

∥∥G′x− b
∥∥2

2 + 〈v, x〉+ λ‖z‖1 + yT(x− z) +
δ

2
‖x− z‖2

2 (24)
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where y is the Lagrange multiplier and σ is the penalty parameter. Equation (24) is solved
by employing the alternating direction method of multipliers [23]; this method has an
iterative recursive form that is expressed as

zk+1 = arg minz Lδ(xk, z, yk)
xk+1 = arg minx Lδ(x, zk+1, yk)

yk+1 = yk + δ(xk+1 − zk+1)
(25)

where k is the number of iterations. The iterative formulas for x and z are xk+1 =

((
(G′)TG′ + δI

)−1(
(G′)Tb− v + δzk − yk

))
zk+1 = shrin k(xk + yk/δ, λ/δ)

(26)

where shrink(·) is the soft threshold operator. To ensure fast convergence of the algorithm,
we apply an adaptive penalty factor δk+1 :

δk+1 = min(δmax, τδk), (27)

where min(·) is the minimum value function and δmax is the maximum value of δk . We
define the constraint weight τ as

τ =

 τ0, δ
‖zk+1−zk‖2
‖xk‖2

< ε,

1, δ
‖zk+1−zk‖2
‖xk‖2

> ε.
(28)

where τ0 and ε are the initial values for these parameters that are set to 0.001.
Once we’ve obtained r from r′ in Equation (18), we can calculate the corresponding P

impedance, S impedance, and density values:
Ip = ξp− low(1) exp

[
2 ∑N

i=1 rp(i)
]
,

Is = ξs− low(1) exp
[
2 ∑N

i=1 rs(i)
]
,

ρ = ξρ− low(1) exp
[
2 ∑N

i=1 rρ(i)
]
.

(29)

3. Synthetic Examples

To verify the effectiveness of our proposed inversion methodology (hereafter, L1−2), we
compare the results of our technique against those of the conventional basis pursuit method
(BP) and the prestack AVA inversion method [6]. For single-channel experimental analysis,
our model test data consists of the observed logging curve for a given work area, the related
anti-noise experimental analysis, and the sensitivity of those inversion results to the angle
gathers. First, the logging data are resampled and segmented at a sampling interval of
2 ms to obtain the P velocity curve (red), the S velocity curve (blue), and the density curve
(green) (Figure 1); the black curve represents the low-frequency models of those same three
parameters. By inputting a zero-phase Ricker wavelet with a dominant frequency of 35 Hz
into the Zoeppritz equation forward model, we generate a total of 15 prestack angle gathers
with an angle range of 3◦ to 45◦ at an interval of 3◦ (Figure 1d) [29]. The synthetic angle
gathers record has significant AVO characteristics.

3.1. Noise-Free Test

The results of the noise-free analysis of the synthetic record shown in Figure 1d are
shown in Figure 2. In addition to generating more accurate elastic parameter values than the
BP method, the L1−2 inversion method also produces blocky inversion results that facilitate
the identification and characterization of the relevant formation boundaries. As shown in
Figure 2b, the BP inversion method produces an overly smoothed solution that is not sparse.
In contrast, the improved low-frequency model constraint in our proposed method uses the
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low-frequency component of the inversion results to approximate the initial low-frequency
model. This step not only improves the accuracy of the inversion results but also reduces
the sensitivity of the inversion results to the initial low-frequency model.

Figure 1. Model parameters from real well logs.

Figure 2. The inversion results generated with noise-free synthetic records using the (a) L1−2

and (b) BP inversion methods. Red curves represent the inversion results, blue curves represent the
observed values, and the black curves were generated using the low-frequency model.

3.2. Noise Test

Downton pointed out that the prestack AVA inversion method is highly susceptible
to noise [4]. As such, it is very important to determine how our L1−2 inversion method
performs in an anti-noise experiment. Multiple synthetic records with signal-to-noise ratios
(SNRs) of 10 dB, 5 dB, and 1 dB are shown in Figure 3; the inversion results of these three
sets of synthetic records are shown in Figures 4–6, respectively. While the results of the L1−2
inversion method are comparable to those shown in Figure 2, the BP inversion results have
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become increasingly unstable in the presence of noise, leading to a large error in the density
model and distinct inaccuracies in the P/S impedance model. While the overall accuracy
of the L1−2 inversion method results decreases as the SNR of the synthetic record decreases
(Figure 5), the L1−2 inversion results are still more accurate than those of the BP inversion
method in terms of the P/S impedance values. At even lower SNR values (Figure 6), the
density results from neither the L1−2 or BP inversion methods are credible; however, the
L1−2 method P/S impedance results are still valid. In summary, while these inversion
methods are sensitive to the SNR of the seismic records, the L1−2 method still produces
accurate P/S impedance values, even when using seismic data with a low SNR value.

Figure 3. The synthetic seismic angle gathers with a SNR value of (a) 10 dB, (b) 5 dB, and (c) 1 dB.

Figure 4. The inversion results for synthetic seismic data with a SNR value of 10 dB using (a) our
L1−2 regularization inversion method and (b) the BP inversion method. The red, blue, and black
curves represent the inverted, model, and initial values, respectively.
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Figure 5. The inversion results for synthetic seismic data with a SNR value of 5 dB using (a) our L1−2

regularization inversion method and (b) the BP inversion method. The red, blue, and black curves
represent the inverted, model, and initial values, respectively.

Figure 6. The inversion results for synthetic seismic data with a SNR value of 1 dB using (a) our L1−2

regularization inversion method and (b) the BP inversion method. The red, blue, and black curves
represent the inverted, model, and initial values, respectively.

3.3. Analysis of Factors Influencing the Inversion Results

Downton and Zong et al. both argued that high-quality far-angle gathers are the key
to generating accurate density results when performing a prestack AVO inversion [4,15,16].
To study this problem in-depth, we divided the angle gathers (3◦ to 45◦) into five groups of
small, medium, and large angles (Table 1). The inversion results corresponding to the five
sets of angle gathers are shown in Figures 7–11 .

Table 1. Groups of angle gathers used in inversion experiments.

Small Angle Medium Angle Large Angle

Group 1 3◦ 18◦ 33◦

Group 2 6◦ 21◦ 36◦

Group 3 9◦ 24◦ 39◦

Group 4 12◦ 27◦ 42◦

Group 5 15◦ 30◦ 45◦
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Figure 7. The inversion results for angle gathers of 3◦, 18◦, and 33◦ using (a) our L1−2 regularization
inversion method and (b) the BP inversion method. The red, blue, and black curves represent the
inverted, model, and initial values, respectively.

Figure 8. The inversion results for angle gathers of 6◦, 21◦, and 36◦ using (a) our L1−2 regularization
inversion method and (b) the BP inversion method. The red, blue, and black curves represent the
inverted, model, and initial values, respectively.

Figure 9. The inversion results for angle gathers of 9◦, 24◦, and 39◦ using (a) our L1−2 regularization
inversion method and (b) the BP inversion method. The red, blue, and black curves represent the
inverted, model, and initial values, respectively.
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Figure 10. The inversion results for angle gathers of 12◦,27◦, and 42◦ using (a) our L1−2 regularization
inversion method and (b) the BP inversion method. The red, blue, and black curves represent the
inverted, model, and initial values, respectively.

Figure 11. The inversion results for angle gathers of 15◦, 30◦, and 45◦ using (a) our L1−2 regularization
inversion method and (b) the BP inversion method. The red, blue, and black curves represent the
inverted, model, and initial values, respectively.

Comparison of the five groups of experimental results shows that the P/S impedance
results for the L1−2 and BP inversion methods are not sensitive to the angle gathers.
However, per the Fatti approximation formula, errors in the density calculations decrease
as the degree of the angle gather increases. Even in the absence of far-angle gather seismic
data, the P/S impedance and S impedance results generated by the L1−2 inversion method
are more accurate than those produced by the BP inversion method.

4. Application

In this case study, we used actual seismic data fromsampling the Pearl River Mouth
Basin; this data consists of high-quality far-angle gathers suitable for a prestack AVA
inversion study. The reservoir formation is comprised of sandstone, while the upper and
lower layers surrounding the reservoir are mudstone. Previous work in this area indicates
that this reservoir formation, known as the Pearl River Formation, is characterized by
shallow deltaic deposits. This formation is deeply buried, structurally complex, and
exhibits significant lateral variation [12]. Based on the results of our model experiments,
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we separated the seismic data into three angle ranges: 3◦–15◦, 18◦–30◦, and 33◦–45◦. We
then used this data to generate seismic data sets with center angles of 9◦, 24◦, and 39◦,
respectively (Figure 12a–c, respectively).

Figure 12. Real partial angle stacks for angle gathers of (a) 12◦, (b) 24◦, and (c) 39◦.

We then perform prestack AVA inversions with these three data volumes. To en-
hance the lateral continuity of the inversion results, we use the logging data and horizon
information to establish the low-frequency model required for the inversion (Figure 13a–c).

Employing our L1−2 inversion method, we performed the prestack AVA inversion
and obtain three elastic parameters: P impedance, S impedance, and density (Figure 14a–c,
respectively). In these figures, the black curves represent the logging curves corresponding
to the prestack elastic parameters. The results in Figure 14 indicate that there are low
P impedance and density anomalies and high S impedance anomalies. Because shear
waves do not propagate in fluid media, the S-wave propagation velocity is comparable to
that of the sandstone skeleton, which is in line with the actual geological interpretation
of this study area. As shown in Figure 14d, our calculated P/S velocity ratio results not
only allows us to pinpoint the location of our target formation, but they are also highly
consistent with the P/S velocity ratios determined using the logging data (black curve
in Figure 14d). As we have demonstrated, it is feasible to apply our L1−2 prestack AVA
inversion method to the task of reservoir prediction.
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Figure 13. (a) P-impedance, (b) S-impedance, and (c) density low-frequency models.

Figure 14. (a) P-impedance, (b) S-impedance, (c) density, and (d) VP/VS inversion results. The black
circles denote the positions of gas-bearing sandstone units.
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5. Discussion

To further explore our inversion results and to identify the factor(s) affecting the den-
sity inversion results, we plugged the above five groups of inversion results (Figures 7–11)
into Equation (10) to generate synthetic seismic records. We then compared these five sets
of synthetic angle gathers with the original angle gathers and calculated the difference
between the synthetic and observed data gathers (Figures 15–19). Based on this analysis,
we found that the synthetic angle gathers are highly consistent with the original data.
Furthermore, we have determined that accurate synthetic records can only be generated
with the P/S impedance inversion results; as such, it is difficult to calculate the density
values from an AVA inversion.

Figure 15. Synthetic vs. actual records for angle gathers of 3◦, 18◦ , and 33◦ using (a) the L1−2

inversion method and (b) the BP inversion method.

Figure 16. Synthetic vs. actual records for angle gathers of 6◦, 21◦, and 36◦ using (a) the L1−2

inversion method and (b) the BP inversion method.

Figure 17. Synthetic vs. actual records for angle gathers of 9◦, 24◦, and 39◦ using (a) the L1−2

inversion method and (b) the BP inversion method.
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Figure 18. Synthetic vs. actual records for angle gathers of 12◦, 27◦, and 42◦ using (a) the L1−2

inversion method and (b) the BP inversion method.

Figure 19. Synthetic vs. actual records for angle gathers of 15◦, 30◦, and 45◦ using (a) the L1−2

inversion method and (b) the BP inversion method.

6. Conclusions

In this study, we developed a new method for performing a prestack AVA inversion
that relies on nonconvex L1−2 regularization. In our method, both the construction of
the inversion objective function and the decorrelation of the input parameters improve
the stability of the inversion results. Additionally, we verified the effectiveness of our
new method via synthetic tests and conducting a specific case study with real data. Our
L1−2 prestack AVA inversion method produces P/S impedance results that are more
accurate and stable than those generated using the BP inversion method. From our P/S
impedance results, we calculated P/S velocity ratios that allowed us to easily identify a
target reservoir formation. Although prestack AVA inversion methods are sensitive to noise
and the amount and quality of the observational data used in the inversion, our proposed
method demonstrates better performance and has a high potential in the detection and
identification of fluids.
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Appendix A. Bayesian Derivation of the Objective Function

According to Bayes’ theorem, the posterior probability distribution (PDF) of the
estimated parameter r may be expressed as

p(r|s) = p(s|r)p(r)
p(s)

(A1)

where p(r|s) is the PDF of r. The likelihood function, p(r|s), summarizes the strength of
the fit between the observed data and r. p(r) represents the prior probability distribution
of r in the absence of observed data s. p(s) is the probability of the entire sample space,
which is typically a constant. Therefore, Equation (A1) is equivalent to

p(r|s) ∝ p(s|r)p(r) (A2)

In seismic exploration, the observed data are seismic data. Prior to performing the
inversion, the seismic data must undergo preprocessing procedures such as dynamic
correction, multiple wave suppression, and attenuation compensation. It is typically
assumed that the likelihood function has a Gaussian distribution with a mean of zero and
a variance of c2

d. Therefore,p(s|r) may be expressed as

p(s|r) ∝ exp
[
−1

2
(WCr− s)TΣ−1(WCr− s)

]
(A3)

where Σ is the covariance matrix that represents noise in the seismic data (Σ = c2
d · I) and I

is the identity matrix.
Certain types of a priori information, such as structural and well-log data, significantly

improve the stability of the inversion by providing useful constraints for the model results.
According to [12,30], there are two types of useful a priori information: (1) low-frequency
data that adhere to a (0, c2

low) Gaussian distribution and (2) constraints on the sparsity of the
estimated parameter. The low-frequency information, which is independent of the seismic
data and is typically obtained by interpolating and extrapolating the horizon and well-log
data, is used to enhance the lateral continuity of the inversion. The sparsity information is
used to characterize the strata boundaries. As such, p(r) may be defined as

p(r) = pL(r)pV(r) (A4)

where pL(r) is the lateral constraint for the low-frequency information and pV(r) is the
vertical sparsity constraint for the estimated parameter. The definition of pL(r) is

pL(r) ∝ exp
[
−1

2
(LBr− ξlow)

TΩ−1(LBr− ξlow)

]
(A5)

where L is the low-pass matrix, ξlow is the low-frequency prior information (ξlow(t) =
1
2 ln Ilow(t)

Ilow(t0)
), Ilow is the low-frequency P impedance trend that was built from the well-log

data, Ω is the covariance matrix of the model parameters (Ω = c2
low · I).

The L1−2 regularized prior distribution function is defined as

p(r) =
1

2π1−2 exp
[
−1

2
(‖r‖1 − ‖r‖2)

]
(A6)
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which is equivalent to

p(r) ∝ exp
[
−1

2
(‖r‖1 − ‖r‖2)

]
(A7)

By substituting the likelihood function (Equation (A3)) and prior information equa-
tions (Equations (A5) and (A7)) into the Bayes theorem equation (Equation (A2)), we can
obtain the final expression for p(r|s):

p(r|s) ∝ exp
[
− 1

2 (WCr− s)T
Σ−1(WCr− s)

]
× exp

[
− 1

2 (LBr−ξlow)
TΩ−1(LBr−ξlow)

]
× exp

[
− 1

2 (‖r‖1 − ‖r‖2)
] (A8)

Simplifying Equation (A8) and taking the natural logarithm on both sides yields

J(r) = ln[p(r | s)] ∝

[
−
(

1
2‖WCr− s‖2

2 +
β
2 ‖LBr− ξlow‖

2
2

+λ(‖r‖1 − ‖r‖2)

)]
(A9)

where λ and β are regularization parameters, which are used to tune the inversion sparsity

and low-frequency model constraints. These parameters are defined as λ =
c2

d
c2

y
and β =

c2
d

c2
low

.

Maximizing the posterior probability results in the objective function for AVA inversion:

r̂ = arg min
{

1
2
‖WCr− s‖2

2 + λ(‖r‖1 − ‖r‖2) +
β

2
‖LBr− ξlow‖

2
2

}
(A10)
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