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Abstract: Accurate and efficient estimation and prediction of the nonlinear behavior of materials
during plastic working is a major issue in academic and industrial settings. Studies on property meta-
models are being conducted to estimate and predict plastic working results. However, accurately
representing strong nonlinear properties using power-law and exponential models, which are typical
meta-models, is difficult. The combination meta-model can be used to solve this problem, but the
possible number of parameters increases. This causes a cost problem when using FE simulation.
In this study, the accuracy of the nonlinear properties of materials and the number of iterations
were compared for three typical meta-models and the proposed advanced meta-models considering
stress–strain properties. A material property test was conducted using ASTM E8/E8M, and the meta-
model was initialized using ASTM E646 and MATLAB Curve Fitting Toolbox. A finite element (FE)
simulation was conducted for the meta-models, and the test and simulation results were compared
in terms of the engineering stress–strain curve and the root-mean-square error (RMSE). In addition,
an inverse method was applied for the FE simulation to estimate the true stress–strain properties,
and the results were analyzed in terms of the RMSE and the number of iterations and simulations.
Finally, the need for an advanced meta-model that exhibits strong nonlinearity was suggested.

Keywords: inverse method; meta-model; curve fitting; stress–strain curve; large strain

1. Introduction

The number of safety and environmental problems encountered in the construction
and automotive industries is continuously increasing [1,2]. Therefore, the utilization
of lightweight materials and high-strength materials for user safety is increasing [3,4].
However, part design and plastic working for such high-strength materials become difficult
owing to the nonlinear properties resulting from hardening during plastic working. A
typical method for identifying the nonlinear properties of materials is a tensile test, and
tensile test results can be expressed using a force–displacement graph. This graph is then
converted to an engineering stress–strain curve [5]. During this process, the curve can
be transformed into a true stress–strain curve, which reflects the changes in the cross-
sectional area, using an extrapolation, interpolation, or regression method [6–11]. An
extrapolation, interpolation, or regression model is used as a meta-model in the form of a
constitutive equation to simulate the test data. A property meta-model (typically called
a material model, hardening model, etc.), which is an approximate model that accounts
for practical physical phenomena, is widely used in engineering design and optimization
processes. Property meta-models are used to represent elastic and plastic properties against
the strength of materials [12]. In general, elastic properties are expressed by a linear
function such as the Hook model, whereas plastic properties are expressed by power-law,
exponential, and combination models [13–19]. When a curve-fit meta-model is applied to a
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finite element (FE) simulation, an engineering stress–strain curve is obtained, along with the
differences between the FE simulation results and the actual test results. Thus, the inverse
method is being investigated to reduce the differences between these results by applying a
meta-model for the FE simulation in order to obtain the true stress–strain curve [20–22]. The
inverse method is a meta-model-based optimization process that searches for the optimal
property values by repeatedly performing FE simulations and updating the parameters of
a meta-model to reduce errors. For the inverse method, nonlinear models such as power-
law and exponential models can be considered as property meta-models. In addition, a
modified meta-model such as a combination model can be considered to represent the
nonlinear properties of high-strength, large-strain materials [23–26]. These meta-models are
being researched to increase the order or term for representing nonlinear properties [27,28].
When the parameters of a meta-model increase, the resources and costs required by the
inverse method increase. Therefore, a meta-model that exhibits a higher accuracy with a
smaller number of parameters than that used for the typical meta-models is required.

To compare the estimated performance of the properties for different meta-models, this
study compared the RMSE values, the number of iterations, and the sum of FE simulations
of the typical meta-models with those of the proposed advanced meta-model corresponding
to the plastic property of high-strength materials. First, the engineering stress–strain curves
were obtained by conducting ASTM E8/E8M [29] uniaxial tensile tests for 10705MBU, a
high-strength metal. Then, curve fitting was performed for the true stress–strain curves of
three typical property meta-models (i.e., Gosh, Hockett–Sherby, and combination meta-
models) and the advanced meta-models (Gaussian mixture, sum of sine, and polynomial).
The MATLAB Curve Fitting Toolbox (CFT) was used for the parameter initializing process.
In addition, HyperMesh was used for FE modeling and LS-DYNA for FE simulations. The
property meta-models applied to the FE simulation were optimized using LS-OPT. The
simulation and optimization results were compared in terms of the RMSE values and the
iteration of convergence. Finally, the proposed advanced meta-models were determined
to have an advantage over the typical property meta-models for estimating the nonlinear
behaviors of high-strength metals.

2. Preprocess
2.1. Experimental Material, Procedure

The test material considered in this study is high-strength stainless steel 10705MBU,
which is often used in forging. The number of specimens used in this tensile test is three,
and their dimensions are presented in Table 1 and Figure 1. Specimens with a circular
cross-section were used in this study to minimize the anisotropic effect [30,31].

Table 1. Nominal dimensions of specimen.

Symbol Description Dimensions [mm]

l1 Length overall 150
l2 Length of narrow section 20
l3 Gage length 12
d1 Diameter of grip section 8
d2 Diameter of narrow section 4
R Radius of fillet 10

The tensile test was conducted in accordance with the provisions of ASTM E8/E8M.
Using the universal testing machine MTS 370.10 with a maximum loading capacity of
100 kN, the specimen was fixed with upper and lower wedge-shaped clamps, and the
crosshead speed was set to 5 mm/min. The max load was 14.30 kN on average, and the
standard deviation was 0.35 kN. To improve the measurement accuracy of the narrow
section displacement, the displacement that occurred in the gage zone was measured
three times using an extensometer. As shown in Figure 2, the plastic region of the tested
metal has the characteristic of a right-upward curve from the yield strength until the
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maximum strength, and a right-downward curve from the maximum strength until the
fracture. The third set of experimental data in Table 2 was used for the initialization of the
meta-model because the data evenly show the same trends as the first and second sets of
experimental data.

Figure 1. Tensile test by ASTM E8/E8M: (a) Dimensions of specimen; (b) tensile test schematic.

Figure 2. Engineering stress–strain data of ASTM E8E8M tensile test.

Table 2. Stress points of each set of experimental data.

Symbol Yield Stress [MPa] Ultimate Stress [MPa]

1st Exp data 736 946
2nd Exp data 772 1001
3rd Exp data 749 967
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This study used Gosh, Hockett–Sherby, and combination meta-models as typical
meta-models. Table 3 summarizes the test data (Model 1) used as input values for the
plastic properties of the FE simulation and of various typical meta-models (Models 2–5).
Model 2 is the true stress model presented in ASTM E646 [32]. Here, the variable K denotes
the strength coefficient; εe denotes the plastic strain; n1–n4 denotes the strain-hardening
coefficient; εy denotes the yield strain; σs denotes the saturation stress; and b denotes the
material constant. In general, ψ has the range of 0 ≤ ψ ≤ 1 and combines the characteristics
of power-law and exponential models. Table 4 summarizes the advanced meta-models
(Models 6–8). All the models represent the true stress except for Model 1, which expresses
the engineering stress. Models 6–8 are advanced meta-models for showing a nonlinear
plastic region. The Gaussian mixture, sum-of-sine, and polynomial models were used to
simulate the nonlinear data. Here, i denotes a number that distinguishes the term; l denotes
the maximum value of the term; m denotes the maximum value of order; ai, bi, and ci
denote the property variables of Models 6–7; and pm–p0 are the variables of Model 8.

Table 3. Typical meta-model for the true stress–strain curve.

No. Description Typical Meta-Model Number of Variables

1 Engineering data σe = σe -
2 ASTM E646 σt = σe(1 + εe) -
3 Gosh σt = σy + K (εy + εe)

n1 3
4 Hockett–Sherby σt = σs −

(
σs − σy

)
× exp(−bεe

n2 ) 4

5 Hockett–Sherby
and Gosh

σt = ψ
{

σs −
(
σs − σy

)
× exp(−bεe

n3 )
}

+ (1− ψ)×
{

σy + K (εy + εe)
n4
}

.
7

Table 4. Advanced meta-model for the true stress–strain curve.

No. Description Advanced Meta-Model Number of Variables

6 Gaussian Mixture σt =
l

∑
i=1

ai exp{−(x− bi)/ci}2 6

7 Sum of Sine σt =
l

∑
i=1

ai sin(bix + ci)
6

8 Polynomial σt = pmxm + pm−1xm−1 +
pm−2xm−2 + . . . + p1x + p0

6

In general, when the equations of a meta-model become more complex and the number
of parameters increases, the nonlinearity of the model becomes higher, and nonlinear data
can be simulated more accurately. However, the resources consumed in the optimization
process can be increased. Therefore, the appropriate meta-model should be selected
considering nonlinearity and the number of parameters. The number of parameters of
the advanced meta-models was restricted based on the fact that the maximum number of
parameters of the typical meta-models is eight. Hence, in Table 4, l was set to 2, and m was
set to 5 to equalize the number of parameters among the advanced meta-models.

2.2. Curve Fitting

Incorrect initial parameter values have a significant effect on the accuracy of a meta-
model. Thus, a curve-fitting process is required to fit the experimental data to the meta-
model’s characteristic curve. This was conducted in the sequence of Figure 3 using MAT-
LAB CFT. For setting the parameter values of each meta-model (Mu), the logarithmic
diagram method of ASTM E646 was referenced, or the ASTM E646 and MATLAB CFT
processes were omitted for models that do not have parameters.
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Figure 3. Illustration of parameter initialization for RMSE comparison.

Figure 4 shows the result of initializing the meta-model using MATLAB CFT. The right-
downward nonlinear characteristic based on the ultimate strength appeared to be similar
in Model 1 and Models 5–8. Models 3–4 were fit in a direction with the smallest mean error
because they did not express the characteristics of a curve that goes right-downward after
the ultimate strength. Therefore, Models 1 and 2 without parameters and Models 3 and
4 among the typical meta-models cannot represent highly nonlinear characteristics well,
whereas Model 5 and Models 6–8 are relatively advantageous for representing a nonlinear
curve. The parameter values of the initialized meta-model are summarized in Table 5.
The property values in Table 5 were applied for the FE simulation and used in setting the
parameter search range.

2.3. Inverse Method

The FE model used in the inverse method was set up by dividing the tensile specimen
into 100 equal parts along the length and 32 equal parts along the cross-section, and each
FE was modeled as a solid type with eight integration points. Figure 5 shows the shape of
the FE model. By simulating the practical test environment, a fixed condition was applied
to one grip part of the FE model, and a forced displacement condition (5 mm/min) was
applied to the opposite grip part. For applying the forced displacement condition, the
displacement of the gage zone and the reaction force of the fixed part were simulated. The
simulation condition was set in such a manner that the FE simulation would be terminated
when the maximum strain of the gage zone derived by the tensile test was reached.

The inverse method is a process of meta-model-based optimization using FE simula-
tion. The optimization of the parameter range was performed by repeating the convergence
test with the response surface method of the design of experiment.

The procedure for the inverse method used in this study is shown in Figure 6. The
parameter values of each meta-model through curve fitting described in the previous
paragraph were set to the search range by the design of experiment method. The initialized
parameters were optimized in the curve-fitting process based on the experimental data
and ASTM E646. The design of experiment was performed using the D-optimal method to
generate a response surface model by using the estimation algorithm, and the response
surface was configured as a quadratic polynomial surface. The response obtained in each
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simulation was the RMSE (R) value determined by the genetic algorithm. If R ≥ ηmax, the
experiment table was rewritten by adjusting the parameter range around the optimum
point. To prevent unnecessary iterations at R ≥ ηmax, the maximum number of iterations
was set to imax. ηmax was 0.01, and imax was 50. The iteration of the inverse method
was stopped when the RMSE became lower than the ηmax value or when the number of
iterations reached the preset maximum value.

Figure 4. The results of the meta-modeling for stress–strain curve.

Table 5. Initialized parameters of meta-models using CFT.

Meta-Models

Parameters Gosh Hockett–
Sherby

Hockett–
Sherby and

Gosh

Gaussian
Mixture Sum of Sine Polynomial

σy 7.49 × 102 7.49 × 102 7.49 × 102 - - -
K 1.88 × 102 - 9.39 × 103 - - -
n1 1.20 × 10−1 - - - - -
n2 - 1.57 × 100 - - - -
σs - 8.73 × 102 1.80 × 102 - - -
b - 6.00 × 102 6.00 × 102 - - -
ψ - - 9.11 × 10−1 - - -
n3 - - 3.92 × 100 - - -
n4 - - 5.52 × 10−1 - - -
a1 - - - 7.70 × 10−1 2.58 × 103 -
b1 - - - 7.45 × 101 1.14 × 101 -
c1 - - - 4.19 × 10−1 2.00 × 10−2 -
a2 - - - 9.58 × 102 1.67 × 103 -
b2 - - - 7.00 × 100 1.38 × 101 -
c2 - - - 1.68 × 101 2.75 × 100 -
p1 - - - - - −9.65 × 101

p2 - - - - - 1.86 × 10−9

p3 - - - - - 2.42 × 105

p4 - - - - - −8.21 × 104

p5 - - - - - 8.77 × 103

p6 - - - - - 8.77 × 103
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Figure 5. Finite element model of tensile specimen.

Figure 6. Schematic of inverse procedure using CFT and FE simulation.

3. Results and Discussion
3.1. Results of RMSE

The finite element simulation results applied with meta-model-based optimization
were compared with those for each model. Figure 7 shows the comparison results of the
RMSE. Figure 7a quantitatively compares the RMSE among the meta-models with the
engineering data in the test results and the parameters initialized as a result of MATLAB
CFT. Model 1 showed 0 error because it was compared with itself. Model 2 showed a
large error because it had no parameters to change the curve characteristic, so curve fitting
was not performed. Models 3–8 showed lower RMSE values than that of Model 2. The
advanced meta-model showed the lowest RMSE value among the meta-models. Figure 7b
shows the result of the FE simulation performed once after (a). The FE simulation was
performed by LS-DYNA, and the error between the test result and the FE simulation result
was represented by RMSE. When performing the FE simulation, it was necessary to verify
whether the simulation was completed stably. The displacement rate (δ) is a dimensionless
number obtained by normalizing the maximum value of the test displacement to the
maximum value of the simulation displacement, and it indicates the stability of the FE
simulation. The simulation was stopped by force if the property meta-model did not
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represent nonlinear displacement at the gage zone of the specimen. The results of the
FE simulation showed that Model 2 had the lowest RMSE, whereas Model 6 had the
highest RMSE. Furthermore, Models 7–8 showed significant differences in the value of δ,
confirming the unstable simulation. Figure 7c presents the results of the inverse method
that repeatedly performed the FE simulation. Models 6–8, which were used as advanced
meta-models, showed lower RMSE values than Models 3–5, which were used as typical
meta-models and as ASTM E646.

Figure 7. The results of RMSE: (a) RMSE comparison after parameter initialization; (b) stability
comparison of tensile test and simulation results with RMSE and δ; (c) stability comparison of tensile
test and optimized parameter results with RMSE and δ.
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Figure 8 shows convergence in the meta-model-based optimization process for the
engineering data. Excluding Model 3 with a small number of parameters, there was
no significant difference in the number of iterations between the typical meta-models
and the advanced meta-models. The RMSE significantly decreased for the most part for
the inverse method.

Figure 8. Parameter convergence results.

3.2. Results of Stress–Strain Curve

Although RMSE was effective in representing the error that occurred in the FE simu-
lation, the characteristic of the graph needed to be checked to verify whether the graph
accurately expressed the nonlinearity of the plastic section. Figure 9 shows the engineering
stress–strain curve of the meta-model optimized by the inverse method. Models 3 and 4
failed to sufficiently derive the slope of the curve, whereas Model 5 failed to approximately
derive the downward characteristic of post-necking. The results of Models 6–8 were close
to the nonlinear characteristics of the materials, showing a characteristic of the curve that
was more similar to the test data than other models.

Figure 9. Cont.
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Figure 9. Optimized stress–strain curve results of inverse method: (a) Exp. data—Engineering
data based on Exp. data and ASTM E646; (b) Exp. data—meta-models; (c) Exp. data—Advanced
meta-models.

3.3. Results of Optimization

The total number of FE simulations was compared among the meta-models consid-
ering the resources and costs of the FE simulation using Equation (1). Here, α denotes
the total number of iterations, and β denotes the number of FE simulations performed
in each iteration.

γ = β(α− 1) + 1 (1)

To compare the inverse method results of each meta-model, the RMSE, the number of
iterations, and the total number of FE simulations of each meta-model are listed in Table 6.
Models 1–2 could search the parameters within the range by setting the x and y parameters
in the process of the inverse method. Models 3–4 had fewer iterations, but both had a
highly converged RMSE value. Model 5 had fewer iterations, compared with the number
of parameters, and a relatively low RMSE value. Models 6–8 had more iterations than
Model 5; however, the value of the converged RMSE decreased significantly.



Appl. Sci. 2021, 11, 12026 11 of 12

Table 6. Inverse method results as per meta-model.

No.
Number of
Variables in

Inverse Method

Number of
Iterations

(α)

Converged
RMSE

Component
Number per

Iteration in FEA
(β)

Sum of FE
Simulations

(γ)

1 2 8 12.9 10 71
2 2 4 32.6 10 31
3 3 3 41.2 5 11
4 4 8 38.7 5 36
5 7 7 31.0 5 31
6 6 8 18.8 5 36
7 6 8 14.7 5 36
8 6 8 14.7 5 36

4. Conclusions

To compare the estimated performance of the properties among meta-models, this
study compared the RMSE, number of iterations, and total number of FE simulations of
typical meta-models and advanced meta-models. To compare the advanced meta-models
with the typical meta-models, parameters were initialized using MATLAB CFT, and the
initialized parameters were applied to an FE simulation. The inverse method was used
to correct the errors of the FE simulation results. Through this process, the number of
iterations, the total number of FE simulations, and the RMSE were compared among the
meta-models. For the inverse method, the number of iterations and the total number of
FE simulations did not show significant differences between the typical metal-models
and the advanced meta-models, except for the Gosh model. The RMSE values of the
advanced meta-models were lower than those of the typical meta-models, demonstrating
that the advanced meta-model can significantly decrease errors. Based on the findings of
this study, advanced meta-models are expected to have a positive effect on the accuracy
improvement of FE simulation because they showed a high accuracy in the plastic region
of high-strength materials.
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