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Abstract: Ganglion cysts are commonly observed in association with the joints and tendons of the
appendicular skeleton. Ultrasonography is the favored modality used to manage such benign tumors,
but it may suffer from operator subjectivity. In the treatment phase, ultrasonography also provides
guidance for aspiration and injection, and the information regarding the accurate location of the
pedicle of the ganglion. Thus, in this paper, we propose an automatic ganglion cyst extracting method
based on fuzzy stretching and fuzzy C-means quantization. The proposed method, with its carefully
designed image-enhancement policy, successfully detects ganglion cysts in 86 out of 90 cases (95.6%)
without requiring human intervention.

Keywords: ultrasonogram; image enhancement; ganglion cyst; fuzzy stretching; fuzzy C-means

1. Introduction

Ganglion cysts are common benign soft tissue tumors that are primarily encountered
in the wrist. A history of trauma is elicited in at least 10% of cases and is considered a
causative factor, although the pathogenesis remains unclear [1]. Patients with ganglion
cysts may not feel pain, but appropriate treatment is required when the patient feels stiffness
or experiences interference with the movement of their joints, and a high recurrence rate is
reported even after surgical or non-surgical treatment [2].

Upon examination, the cystic structures of wrist ganglion cysts are usually 1–2 cm
in size [3]. Statistically, more than half of wrist ganglion cysts are found in the dorsal
component of the scapholunate ligament, but they can also be found in several other sites
across the dorsal aspect of the wrist capsule [1,3]. Microscopically, the pedicle contains a
tortuous lumen, connecting the cyst to the underlying joint [4]. Moreover, the presence of
a daughter cyst of a preliminary ganglion arising around the joint capsule is often seen.
Usually, it can be easily diagnosed by clinical features or location, but it can also be clinically
confused with other masses if it is accompanied by complications or when it occurs at an
unusual site [5]. The ganglion adjacent to the radial artery near the radiocarpal joint may be
pulsatile and that may cause a possible clinical misidentification as a pseudoaneurysm [6].

There are non-surgical and surgical options for treating a ganglion cyst. Nonsur-
gical treatments of ganglion, including aspiration, steroid injection sclerotherapy, and
hyaluronidase, are generally ineffective, although they do have lower complication rates.
Open surgical excursions have a lower recurrence rate, but they have higher complication
rates and longer recovery periods [7,8]. The recurrence rate can be reduced when the
pedicle of the ganglion is completely removed during surgery [8]. Therefore, it is helpful to
plan surgery to accurately identify the location of the pedicle during imaging.

Ultrasonography is, in general, an effective imaging method for evaluating a palpable
soft tissue abnormality, for it has a strong ability to differentiate a solid mass from a cyst. In

Appl. Sci. 2021, 11, 12094. https://doi.org/10.3390/app112412094 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5839-2241
https://orcid.org/0000-0001-9475-8223
https://orcid.org/0000-0003-1365-0232
https://doi.org/10.3390/app112412094
https://doi.org/10.3390/app112412094
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112412094
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112412094?type=check_update&version=1


Appl. Sci. 2021, 11, 12094 2 of 10

soft tissue lesions, the locations are epidermis, dermis, subcutaneous fat layer, and muscle
layer. It is important to recognize the exact location of the ganglion, as well as daughter
cysts and the pedicle, before surgery [2].

In the treatment phase, ultrasonography also provides guidance for aspiration and in-
jection [3,9], as well as information regarding the exact location of the pedicle for surgery [8].
The most common reason for ganglion recurrence after surgery is that the pedicle connected
to the joint is not completely removed [10].

However, the common complaint about using ultrasonography in diagnosis is its
operator subjectivity in that the correctness of sonographic image analysis is largely de-
pendent on the quality of the equipment and the operators’ expertise [10]. For example,
beginners easily misdiagnose the exact location of the ganglion and overlook the presence
of the pedicle.

To avoid such subjectivity, we need an automatic image segmentation and identifi-
cation tool for anatomical landmarks in the image analysis [11]. It is a difficult problem
since the input image may not have sufficient contrast between target object and the back-
ground or it contains speckle noise, which is an inherent property of ultrasound imaging
modality [12].

In this paper, we propose an efficient automatic segmentation method with carefully
designed contrast enhancement by fuzzy stretching. Only surgically confirmed ganglion
cysts were included in this study. The purpose of this study is to determine the extent of
the ganglion cysts, as well as the daughter cysts, and to find the pedicle accurately and
automatically within the ultrasound image using an intelligent pixel clustering method.

Unfortunately, there is no directly comparable research in this field other than our
previous attempts. Our first pilot study [5] applied fuzzy stretching to assist image en-
hancement and then a contour tracking and region labelling method carried out the rest
of the identification process; however, because it assumed that the shape of the cyst was
oval, the accuracy of this study was not satisfactory. Later, we decided to apply the pixel
clustering approach that decides the membership of a pixel to a clustered object based on
fuzzy logic, so that the automatic cyst-detecting algorithm was not necessarily dependent
on the shape’s assumption. An approach with Possibilistic C-Means (PCM) appeared to
be effective against speckle noise but tended to underestimate the cyst region, especially
when candidate objects overlapped [13]. Fuzzy C-Means (FCM) replaced PCM in forming
clusters [14] and generally showed better result.

FCM is a popular unsupervised machine learning algorithm that assigns each datum a
degree of fuzzy membership, with the distance measured to the nearest cluster centroid [15].
FCM allows each datum (pixel in the image in this case) to belong to two or more clusters
with respect to the degree of membership in each cluster. Thus, FCM classifies the image
into clusters with similar pixels in the feature space, iteratively minimizing the cost function
defined by the distance between the pixel and the candidate cluster centers in the feature
domain. With such flexibility, FCM has been successful in solving segmentation problems
in many medical and engineering domains [16–22]. However, it still suffers from object
disconnection problems during learning, and our retrospective analysis of it [14] concluded
that we need a better image-enhancement policy to overcome the difficulty of a cyst forming
during the FCM process.

Thus, we propose a better fuzzy stretching algorithm based on the trapezoid type of
membership function under the FCM pixel clustering framework. In this experiment, we
also investigate the validity of FCM quantization in forming a cyst by comparing it with
ART2 learning [23], which was recently successful in extracting soft tissue tumor.

Details of the image-enhancement algorithm are explained in Section 2, while the cyst
extraction process by means of FCM is described in Section 3. Experimental result analysis
is then discussed in Section 4, followed by a summary of this paper’s main contribution in
Section 5.
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2. Fuzzy Stretching with Trapezoid Membership Function in Image Enhancement

Fuzzy stretching is performed in the first place to obtain better image enhancement.
Image enhancement is a process of converting the visual appearance of the image into a
better image compared with the original image. It is usually used as a support for better
analysis results [24,25]. Furthermore, in many cases of such human organ ultrasonography,
the area of the target organ is often too dark, meaning that there can be important informa-
tion loss after binarization, which may affect later object forming processes. This was the
motivation for developing a more contrast-sensitive membership function for this ganglion
cyst extraction problem.

The first step is to compute the average brightness value by using this formula:

xm =
255

∑
i = 0

xi
1

MN
(1)

where M and N denote the width and length of the image.
Then, the distances between the brighter area, the darker area and the average area

are computed.
dmax = |xh −xm| (2)

dmin = |xm −xl | (3)

where xh and xl are the highest and lowest intensity pixel values, respectively.
The brightness value is adjusted using the following rule:

If (xm > 128) ad = 255− xm
else i f (xm ≤ dmin) ad = dmin

else i f (xm ≤ dmax) ad = dmax
else ad = xm

Imax = xm + ad
Imin = xm − ad

(4)

where Imax and Imin are maximum and minimum intensity, respectively.
Then, we designed a trapezoid type of membership function, as shown in Figure 1b.

Previously, we used a typical triangle-type function with dynamic control [13], as shown in
Figure 1a. However, that stretching algorithm experienced some information loss in the
process, so that the cyst object had been underestimated when the background intensity
was similar to that of the cyst object. The trapezoid membership function was more robust
in cases such as Lumber Scoliosis X-ray and Lipoma Ultrasonography [26]. Thus, the
membership degree (µ(I)) is computed as Equation (5) over the interval [Imin, Imax]. In
Figure 1b, the red lines denote overlapped membership functions, which are explained
in Figure 2, and the membership degree is qualitatively categorized as one of L(low),
M(middle), and H(high).

Imid = Imax+Imin
2

Imid1 = Imid+Imin
2

Imid2 = Imax+Imid
2

(5)
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Figure 2. Fuzzy membership functions for lower and upper limits. (a) Lower limit (dec.), (b) lower
limit (inc.), (c) upper limit (dec.), (d) upper limit (inc.).

Previously, the upper limit value (β) and the lower limit value (α) are defined as the
highest and lowest Xi among pixels that have higher membership degrees. However, in
this proposed trapezoid membership function, we designed an input membership function
as shown in Figure 2 where there are decreasing and increasing lower limits (Figure 2a,b)
and upper limits that represent the left and right parts of Figure 1b.

Figure 3 represents the output function with respect to the membership degree for
the lower and upper limits based on the trapezoid structure. In Figure 3, Wmin = Imin,
Wmid1 = Imid1, Wmid2 = Imid2, Wmax = Imax.
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Then, we made a set of fuzzy inference rules to decide the final stretched result,
as shown in Table 1 where I-U and I-U denote the lower and upper limit parts of the
membership function value µ(I). W denotes the output value where its qualitative category
is shown in Figure 3.

Table 1. Fuzzy inference rules for fuzzy stretching.

R1 If I-L is L and I-U is L, then W is A

R2 If I-L is L and I-U is M, then W is A

R3 If I-L is M and I-U is L, then W is A

R4 If I-L is M and I-U is H, then W is C

R5 If I-L is H and I-U is M, then W is C

R6 If I-L is H and I-U is H, then W is C

Then, the final α and β values are defuzzified by Equation (6) as follows:

α =
∑mid

i = 0 u(Wi)Wi

∑mid
i = 0 u(Wi)

, β =
∑max

j = mid u
(
Wj
)
Wj

∑max
j = mid u

(
Wj
) (6)
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Then, the final stretched value is given as (7):

f (I) =
I − α

β− α
× 255 (7)

where f (I) denotes the new brightness value.
The effect of this proposed fuzzy stretching is shown in Figure 4.
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After stretching, we need to smooth the boundary lines by monotonic cubic spline
interpolation [27]. The effect of such smoothing is shown in Figure 5.
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3. Cyst Extraction with FCM Algorithm

The next step is FCM-based quantization [28]. The FCM algorithm is an unsupervised
clustering method that has been widely used for ultrasound image analysis whereby pixels
with the same features are grouped into the same cluster. The FCM-based quantization
algorithm used in this paper is as follows:

Step 1: Initialize the number of cluster c (2 ≤ c < n), exponential weight m (1 ≤ m < ∞), the
membership degree u(0), and the error threshold (ε).
Step 2: Compute the central vector Vij as Equation (8) for {vi | i=1, 2, . . . , c}.

Vij =
∑n

k = 1(Uik)
mXkj

∑n
k = 1(Uik)

m (8)

where X is the input pattern, i is the cluster index, and j is the pattern node index. k is the
pattern index, n is the number of patterns, and U is the membership function.
Step 3: Define the FCM cost function J as Equation (9) where dik is the distance between the
k-th pattern xk and the central vector of the i-th cluster, and uik is the membership degree of
xk among patterns in the i-th cluster.

J(Uik, vi) =
c

∑
i = 1

n

∑
k = 1

(Uik)
m(dik)

2 (9)
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To minimize J, dik and membership function U are defined as Equations (10) and (11),
respectively.

dik =

√√√√ l

∑
i = 1

(
xkj − vij

)2
(10)

Uik =
1

∑C
i = 1

(
dik
djk

) 2
m−1

(11)

where l is the number of pattern nodes and C is the number of clusters.

Step 4: Compute the difference between the new and previous membership degrees (Uik
(r + 1) − Uik(r)). If the difference is larger than the error threshold (ε), then go to Step 2;
otherwise the algorithm stops.

The effect of FCM-based quantization is shown in Figure 6.
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To remove noises and to clarify the target region effectively, we first apply an “expan-
sion” operation to the image. The “expansion” operator expands the “white pixel” in size
so that the bright area can be more emphasized. The brighter area is then expanded by
filling adjacent neutral pixels as white and connecting these pixels to form the candidate
object. The 8-directional contour tracking algorithm that is explained in detail in [28] is
applied to remove such noises using masks and directional search. The object found in the
search process that is less than 10% of the given image or pixels surrounded by zeros are
removed as noise. The effect of the 8-directional search is shown in Figure 7.
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Connected component labeling [29] is a simple and efficient algorithm. It is applied
after the image has been segmented. We call it a connected component if the pixels have a
similar color and are adjacent to each other. Every connected component in the image is
labeled uniquely.

The ultrasound image is represented by intensity levels from 0 to 255 in grayscale.
From this image, we can differentiate bones, tissues, and fluid. Fluid is dark, tissue is gray,
and bone is bright. Because of the segmentation, the ultrasound image, which originally
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has a 0–255 range of grayscale, turns into an image that has k groups of grayscales (k = 4 in
this paper).

Since the ganglion cyst contains a fluid that is darker in the image, the darkest intensity
group is set as foreground color while others are determined as background color. Labeled
objects that are too small or too big are removed as noise. After the labeling process is
complete, we extract the cyst area by focusing on the labeled object, which is located in
the upper center of the image. The extracted cyst image is then colored red, as shown in
Figure 8b.
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4. Results and Discussion

The experiment is implemented using Visual Studio 2010 C# with Intel® Core™ i5
CPU @ 2.80GHz and 8GB RAM with 90 ultrasonography images of wrists containing a
ganglion cyst.

Since the articulated point of the proposed method lies in the new fuzzy rule-based
stretching, we compare the effect of the proposed stretching with the previous approach
used in [24], as shown in Figure 9, to demonstrate its better contrast.
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In the quantization process, we used FCM, as demonstrated in Figure 6. However,
there is another alternative for intelligent quantization—ART2 learning. ART2 is also an
unsupervised real-time stable learning algorithm that does not suffer from the local minima,
and it was very successful in addressing the automatic soft tissue extraction problem [24].
We compare the proposed FCM with the ART2 applied in [24], as shown in Figure 10.
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As can be seen from Figure 10, in this specific problem domain, where the purpose
of pixel clustering is to stretch the intensity, our proposed FCM quantization (lines of
Figure 10b) appears to be more effective than ART2 quantization when used in [24] (lines
of Figure 10a) with the same input images. One possible explanation for this is that, in
ART2 quantization, the vigilance parameter is defined in a static manner before execu-
tion, as shown in Table 2, whereas the proposed FCM takes the cluster based on the
fuzzy membership rate, meaning that there are more chances of misclassification in ART2.
Moreover, the proposed image-enhancement algorithm makes a more robust decision
on pixel classification during the FCM process, whereas fuzzy ART suffers from low-
contrast, irregular-intensity distribution of given input images, as shown in Figure 10.
However, ART2 performed better than FCM in other diagnosis problems [30]; therefore,
this performance comparison is limited to this specific problem domain.

Table 2. Experiment Parameters.

Method ART2 FCM

# of Images Vigilance
Parameter # of Clusters Weight # of Initial

Clusters

90 0.1 16 2 10

The accuracy of the automatic extraction of a ganglion cyst in this experiment is
summarized in Table 3. The correctness of each cyst extraction is based on the pathologists’
agreement over the same input image.

Table 3. Accuracy of Cyst Extraction.

Method ART2 [23] FCM

Correct 80 86
Incorrect 10 4

Accuracy (%) 88.9 95.6

We show some examples of clearer, more successful extractions of the proposed FCM,
as compared with the ART2 method, in Figure 11.
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5. Conclusions

In this paper, we propose a method to automatically detect ganglion cysts in wrist
ultrasonography images using FCM-based quantization with a fuzzy logic-based image-
enhancement algorithm. The proposed method shows successful extractions in 86 out
of 90 cases (or 95.6% accuracy), based on the pathologists’ evaluation. The power of the
proposed method largely lies in our image enhancement policy, which adopts a trapezoid-
type membership function and fuzzy inference rules to decide the fuzziness of the intensity
stretching. With this automatic ganglion cyst detector software, medical experts can find
the cyst area without inspector effect (or operator subjectivity).

In the experiment, the proposed method showed more robust pixel clustering than
fuzzy ART, which is another well-known pixel clustering algorithm. The advantage
of the proposed method over fuzzy ART is the flexible qualitative fuzzy membership
control over low-contrast or irregular-intensity distribution occurs frequently in wrist cyst
ultrasonography. The improved fuzzy stretching method used in this paper also mitigates
the shape-related sensitive clustering found in previous FCM application of the same
domain [14]. However, the proposed method does not consider dynamic control of the
number of clusters in FCM process. The main contribution of this paper is to propose a
robust automatic ganglion cyst segmentation method to mitigate operator subjectivity of
ultrasound image analysis, to make better diagnoses, and to detect the accurate location of
cysts.
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