Thermosonication Process Design for Recovering Bioactive Compounds from Fennel: A Comparative Study with Conventional Extraction Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Thermosonication-Assisted Extraction of Phytochemicals
2.3. Conventional Solid–Liquid Extraction Techniques: Soxhlet and Percolation
2.4. Extraction Yields
2.5. Characterization of Fennel Extracts
2.5.1. Total Phenolic Content
2.5.2. In Vitro Antioxidant Capacity by DPPH Radical Scavenging Assay
2.5.3. In Vitro Antioxidant Capacity by ABTS Radical Scavenging Assay
2.6. Statistical Analysis
3. Results and Discussion
3.1. Thermal History of Thermosonication Processing
3.2. Thermosonication Extraction Yields
3.3. Impact of Thermosonication on the Total Phenolic Content
3.4. Impact of Thermosonication on the In Vitro Antioxidant Capacity
3.5. Comparison among the Soxhlet, Percolation, and Thermosonication Techniques
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaur, P.; Gupta, S.; Kaur, K.; Kaur, N.; Kumar, R.; Bhullar, M.S. Nanoemulsion of Foeniculum vulgare Essential Oil: A Propitious Striver against Weeds of Triticum aestivum. Ind. Crop. Prod. 2021, 168, 113601. [Google Scholar] [CrossRef]
- Badgujar, S.B.; Patel, V.V.; Bandivdekar, A.H. Foeniculum vulgare Mill: A Review of Its Botany, Phytochemistry, Pharmacology, Contemporary Application, and Toxicology. BioMed Res. Int. 2014, 2014, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for Extraction of Bioactive Compounds from Plant Materials: A Review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Moura, L.S.; Carvalho, R.N., Jr.; Stefanini, M.B.; Ming, L.C.; Meireles, M.A.A. Supercritical Fluid Extraction from Fennel (Foeniculum vulgare): Global Yield, Composition and Kinetic Data. J. Supercrit. Fluids 2005, 35, 212–219. [Google Scholar] [CrossRef]
- Abdellaoui, M.; Bouhlali, E.D.T.; Kasrati, A.; El Rhaffari, L. The Effect of Domestication on Seed Yield, Essential Oil Yield and Antioxidant Activities of Fennel Seed (Foeniculum vulgare Mill) Grown in Moroccan Oasis. J. Assoc. Arab. Univ. Basic Appl. Sci. 2017, 24, 107–114. [Google Scholar] [CrossRef]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Extraction of Phenolic Compounds: A Review. Curr. Res. Food Sci. 2021, 4, 200–214. [Google Scholar] [CrossRef]
- Arruda, H.; Silva, E.K.; Pereira, G.A.; Angolini, C.F.F.; Eberlin, M.N.; Meireles, M.A.A.; Pastore, G.M. Effects of High-Intensity Ultrasound Process Parameters on the Phenolic Compounds Recovery from Araticum Peel. Ultrason. Sonochemistry 2018, 50, 82–95. [Google Scholar] [CrossRef]
- Silva, E.K.; Saldaña, M.D. High-Intensity Ultrasound-Assisted Recovery of Cinnamyl Alcohol Glycosides from Rhodiola Rosea Roots: Effect of Probe Diameter on the Ultrasound Energy Performance for the Extraction of Bioactive Compounds. Food Bioprod. Process. 2020, 122, 245–253. [Google Scholar] [CrossRef]
- Fan, L.; Hou, F.; Muhammad, P.A.I.; Ismail, B.; Lv, R.; Ding, T.; Liu, D. Proteomic Responses of Spores of Bacillus subtilis to Thermosonication Involve Large-Scale Alterations in Metabolic Pathways. Ultrason. Sonochemistry 2020, 64, 104992. [Google Scholar] [CrossRef] [PubMed]
- Terefe, N.S.; Gamage, M.; Vilkhu, K.; Simons, L.; Mawson, R.; Versteeg, C. The Kinetics of Inactivation of Pectin Methylesterase and Polygalacturonase in Tomato Juice by Thermosonication. Food Chem. 2009, 117, 20–27. [Google Scholar] [CrossRef]
- Strieder, M.M.; Neves, M.I.L.; Belinato, J.R.; Silva, E.K.; Meireles, M.A.A. Impact of Thermosonication Processing on the Phytochemicals, Fatty Acid Composition and Volatile Organic Compounds of Almond-Based Beverage. LWT 2021, 154, 112579. [Google Scholar] [CrossRef]
- Amador-Espejo, G.G.; Chávez-Ocegueda, J.; Cruz-Cansino, N.; Suárez-Jacobo, A.; Gutiérrez-Martínez, P.; Valencia-Flores, D.; Estrada, R.V. Thermosonication Parameter Effects on Physicochemical Changes, Microbial and Enzymatic Inactivation of Fruit Smoothie. J. Food Sci. Technol. 2019, 57, 1680–1688. [Google Scholar] [CrossRef]
- Gajic, I.S.; Savic, I.; Boskov, I.; Žerajić, S.; Markovic, I.; Gajic, D. Optimization of Ultrasound-Assisted Extraction of Phenolic Compounds from Black Locust (Robiniae Pseudoacaciae) Flowers and Comparison with Conventional Methods. Antioxidants 2019, 8, 248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romanini, E.B.; Rodrigues, L.M.; Finger, A.; Chierrito, T.P.C.; Scapim, M.R.D.S.; Madrona, G.S. Ultrasound Assisted Extraction of Bioactive Compounds from BRS Violet Grape Pomace Followed by Alginate-Ca2+ Encapsulation. Food Chem. 2020, 338, 128101. [Google Scholar] [CrossRef]
- Strieder, M.M.; Neves, M.I.L.; Silva, E.K.; Meireles, M.A.A. Low-Frequency and High-Power Ultrasound-Assisted Production of Natural Blue Colorant from the Milk and Unripe Genipa americana L. Ultrason. Sonochemistry 2020, 66, 105068. [Google Scholar] [CrossRef]
- Arruda, H.S.; Pereira, G.A.; de Morais, D.R.; Eberlin, M.N.; Pastore, G.M. Determination of Free, Esterified, Glycosylated and Insoluble-Bound Phenolics Composition in the Edible Part of Araticum Fruit (Annona crassiflora Mart.) and Its By-Products by HPLC-ESI-MS/MS. Food Chem. 2018, 245, 738–749. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Le, K.; Chiu, F.; Ng, K. Identification and Quantification of Antioxidants in Fructus lycii. Food Chem. 2007, 105, 353–363. [Google Scholar] [CrossRef]
- Chandrapala, J.; Oliver, C.; Kentish, S.; Ashokkumar, M. Ultrasonics in Food Processing. Ultrason. Sonochemistry 2012, 19, 975–983. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Zhou, C.; Pu, Z.; Yu, H.; Li, D. Effect of Low-Frequency Ultrasonic Field at Different Power on the Dynamics of a Single Bubble near a Rigid Wall. Ultrason. Sonochemistry 2019, 58, 104704. [Google Scholar] [CrossRef]
- Rather, M.A.; Dar, B.A.; Sofi, S.N.; Bhat, B.A.; Qurishi, M.A. Foeniculum vulgare: A Comprehensive Review of Its Traditional Use, Phytochemistry, Pharmacology, and Safety. Arab. J. Chem. 2016, 9, S1574–S1583. [Google Scholar] [CrossRef] [Green Version]
- Barros, L.; Carvalho, A.M.; Ferreira, I.C. The nutritional Composition of Fennel (Foeniculum vulgare): Shoots, Leaves, Stems and Inflorescences. LWT 2010, 43, 814–818. [Google Scholar] [CrossRef]
- Tarone, A.G.; Silva, E.K.; Barros, H.D.D.F.Q.; Cazarin, C.B.B.; Junior, M.R.M. High-Intensity Ultrasound-Assisted Recovery of Anthocyanins from Jabuticaba By-Products Using Green Solvents: Effects of Ultrasound Intensity and Solvent Composition on the Extraction of Phenolic Compounds. Food Res. Int. 2021, 140, 110048. [Google Scholar] [CrossRef]
- Khan, M.K.; Abert-Vian, M.; Fabiano-Tixier, A.-S.; Dangles, O.; Chemat, F. Ultrasound-Assisted Extraction of Polyphenols (Flavanone glycosides) from Orange (Citrus sinensis L.) Peel. Food Chem. 2010, 119, 851–858. [Google Scholar] [CrossRef]
- Adiamo, O.; Ghafoor, K.; AL Juhaimi, F.; Babiker, E.E.; Ahmed, I.A.M. Thermosonication Process for Optimal Functional Properties in Carrot Juice Containing Orange Peel and Pulp Extracts. Food Chem. 2018, 245, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Solana, R.; Salgado, J.M.; Domínguez, J.M.; Cortés-Diéguez, S. Characterization of Fennel Extracts and Quantification of Estragole: Optimization and Comparison of Accelerated Solvent Extraction and Soxhlet Techniques. Ind. Crop. Prod. 2014, 52, 528–536. [Google Scholar] [CrossRef]
- Alongi, M.; Verardo, G.; Gorassini, A.; Lemos, M.A.; Hungerford, G.; Cortella, G.; Anese, M. Phenolic Content and Potential Bioactivity of Apple Juice as Affected by Thermal and Ultrasound Pasteurization. Food Funct. 2019, 10, 7366–7377. [Google Scholar] [CrossRef]
Nominal Power (W) | Temperature (°C) | Global Yield (g/100 g) 1 |
---|---|---|
100 | 40 | 3.2 ± 0.2 |
50 | 3.7 ± 0.1 | |
60 | 4.2 ± 0.1 | |
200 | 40 | 3.5 ± 0.2 |
50 | 3.7 ± 0.2 | |
60 | 4.8 ± 0.1 | |
300 | 40 | 5.3 ± 0.1 |
50 | 5.5 ± 0.1 | |
60 | 5.5 ± 0.1 | |
400 | 40 | 5.85 ± 0.01 |
50 | 5.8 ± 0.1 | |
60 | 5.8 ± 0.1 |
Extraction Technique | Global Yield (g/100 g) | Extraction Yield of Solids (g/100 g) |
---|---|---|
Soxhlet | 14 ± 1 a | 0.021 ± 0.001 c |
Percolation | 7.5 ± 0.3 b | 0.98 ± 0.02 a |
Thermosonication | 5.5 ± 0.1 c | 0.73 ± 0.02 b |
Extraction Parameters | Electricity Consumption (kWh) | Total Electricity Consumption (kWh/kg extract) | Total Electricity Consumption (kWh/kg dried solids extracted) | Total Electricity Consumption (kWh/kg total phenolic extracted) | ||
---|---|---|---|---|---|---|
Technique | Equipment | Time (h) | ||||
Soxhlet | Warming blanket (Fisatom, 330 W) | 6 | 1.98 | 191 | 9096 | 353,094 |
Water recirculation system (Marconi, 1800 W) | 6 | 10.8 | ||||
Percolation | Shaker incubator with orbital shaking and heating (Marconi, 1200 W) | 6 | 7.2 | 47 | 4817 | 156,241 |
Thermosonication (300 W, 60 °C) | Ultrasound (Unique, 300 W) | 0.25 | 0.075 | 16 | 2127 | 42,276 |
Circulating heating water bath (Marconi, 500 W) | 0.32 | 0.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urango, A.C.M.; Strieder, M.M.; Silva, E.K.; Meireles, M.A.A. Thermosonication Process Design for Recovering Bioactive Compounds from Fennel: A Comparative Study with Conventional Extraction Techniques. Appl. Sci. 2021, 11, 12104. https://doi.org/10.3390/app112412104
Urango ACM, Strieder MM, Silva EK, Meireles MAA. Thermosonication Process Design for Recovering Bioactive Compounds from Fennel: A Comparative Study with Conventional Extraction Techniques. Applied Sciences. 2021; 11(24):12104. https://doi.org/10.3390/app112412104
Chicago/Turabian StyleUrango, Adela Cristina Martinez, Monique Martins Strieder, Eric Keven Silva, and Maria Angela A. Meireles. 2021. "Thermosonication Process Design for Recovering Bioactive Compounds from Fennel: A Comparative Study with Conventional Extraction Techniques" Applied Sciences 11, no. 24: 12104. https://doi.org/10.3390/app112412104
APA StyleUrango, A. C. M., Strieder, M. M., Silva, E. K., & Meireles, M. A. A. (2021). Thermosonication Process Design for Recovering Bioactive Compounds from Fennel: A Comparative Study with Conventional Extraction Techniques. Applied Sciences, 11(24), 12104. https://doi.org/10.3390/app112412104