Clinical Interpretation of Working Volume and Weight Support in Upper Limb Robotic Neurorehabilitation after Stroke
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Clinical Assessment
2.3. Robotic Therapy
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morone, G.; Cocchi, I.; Paolucci, S.; Iosa, M. Robot-assisted therapy for arm recovery for stroke patients: State of the art and clinical implication. Expert Rev. Med. Devices 2020, 17, 223–233. [Google Scholar] [CrossRef]
- Mehrholz, J.; Pohl, M.; Platz, T.; Kugler, J.; Elsner, B. Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst. Rev. 2018, 9, CD006876. [Google Scholar] [CrossRef]
- Fazekas, G.; Horvath, M.; Troznai, T.; Toth, A. Robot-mediated upper limb physiotherapy for patients with spastic hemiparesis: A preliminary study. J. Rehabil. Med. 2007, 39, 580–582. [Google Scholar] [CrossRef] [Green Version]
- Rabadi, M.; Galgano, M.; Lynch, D.; Akerman, M.; Lesser, M.; Volpe, B. A pilot study of activity based therapy in the arm motor recovery post stroke: A randomized controlled trial. Clin. Rehabil. 2008, 22, 1071–1082. [Google Scholar] [CrossRef]
- Wolf, S.L.; Sahu, K.; Bay, R.C.; Buchanan, S.; Reiss, A.; Linder, S.; Rosenfeldt, A.; Alberts, J. The HAAPI (Home Arm Assistance Progression Initiative) trial: A novel robotics delivery approach in stroke rehabilitation. Neurorehabil. Neural Repair 2015, 29, 958–968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iosa, M.; Morone, G.; Fusco, A.; Bragoni, M.; Coiro, P.; Multari, M.; Venturiero, V.; De Angelis, D.; Pratesi, L.; Paolucci, S. Seven capital devices for the future of stroke rehabilitation. Stroke Res. Treat. 2012, 2012, 187965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duret, C.; Grosmaire, A.G.; Krebs, H.I. Robot-assisted therapy in upper extremity hemiparesis: Overview of an evidence-based approach. Front. Neurol. 2019, 10, 412. [Google Scholar] [CrossRef] [Green Version]
- Iosa, M.; Galeoto, G.; De Bartolo, D.; Russo, V.; Ruotolo, I.; Spitoni, G.F.; Ciancarelli, I.; Tramontano, M.; Antonucci, G.; Paolucci, S.; et al. Italian Version of the Pittsburgh Rehabilitation Participation Scale: Psychometric Analysis of Validity and Reliability. Brain Sci. 2021, 11, 626. [Google Scholar] [CrossRef] [PubMed]
- Perry, B.E.; Evans, E.K.; Stokic, D.S. Weight compensation characteristics of ArmeoSpring exoskeleton: Implications for clinical practice and research. J. Neuroeng. Rehabil. 2017, 14, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Husty, M.; Birlescu, I.; Tucan, P.; Vaida, C.; Pisla, D. An algebraic parameterization approach for parallel robots analysis. Mech. Mach. Theory 2019, 140, 245–257. [Google Scholar] [CrossRef]
- van der Krogt, H.; Klomp, A.; de Groot, J.H.; de Vlugt, E.; van der Helm, F.C.; Meskers, C.G.; Arendzen, J.H. Comprehensive neuromechanical assessment in stroke patients: Reliability and responsiveness of a protocol to measure neural and non-neural wrist properties. J. Neuroeng. Rehabil. 2015, 12, 28. [Google Scholar] [CrossRef] [Green Version]
- de Jong, L.D.; Dijkstra, P.U.; Stewart, R.E.; Postema, K. Repeated measurements of arm joint passive range of motion after stroke: Interobserver reliability and sources of variation. Phys. Ther. 2012, 92, 1027–1035. [Google Scholar] [CrossRef] [Green Version]
- Waldman, G.; Yang, C.Y.; Ren, Y.; Liu, L.; Guo, X.; Harvey, R.L.; Roth, E.J.; Zhang, L.Q. Effects of robot-guided passive stretching and active movement training of ankle and mobility impairments in stroke. NeuroRehabilitation 2013, 32, 625–634. [Google Scholar] [CrossRef] [PubMed]
- Ellis, M.D.; Sukal, T.; DeMott, T.; Dewald, J.P. Augmenting clinical evaluation of hemiparetic arm movement with a laboratory-based quantitative measurement of kinematics as a function of limb loading. Neurorehabil. Neural. Repair 2008, 22, 321–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iosa, M.; Morone, G.; Bragoni, M.; De Angelis, D.; Venturiero, V.; Coiro, P.; Pratesi, L.; Paolucci, S. Driving electromechanically assisted Gait Trainer for people with stroke. J. Rehabil. Res. Dev. 2011, 48, 135–146. [Google Scholar] [CrossRef]
- Nordin, N.; Xie, S.Q.; Wünsche, B. Assessment of movement quality in robot- assisted upper limb rehabilitation after stroke: A review. J. Neuroeng. Rehabil. 2014, 11, 137. [Google Scholar] [CrossRef] [Green Version]
- Gandolfi, M.; Valè, N.; Posteraro, F.; Morone, G.; Dell’orco, A.; Botticelli, A. State of the art and challenges for the classification of studies on electromechanical and robotic devices in neurorehabilitation: A scoping review. Eur. J. Phys. Rehabil. Med. 2021, 57, 831–840. [Google Scholar] [CrossRef]
- Morasso, P.; Casadio, M.; Giannoni, P.; Masia, L.; Sanguineti, V.; Squeri, V.; Vergaro, E. Desirable features of a “humanoid” robot-therapist. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 3–6 September 2009; pp. 2418–2421. [Google Scholar]
- Iosa, M.; Morone, G.; Cherubini, A.; Paolucci, S. The Three Laws of Neurorobotics: A Review on What Neurorehabilitation Robots Should Do for Patients and Clinicians. J. Med. Biol. Eng. 2016, 36, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Palermo, E.; Hayes, D.R.; Russo, E.F.; Calabrò, R.S.; Pacilli, A.; Filoni, S. Translational effects of robot-mediated therapy in subacute stroke patients: An experimental evaluation of upper limb motor recovery. PeerJ 2018, 6, e5544. [Google Scholar] [CrossRef] [PubMed]
- Martino Cinnera, A.; Pucello, A.; Lupo, A.; Gimigliano, F.; Mammucari, E.; Cicero, D.L.; Iosa, M.; Paolucci, S.; Morone, G. Upper limb motor improvement in chronic stroke after combining botulinum toxin A injection and multi-joints robot-assisted therapy: A case report. Oxf. Med. Case Rep. 2019, 2019, omz097. [Google Scholar] [CrossRef]
- Pilla, A.; Trigili, E.; McKinney, Z.; Fanciullacci, C.; Malasoma, C.; Posteraro, F.; Crea, S.; Vitiello, N. Robotic Rehabilitation and Multimodal Instrumented Assessment of Post-stroke Elbow Motor Functions-A Randomized Controlled Trial Protocol. Front. Neurol. 2020, 11, 587293. [Google Scholar] [CrossRef] [PubMed]
- Lance, J.W. Symposium Synopsis; Feldman, R.G., Young, R.R., Koella, W.P., Eds.; Yearbook Medical: Chicago, IL, USA, 1980; pp. 485–494. [Google Scholar]
- Picerno, P.; Iosa, M.; D’Souza, C.; Benedetti, M.G.; Paolucci, S.; Morone, G. Wearable inertial sensors for human movement analysis: A five-year update. Expert Rev. Med. Devices 2021, 12, 1–16. [Google Scholar] [CrossRef]
- Iosa, M.; Aydin, M.; Candelise, C.; Coda, N.; Morone, G.; Antonucci, G.; Marinozzi, F.; Bini, F.; Paolucci, S.; Tieri, G. The Michelangelo Effect: Art Improves the Performance in a Virtual Reality Task Developed for Upper Limb Neurorehabilitation. Front. Psychol. 2021, 11, 611956. [Google Scholar] [CrossRef]
- Comani, S.; Velluto, L.; Schinaia, L.; Cerroni, G.; Serio, A.; Buzzelli, S.; Sorbi, S.; Guarnieri, B. Monitoring neuro-motor recovery from stroke with high-resolution EEG, robotics and virtual reality: A proof of concept. IEEE Trans. Neural Syst. Rehabil. Eng. 2015, 23, 1106–1116. [Google Scholar] [CrossRef]
- Kim, W.S.; Cho, S.; Ku, J.; Kim, Y.; Lee, K.; Hwang, H.J.; Paik, N.J. Clinical Application of Virtual Reality for Upper Limb Motor Rehabilitation in Stroke: Review of Technologies and Clinical Evidence. J. Clin. Med. 2020, 9, 3369. [Google Scholar] [CrossRef]
- Tieri, G.; Morone, G.; Paolucci, S.; Iosa, M. Virtual reality in cognitive and motor rehabilitation: Facts, fiction and fallacies. Expert Rev. Med. Devices 2018, 15, 107–117. [Google Scholar] [CrossRef]
- Morone, G.; Spitoni, G.F.; De Bartolo, D.; Ghanbari Ghooshchy, S.; Di Iulio, F.; Paolucci, S.; Zoccolotti, P.; Iosa, M. Rehabilitative devices for a top-down approach. Expert Rev. Med. Devices 2019, 16, 187–195. [Google Scholar] [CrossRef]
- De Bartolo, D.; Spitoni, G.F.; Iosa, M.; Morone, G.; Ciancarelli, I.; Paolucci, S.; Antonucci, G. From movement to thought and back: A review on the role of cognitive factors influencing technological neurorehabilitation. Funct. Neurol. 2019, 34, 131–144. [Google Scholar]
- Torrisi, M.; Maggio, M.G.; De Cola, M.C.; Zichittella, C.; Carmela, C.; Porcari, B.; La Rosa, G.; De Luca, R.; Naro, A.; Calabrò, R.S. Beyond motor recovery after stroke: The role of hand robotic rehabilitation plus virtual reality in improving cognitive function. J. Clin. Neurosci. 2021, 92, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Kahn, L.E.; Zygman, M.L.; Rymer, W.Z.; Reinkensmeyer, D.J. Robot-assisted reaching exercise promotes arm movement recovery in chronic hemiparetic stroke: A randomized controlled pilot study. J. Neuroeng. Rehabil. 2006, 3, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Major, Z.Z.; Vaida, C.; Major, K.A.; Tucan, P.; Brusturean, E.; Gherman, B.; Birlescu, I.; Craciunaș, R.; Ulinici, I.; Simori, G.; et al. Comparative Assessment of Robotic versus Classical Physical Therapy Using Muscle Strength and Ranges of Motion Testing in Neurological Diseases. J. Pers. Med. 2021, 11, 953. [Google Scholar] [CrossRef] [PubMed]
Baseline Parameters (T1) | Mean ± SD | Correlation with WV | Correlation with WS |
---|---|---|---|
Working volume (WV) | 0.112 ± 0.049 m3 | - | R = −0.387, p = 0.014 |
Weight support (WS) | 97.6 ± 22.2% | R = −0.387, p = 0.014 | - |
MRC score | 19 ± 8 | R = 0.234, p = 0.145 | R = −0.442, p = 0.004 |
FMA-UE score | 28 ± 15 | R = 0.046, p = 0.779 | R = −0.182, p = 0.26 |
VAS score | 2 ± 2 | R = 0.041, p = 0.803 | R = 0.314, p = 0.048 |
MAS total score | 4 ± 2 | R = −0.395, p = 0.012 | R = 0.441, p = 0.004 |
NIH-SS score | 4 ± 2 | R = −0.181, p = 0.264 | R = 0.607, p < 0.001 |
BI score | 82 ± 12 | R = −0.066, p = 0.687 | R = −0.274, p = 0.087 |
Percentage Changes (Δ) | Mean ± SD | p-Value T1 vs. T2 | Effect Size | Correlation with ΔWV% | Correlation with ΔWS% |
---|---|---|---|---|---|
Δ Working volume (WV) | 45.0 ± 98.3% | <0.001 | 0.722 | - | R = −0.046, p = 0.779 |
Δ Weight support (WS) | −32.0 ± 30.7% | <0.001 | 0.876 | R = −0.046, p = 0.779 | - |
Δ MRC score | 30.9 ± 32.4% | <0.001 | 0.999 | R = 0.212, p = 0.190 | R = 0.050, p = 0.758 |
Δ FMA-UE score | 24.3 ± 23.5% | <0.001 | 0.999 | R = 0.007, p = 0.967 | R = 0.052, p = 0.752 |
Δ VAS score | −31.1 ± 40.6% | <0.001 | 0.880 | R = −0.159, p = 0.329 | R = 0.065, p = 0.691 |
Δ MAS total score | −19.8 ± 27.0% | <0.001 | 0.954 | R = −0.094, p = 0.564 | R = 0.220, p = 0.172 |
Δ NIH-SS score | −7.0 ± 18.1% | 0.003 | 0.733 | R = −0.059, p = 0.716 | R = −0.138, p = 0.397 |
Δ BI score | 1.0 ± 2.1% | 0.008 | 0.999 | R = 0.191, p = 0.238 | R = 0.078, p = 0.634 |
Body Structure | Range of Motion | T0 | T1 | p-Value | Effect Size |
---|---|---|---|---|---|
Shoulder | Ab-adduction | 57.9 ± 16.1 | 64.9 ± 24.1 | 0.008 | 0.432 |
Flexo-extension | 61.0 ± 12.6 | 62.5 ± 20.6 | 0.038 | 0.344 | |
Rotation | 66.4 ± 14.9 | 70.7 ± 23.2 | 0.006 | 0.447 | |
Elbow | Flexo-extension | 81.7 ± 15.8 | 84.4 ± 26.9 | 0.033 | 0.352 |
Forearm | Prono-supination | 108.7 ± 26.2 | 112.5 ± 36.1 | 0.037 | 0.345 |
Hand | Closure | 40.7 ± 11 | 43.2 ± 14.7 | 0.014 | 0.405 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iosa, M.; Martino Cinnera, A.; Capone, F.; Cruciani, A.; Paolucci, M.; Di Lazzaro, V.; Paolucci, S.; Morone, G. Clinical Interpretation of Working Volume and Weight Support in Upper Limb Robotic Neurorehabilitation after Stroke. Appl. Sci. 2021, 11, 12123. https://doi.org/10.3390/app112412123
Iosa M, Martino Cinnera A, Capone F, Cruciani A, Paolucci M, Di Lazzaro V, Paolucci S, Morone G. Clinical Interpretation of Working Volume and Weight Support in Upper Limb Robotic Neurorehabilitation after Stroke. Applied Sciences. 2021; 11(24):12123. https://doi.org/10.3390/app112412123
Chicago/Turabian StyleIosa, Marco, Alex Martino Cinnera, Fioravante Capone, Alessandro Cruciani, Matteo Paolucci, Vincenzo Di Lazzaro, Stefano Paolucci, and Giovanni Morone. 2021. "Clinical Interpretation of Working Volume and Weight Support in Upper Limb Robotic Neurorehabilitation after Stroke" Applied Sciences 11, no. 24: 12123. https://doi.org/10.3390/app112412123
APA StyleIosa, M., Martino Cinnera, A., Capone, F., Cruciani, A., Paolucci, M., Di Lazzaro, V., Paolucci, S., & Morone, G. (2021). Clinical Interpretation of Working Volume and Weight Support in Upper Limb Robotic Neurorehabilitation after Stroke. Applied Sciences, 11(24), 12123. https://doi.org/10.3390/app112412123