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Abstract: This study presents two new approaches based on Weighted Contourlet Parametric (WCP)
images for the classification of breast tumors from B-mode ultrasound images. The Rician Inverse
Gaussian (RiIG) distribution is considered for modeling the statistics of ultrasound images in the
Contourlet transform domain. The WCP images are obtained by weighting the RiIG modeled Con-
tourlet sub-band coefficient images. In the feature-based approach, various geometrical, statistical,
and texture features are shown to have low ANOVA p-value, thus indicating a good capacity for class
discrimination. Using three publicly available datasets (Mendeley, UDIAT, and BUSI), it is shown
that the classical feature-based approach can yield more than 97% accuracy across the datasets for
breast tumor classification using WCP images while the custom-made convolutional neural network
(CNN) can deliver more than 98% accuracy, sensitivity, specificity, NPV, and PPV values utilizing the
same WCP images. Both methods provide superior classification performance, better than those of
several existing techniques on the same datasets.

Keywords: deep learning; machine learning; convolutional neural network (CNN); breast cancer;
contourlet; B-mode ultrasound; parametric image; Rician Inverse Gaussian

1. Introduction

Breast cancer in women is an important health problem for both developed and
developing countries. A recent report by the Cancer Statistics Center of the American
Cancer Society shows that among the estimated new cancer cases in 2020, the number of
cases of breast cancer is 1,806,590. It also shows that around 606,520 cancer deaths are
anticipated only in the United States, of which breast cancer contributes to around 279,100
(approximately 46%) [1].

Breast ultrasound (US) imaging is one of the most promising tools to distinguish and
classify breast tumors among the other imaging techniques such as mammograms, MRIs,
etc. Ultrasonic images are constructed by dispersing pulses of ultrasound into human tissue
using a probe. In US imaging, the pulses echo off the body tissues having several reflection
properties which are recorded and exhibited as an image. The B-mode or brightness mode
image, in turn, shows the acoustic impedance of a cross-section of tissue in two dimensions.

Plenty of studies have been carried out and are still running to achieve higher accu-
racy in automatically differentiating malignant breast tumors from benign ones. In 2002,
K. Horsch et al. [2] used the depth-to-width ratio of the region of a lesion, the normalized
radial gradient, autocorrelation in the depth of lesion region, and minimum side difference
of the lesion boundary for the detection of breast tumors. In 2007, Wei-Chih Shen et al. [3]
presented a computer-aided diagnostic (CAD) system where a few geometric features such
as shape, orientation, margin, lesion boundary, echo pattern, and posterior acoustic feature
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are used. They reported an accuracy of 91.7%. However, in their work, the segmentation
of lesions was performed both manually and automatically from the normal breast tis-
sue, making it complicated for vast data of US images. In recent years, multi-resolution
transform domain-based methods using US images showed higher promise in automatic
breast tumor classification tasks. In 2017, Sharmin R. Ara et al. [4] employed an empirical
mode decomposition (EMD) method with discrete wavelet transform (DWT) followed
by a wrapper algorithm to obtain a set of non-redundant features for classifying breast
tumors and reported an accuracy of 98.01% on their database. Unfortunately, traditional
DWT has limited directional information with the directions being only along with hori-
zontal, vertical, and diagonal dimensions. In 2019, P. Acevedo et al. [5] used a gray level
concurrency matrix (GLCM) algorithm with linear SVM to classify benign and malignant
tumors. Eltoukhy et al. [6] presented a comparative study between two multi-resolution
transform domain-based techniques, namely, wavelet and curvelet, for breast tumor di-
agnosis in digital mammogram images. Contourlet transform, another multi-resolution
transform domain-based technique [7], is providing more directional information, with
various directional decomposition levels increasing along with the increase of the pyrami-
dal decomposition levels. It has also shown to be a better descriptor of arbitrary shapes
and contours compared to wavelet transform. Contourlet-based mammography mass
classification is reported in [8,9].

It is to be noted that there are many concerns about performing mammography, which
utilizes low-energy X-ray radiation, for regular checkups. Moreover, in mammography,
many women have to go through unnecessary breast biopsies due to a lack of specificity.
In benign cases, this figure is about 65–85% of unnecessary breast biopsies [10]. This
unnecessary biopsy causes patients emotional and physical burdens by increasing the
unexpected cost of mammographic screening which can be easily avoided. For that reason,
researchers have recently been putting their efforts into relatively safer approaches like
ultrasonography and elastography. In [11], Contourlet transform is employed on ultra-
sound shear-wave elastography (SWE) images where Contourlet-based texture features
were used with Fisher classifier for classification purposes and reported an accuracy of
92.5%. Contourlet transform was also employed in [12] on B-mode US, shear wave elastog-
raphy (SWE), and contrast-enhanced US (CEUS) images, and it reported an accuracy of
67.57%, 81.08%, and 75%, respectively. Both DWT and curvelet transforms are not capable
of providing a variety of directions and also do not have good directional selectivity in
two dimensions as compared to the Contourlet transform.

Many researchers, rather than trying to extract various features from the original
B-mode images, had tried to use statistical modeling such as Gaussian or Nakagami mod-
els to create parametric models of the images [13,14] and found satisfactory results. The
primary inspiration behind these types of statistical methods is to mathematically model
the scattering of sound waves through the tissues, which can provide more insight into
the system and, thus, provide more accurate features. Moreover, statistical modeling
can describe the false positive (FP) and false-negative (FN) more precisely than spatial
domain visual ultrasound images. Ming-Chih Ho et al. [15] used Nakagami modeling to
address the detection of liver fibrosis in rats, which might be different from breast tumor
classification, but it does provide some validation to the usefulness of parametric imaging.
A recent trend in this field is the application of deep learning-based neural networks such
as CNN as a potential tool for the automated analysis of different types of medical images,
allowing the easy and robust diagnosis of various types of medical ailments. Unlike the
traditional feature engineering-based techniques, whose accuracies depend on the robust-
ness of the feature extraction algorithms, deep neural networks allow the implementation
of extremely efficient and highly accurate automated medical tools, especially for the
automated classification of breast tumors [16] if provided with enough data and resources.
Zhou et al. [17] applied CNN and morphology information extraction methods on shear-
wave elastography data for breast tumor classification. Zeimarani et al. [18] also employed
CNN for breast tumor classification, but they applied it directly on breast ultrasound
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images. Singh et al. [19] used a generative adversarial network (GAN) along with CNN for
breast tumor segmentation and classification using ultrasound images with satisfactory
outcomes. Shivabalan et al. [20] used a simple neural network that is cheap and easy to
use and gained a satisfactory result in a small online dataset. Hou et al. [21] proposed an
on-device AI pre-trained neural network model which can train the CNN classifier on a
portable device without a cloud-based server. Shin et al. [22], in their work, illustrated a
neural network with faster R-CNN and ResNet-101. Byra et al. [23] presented a method of
US to RGB conversion and fine-tuning using back-propagation. Qi et al. [24] illustrated a
novel approach of Deep CNN with multi-scale kernels and skip connections. However,
the deep neural network methods do not take the statistical properties or characteristics
into account.

In this work, the Rician Inverse Gaussian (RiIG) distribution [25] is shown to be highly
suitable for modeling the statistics of the Contourlet coefficient images. It is shown that
features (statistical, geometrical, and texture-based) extracted from the RiIG parametric
images provide more accuracy for breast tumor classification than the features extracted
from US B-mode images. Parametric (P) images are obtained by replacing a pixel with
the RiIG parameter (δ), estimated over a local neighborhood of the corresponding pixels
where the center of that neighborhood is considered for the requested parameter. Thus, the
pixel values are mapped (δ-map) into the parameter values which provide the parametric
image. To enhance the incorporation of the statistical characteristics in classification, WCP
images are introduced. The WCP images are constructed by multiplying the Contourlet
Parametric (CP) images (i.e., parametric images obtained from the Contourlet coefficients
of images) with their corresponding Contourlet transformed coefficient images. Here, the
term “weighted” is being used in this scheme because all the parameters of CP images
were getting weighted by multi-plication with their corresponding Contourlet coefficient
images. In our work, the WCP images are utilized for breast tumor classification in
both feature extraction-based approach and convolutional neural network (CNN) based
approach. In both approaches, the features extracted from WCP images are subjected to
various classifiers such as the support vector machine (SVM), k-nearest neighbors (KNN),
fitted binary classification decision tree (BCT), fitted error-correcting output codes (ECOC)
model, binary Gaussian kernel classification model (BGKC), linear classification models for
two-class (binary) learning with high-dimensional (BLHD), the fitted ensemble of learners
for classification (ELC), etc.

From the results, it is shown that the features extracted from the WCP images provide
the highest accuracy compared to the original US B-mode images, parametric (P) images,
Contourlet transformed images and CP images. It is to be noted that this work is the first
one to investigate the effectiveness of WCP images for breast tumor classification. For
the CNN-based approach, the WCP images of six Contourlet sub-band coefficients are
concatenated to form a six-channel 3D stack image and then fed to the neural network, with
the same seven classifiers applied on the output side. New neural network architecture
is proposed instead of using the available pre-trained networks, since the pre-trained
networks are built for 1-channel or 3-channel visual images with spatial dimensions, and
thus, they are not compatible with our 6-channel 3D stack of transform domain Contourlet
sub-band coefficients. The performance of the prior classifiers is tested on three datasets of
US images for breast tumor classification and compared with existing methods.

The main contributions of this work are listed below:

• This paper demonstrates the suitability of Rician inverse Gaussian (RiIG) distribu-
tion [25] for statistical modeling of the Contourlet transformed breast ultrasound
images. Further, it shows that the RiIG distribution is better than the well-known
Nakagami distribution in capturing the statistics of Contourlet transformed breast
ultrasound images in breast tumors classification.

• The suitability of WCP images in classifying breast tumors is investigated for the first
time employing three different publicly available datasets consisting of 1193 B-mode
ultrasound images and shows that a very high degree of accuracy can be obtained in
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breast tumor classification using traditional machine-learning-based classifiers as well
as deep convolutional neural networks (CNN).

• A new deep CNN architecture is proposed for the classification of breast tumors based
on RiIG modeled WCP images for the first time. It is also shown that the efficacy of
the CNN architecture is superior to the classical feature-based method.

2. Materials and Methods
2.1. Datasets

A total of 996 clinical cases in 1060 US images are used in this study; 250 were from
Database-I (Mendeley Dataset), 163 were from Database-II (Dataset UDIAT), and 647 were
from Database-III (Dataset BUSI). The Database-I is contributed by Rodrigues et al. [26],
available at (https://data.mendeley.com/datasets/wmy84gzngw/1; accessed on 6 January
2018). In this database, there are 250 US images of which 100 are fibroadenoma (benign),
and 150 are malignant cases. All the images are stored in *.bmp format. The Database-II
consists of 163 US images that are stored in *.png format, available at (http://www2
.docm.mmu.ac.uk/STAFF/m.yap/dataset.php; accessed on 7 January 2018) [27]. In this
database, the lesion regions (i.e., tumor contours) of the 163 clinical cases were identified by
a radiologist and stored in binary image format in a separate folder while the B-mode US
images were stored in another folder. The pathological findings of these 163 lesions were
categorized into fibroadenoma (FA), invasive ductal carcinoma (IDC), ductal carcinoma
in situ (DCIS), papilloma (PAP), unknown (UNK), lymph node (LN), lymphoma (LP), etc.
Among them, 110 are benign, and 53 are malignant cases. The Database-III consists of
780 US images that are stored in *.png format, available at (https://scholar.cu.edu.eg/
?q=afahmy/pages/dataset; accessed on 28 February 2021) [28]. This database contains
breast ultrasound images at baseline including those of women between 25 and 75 years
old; the number of female patients is 600. The dataset consists of 780 images of which
437 are benign, 210 are malignant, and 133 are normal cases. The binary mask images
are provided with the corresponding B-mode images. The details of the three datasets
are provided in Table 1. For classification purposes, only the benign and malignant cases
(i.e., 647 images out of 780 images) are considered in this study from this database. Deep
neural networks in general require large computational resources. Applying augmentation,
each of the three databases consisted of 1000 benign and 1000 malignant cases. Only the
translational augmentation of [−11 to +11] pixels on both directions was performed on the
base images, as any kind of rotation or scaling would also ruin the size or orientation-based
features. The overall number of augmented images was then 6000 with 2000 images per
database. The primary motivations behind the data augmentation to an equal number of
benign and malignant cases were to increase the number of samples necessary for training
the neural network as well as to remove the class imbalance. The images in the datasets
had already been pre-processed (i.e., speckle reduction, edge enhancement, compressed
dynamic range, persistence, etc.) as is typical of clinical scanner outputs. Therefore, there
is no need for further pre-processes for removing various noises, artifacts, and anomalies.
The necessary steps for preparing the images for the featured-based approach and the
CNN-based approach are described in the following sub-sections.

2.1.1. Normalization

The normalization is performed on each image using the formula z = {x − µ(x)}/σ(x)
to bring the pixel values to zero mean and unit variance, where x and z represent the image
pixels before normalization and after normalization, respectively. Moreover, the µ and σ

denote the mean and the standard deviation of pixel values, respectively. Then the pixel
values were clipped to keep them within [−3,3]. Here, the significance for taking −3 to
3 values into account is that few features like heterogenicity are measured considering
those negative pixels. Applying the normalization process, most of the pixel intensities
that were too far from the mean intensity were treated as anomalies and thus removed as
shown in Figure 1.

https://data.mendeley.com/datasets/wmy84gzngw/1
http://www2.docm.mmu.ac.uk/STAFF/m.yap/dataset.php
http://www2.docm.mmu.ac.uk/STAFF/m.yap/dataset.php
https://scholar.cu.edu.eg/?q=afahmy/pages/dataset
https://scholar.cu.edu.eg/?q=afahmy/pages/dataset
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Table 1. Patient data summary.

Database-I

Tumor Type No. of Patients No. of Lesions Method of Confirmation

Fibroadenoma (Benign) 91 100 Biopsy
Malignant 142 150 Biopsy

Database-II

Tumor Type No.ofPatients No. of Lesions Method of Confirmation

Cyst (Benign) 65 65 Biopsy
Fibroadenoma (Benign) 39 39 Biopsy

Invasive Ductal Carcinoma (Malignant) 40 40 Biopsy
Ductal Carcinoma in Situ (Malignant) 4 4 Biopsy

Papilloma (Benign) 3 3 Biopsy
Lymph Node (Benign) 3 3 Biopsy

Lymphoma (Malignant) 1 1 Biopsy
Unknown (Malignant) 8 8 Biopsy

Database-III

Tumor Type No. of Patients No. of Lesions Method of Confirmation

Benign
600

437
Reviewed by Special

Radiologists
Malignant 210

Normal 133

Total patients = 996 Total = 1193 lesions
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Figure 1. Example of normalization where the first row is the benign case and the second row is the
malignant case. (A,C) US B-mode image; (B,D) Normalized image.

2.1.2. Region of Interest (ROI) Segmentation

The B-mode images stored in database-I, database-II, and database-III are in various
sizes where the highest resolution of them is 600 × 600 pixels. However, almost 50% of
those images contained a large amount of shadowing effect. Therefore, a shadow reduction
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operation is performed using adaptive median filtering to minimize the unwanted portion
of the image for the smooth detection of the region of interest (ROI), which is depicted
in [29]. It should be noted that almost all the background information and lesion size must
be preserved to ensure that no features will be suppressed with the shadow reduction
operation. Next, the lesion boundary (ROI) is outlined. This process requires a binary
input image, specified as a 2-D logical or numeric matrix. For that, the normalized image is
subjected to binarization using MATLAB function ‘imbinarize’. Images after binarization
and ROI segmentation are shown in Figure 2. The lesion boundary region is automati-
cally outlined using MATLAB functions ‘bwboundaries’ and ‘visboundaries’, and those
functions are developed using the Moore–Neighbor tracing algorithm modified by Jacob’s
stopping criteria [30]. The nonzero pixels of that binary image belong to an object and
zero-valued pixels constitute the background.
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Figure 2. Example of binarization and ROI segmentation where the first row is the benign case, and
the second row is the malignant case. (A,D) Normalized B-mode US images; (B,E) binary images,
and (C,F) lesion boundary outlined automatically.

2.1.3. Contourlet Transform

The traditional Discrete Wavelet Transform (DWT) domain has limited directional
information as only along with horizontal, vertical, and diagonal dimensions. On the other
hand, the Contourlet transform has a variety of arbitrary shapes and contours that are
not limited to three dimensions. The Contourlet transform is executed on the normalized
B-mode images which decouple the multiscale and the directional decompositions using a
filter bank [7].

The conceptual theme of a Contourlet transform is the decoupling operation that
comprises a multiscale decomposition executed as pyramidal decomposition by a Laplacian
pyramid and a following directional decomposition by engaging a directional filter bank.
Fundamentally, the Contourlet transform is constructed by the grouping of nearby wavelet
coefficients, since they are locally correlated to ensure the smoothness of the contours.
Therefore, a sparse expansion is obtained for natural images by first applying a multi-scale
transform, followed by a local directional transform to gather the nearby basis functions
at the same scale into linear structures. Thus, it establishes a wavelet-like transform
for edge detection and then a local directional transform for contour segment detection.
The overall result is similar to an image expansion using basic elements that are more
likely contour segments, and thus the name Contourlets. Performance comparison of
DWT and Contourlet transform in terms of a better descriptor of contour segments are
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shown in Figure 3. It is observed that, for DWT, the contour detection is performed
with limited three dimensions, and the detection becomes fader with the increase of
decomposition levels. On the other hand, for Contourlet transform, contour detection
with a wide range of 32 dimensions and detection become smoother with the increase of
pyramidal decomposition levels. In DWT coefficient images, the tumor shadowing effect
is not visualized whereas in Contourlet transformed coefficient images the shadowing
effect is visualized. Moreover, from the literature [7], the Contourlet transform can provide
a better description, arbitrary shapes, contours, and more directional information. In
addition, the directional decomposition levels contain a variety of directions which is not
fixed, and the directional sub-bands increase along with the increase of the pyramidal
decomposition levels.
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2.1.4. Contourlet Parametric (CP) Image

The Rician Inverse Gaussian (RiIG) distribution is proposed by Eltoft et al. [25]. It
is a mixture of Rician distribution and Inverse Gaussian distribution. The PDF of RiIG
distribution is given by

PRiIG(r) =

√
2
π

α
3
2 δ exp(δγ)× r

(δ2 + r2)
3
4

K 3
2

(
α
√

δ2 + r2
)

I0(βr) (1)

where α, β and δ are the three parameters of this PDF. α controls the steepness of the
distribution; β regulates the skewness; β < 0 suggests skewed to the left; β > 0 suggests
skewed to the right, and δ is a dispersion parameter similar to the variance in the Gaussian
distribution. The symbol r denotes the corresponding image which is subjected to the
model by RiIG distribution. Moreover, γ =

√
δ2 − β2; I0(.) is the modified Bessel function

of the first kind, and K3/2(.) is the modified Bessel function of the second kind. A few
realizations of the RiIG PDFs for a few selected values of the parameters are shown in
Figure 4.
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The Contourlet Parametric (CP) image is constructed from the RiIG parameter (δ)
map, which is attained by employing a square sliding window to process the Contourlet
coefficient image. This process is depicted in [14], where the author used this process to
construct Nakagami parametric images with the image parameters being calculated for
each image. It should be noted that in [14,31,32], the parametric images are obtained in
the spatial domain, whereas we generated the images in the Contourlet transform domain.
The results observed in previous studies recommend that the most appropriate sliding
window for constructing the parametric image is a square with a side length equal to three
times the pulse length of the incident ultrasound. In this study, the parametric imaging
employed a 13 × 13 pixel sliding window within the Contourlet sub-band coefficient image
to analyze each local RiIG parameter (δ). The employed sliding window size should be
larger than the speckle and should discriminate variations of the local structure in tumors.
The window was moved through the entire Contourlet sub-band coefficient image in steps
of 1 pixel, with the local RiIG parameter (δ) assigned as the new pixel located at the center
of the window at each position. This process yielded the RiIG parametric image as the
map of RiIG parameter δ values. The suitability of the RiIG statistical model over the
Nakagami statistical model is shown in Figure 5 by CP images and percentile probability
plot (pp-plot) [33–35].
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also indicates the RiIG distribution is more suitable for parametric modeling of the breast ultrasound images.

2.1.5. Weighted Contourlet Parametric (WCP) Image

To obtain the WCP images, the CP images are multiplied with their corresponding
Contourlet sub-band coefficients. All the parameter values of those CP images are being
weighted by performing multiplication operations with their corresponding Contourlet
sub-bands. Therefore, these images can be denoted as “Weighted Contourlet Parametric
(WCP)” images. The region of interest (ROI) (i.e., lesion region) is determined for the
different sizes of WCP images by employing the Unitarian Rule to ensure that the ROI
would be as similar to the same coordinates with the predetermined corresponding parent
B-mode image [14]. To reduce the computational complexity for constructing WCP images,
six Contourlet sub-bands are carefully chosen as the most suitable (the suitability of chosen
six sub-bands is illustrated with ANOVA p-values in Table 2) for feature extraction among
other sub-bands from pyramidal decomposition levels 2, 3, and 4 in Contourlet transform
where those levels contain 8, 16, and 32 directional sub-bands, respectively. It should be
noted that the number of directional sub-bands increases along with pyramidal sub-bands
with a relation of 2(n+1).

If we consider pyramidal level-5 along with directional sub-bands-64, then it will
increase the computational complexity which is depicted in Table 3. Moreover, we have
satisfactory results with pyramidal decomposition level-4; thus, in this paper, image analy-
sis is done up to level-4. These most suitable sub-bands are pyramidal level-2 directional
level-4 (P2D4), pyramidal level-2 directional level-8 (P2D8), pyramidal level-3 directional
level-8 (P3D8), pyramidal level-3 directional level-16 (P3D16), pyramidal level-4 directional
level-16 (P4D16), and pyramidal level-4 directional level-32 (P4D32); these are shown
in Figure 6. The main reason behind the selection of these sub-bands is because these
particular sub-bands provide the highest resolution for the images, which is important
for the feature extraction as well as the CNN for the classification process. From these six
sub-bands the six CP images are calculated at first. After obtaining the CP images, each CP
image is converted to WCP images by getting weight. In Figure 7 the Contourlet coefficients
at decomposition level P4D32 of the normalized images of Figure 2A,D, corresponding
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CP images, and WCP images are shown where it is observed that the tumor region is
visualized more clearly in WCP images than CP images.

Table 2. Suitability of six Contourlet sub-band coefficients considering ANOVA p-values (95%
confidence), where PDL means Pyramidal Decomposition Level and DDL means Directional Decom-
position Level.

PDL DDL ANOVA p-Value PDL DDL ANOVA p-Value

2 1 0.077 4 5 0.071
2 2 0.054 4 6 0.052
2 3 0.078 4 7 0.073
2 4 0.022 4 8 0.078
2 5 0.066 4 9 0.062
2 6 0.066 4 10 0.071
2 7 0.062 4 11 0.054
2 8 0.018 4 12 0.046
3 1 0.076 4 13 0.072
3 2 0.081 4 14 0.065
3 3 0.074 4 15 0.073
3 4 0.045 4 16 0.013
3 5 0.054 4 17 0.071
3 6 0.063 4 18 0.058
3 7 0.058 4 19 0.062
3 8 0.008 4 20 0.062
3 9 0.055 4 21 0.07
3 10 0.065 4 22 0.082
3 11 0.079 4 23 0.082
3 12 0.067 4 24 0.043
3 13 0.071 4 25 0.08
3 14 0.065 4 26 0.054
3 15 0.062 4 27 0.069
3 16 0.025 4 28 0.058
4 1 0.073 4 29 0.063
4 2 0.058 4 30 0.074
4 3 0.068 4 31 0.058
4 4 0.048 4 32 0.005

Table 3. The Computational time and RAM consumed in constructing contourlet sub-band coefficients.

Pyramidal Decomposition Level Overall Occupied RAM (Capacity 16 GB) Overall Subband Image Development Time

2 7.92 GB 3 min 54 s
3 10.89 GB 6 min 11 s
4 13.32 GB 32 min 36 s
5 15.92 GB 1 h 20 min 43 s

2.2. Feature Extraction

A large set of ultrasound features does not necessarily guarantee the precise classi-
fication of breast tumors; rather, it sometimes degrades the performance of the classifier.
Moreover, most of the time it would require a high configuration system for all the compu-
tation. In this work, several statistical, geometrical, and texture features are investigated
on B-mode US image, B-mode parametric image, Contourlet transformed image, paramet-
ric version of Contourlet transformed (CP) image, and weighted parametric version of
Contourlet coefficient (WCP) image. The prior features were employed on the B-mode
US image, share wave elastography, parametric version of US image, and mammogram
images in various earlier works but never on the weighted parametric version of Contourlet
coefficient images. To ascertain the feasibility and to assess the dissimilarity of the extracted
features, ANOVA p-value analysis has also been performed where the p-values are less
than 0.1 for all the features utilized in this work, which proves that the features are useful
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and non-redundant. The features are summarized in Table 4 with corresponding references
and p-values.
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Table 4. The features utilization considering WCP images with ANOVA p-values.

Feature with Reference p-Values

Hypoechogenecity [36,37] 0.0022
Microlobulation [36,37] 0.0031

Homogeneous Echoes [36,37] 0.0032
Heterogeneous Echoes [36,37] 0.0040

Taller Than Wide [36,37] 0.0044
Microcalcification [38,39] 0.0054

Texture [38,39] 0.0069
Shape Class [3] 0.0145

Echo Pattern Class [3] 0.0155
Margin Class [3] 0.0162

Orientation Class [3] 0.0165
Lesion Boundary Class [3] 0.0166
Tilted Ellipse Radius [40] 0.0312

Tilted Ellipse Perimeter [40] 0.0344
Tilted Ellipse Area [40] 0.0347

Tilted Ellipse Compactness [40] 0.0355

2.3. Proposed Classification Schemes

The proposed classification schemes, WCP feature-based scheme, and WCP CNN-
based scheme are illustrated in Figure 8. To assess the performance of the algorithm-
extracted WCP feature-based method, seven classifiers are considered as shown in Figure 8.
On the other hand, in the CNN-based classification process, previously mentioned seven
classifiers are utilized at the last layer of the CNN. All the classifiers employed in this
study are implemented in MATLAB (the toolbox and default parameters). From the results,
described in Section 3, it is seen that applying RiIG modeled WCP images provided the
highest accuracy by the SVM classifier. After determining the RiIG based WCP images were
the most suitable choice, they were provided to a CNN with all the seven classifiers applied
to the outermost layer, to determine which classifier will provide even higher accuracy. For
that reason, our proposed classification scheme consists of a CNN network where RiIG
based WCP images are provided as inputs. Neural networks generally require a lot of
samples for training, much more than the 250 images of database-I, 163 images of database-
II, and 647 images of database-III. For that reason, the number of samples was increased by
augmentation to 2000 for three databases with an equal number of malignant and benign
cases, forming three large databases consisting of 6000 images. Since six sub-bands were
selected for each B-mode image, the number of total images increased to 6000 × 6 = 36,000
Contourlet coefficient images. From Figure 6, it can be easily seen that the images obtained
from different Contourlet sub-band coefficients all have different sizes. As a CNN would
require all the images to have the same sizes, all the images were resized to 224 × 224, and
then, the corresponding six sub-band images were stacked together to form 6000 3D stack
images of size 224 × 224 × 6. The CNN network employed for this work is a modified
version of the custom CNN network provided in [41]; the differences between that network
and the proposed network have an input of 224 × 224 × 6 3D image stack, and the features
extracted from the outermost layer (the Global Average Pooling layer) were provided to
seven different classifiers. The inspiration for not using a pre-trained network for the
WCP images is, as we claimed, that the pre-trained networks were built for 3-channel
visual images with spatial dimensions, and, they were not compatible with our 3D stack
of transform domain coefficient images. The architecture of the proposed CNN network
configuration is depicted in Table 5 and shown in Figure 9.
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Table 5. The Proposed CNN network configuration.

Layers Input Size Kernel Size Stride Output Size

Input 224 × 224 × 6
Conv 1 224 × 224 × 6 7 × 7 × 64 3 × 3 98 × 98 × 64
Relu 1 98 × 98 × 64 98 × 98 × 64

Maxpool 1 98 × 98 × 64 2 × 2 × 64 2 × 2 49 × 49 × 64
Conv 2 49 × 49 × 64 5 × 5 × 128 2 × 2 23 × 23 × 128
Relu 2 23 × 23 × 128 23 × 23 × 128

Maxpool 2 23 × 23 × 128 2 × 2 × 128 2 × 2 12 × 12 × 128
Conv 3 12 × 12 × 128 3 × 3 × 128 1 × 1 10 × 10 × 128
Relu 3 10 × 10 × 128 10 × 10 × 128

Maxpool 3 10 × 10 × 128 2 × 2 × 128 2 × 2 5 × 5 × 128
Global Avg. Pool 5 × 5 × 128 1 × 1 × 128
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For training, a ratio of 90–10% is used where 10% of the un-augmented database
images (i.e., only original database images) are randomly selected for blind testing, and
the remaining 90% (i.e., remaining original database images and their corresponding
augmented images) are used for training so that there is no overlap between the testing
and training samples. If the test data are selected from augmented data, the accuracy can
be significantly biased due to leakage and can be higher than the real test. As there are
not many tests or original data, it is more appropriate to separate the testing images from
the whole database for testing purposes and the rest of the database is utilized to generate
training data with augmentation. A 10-fold cross-validation scheme is also employed
along with an exhaustive grid search method using the average validation accuracy as a
metric to determine the hyper-parameters of the neural network. This network employs
the Adam optimization technique [42] and a batch size and learning rate of 64 and 0.01,
respectively. The training data are applied to the CNN network through 40,000 iterations.
The performance of the proposed method is measured using the performance indices like
accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value
(NPV), etc. Later, the confusion matrices are obtained by measuring true-positive (TP),
true-negative (TN), false-positive (FP), and false-negative (FN), respectively, where positive
stands for a malignant tumor, and negative stands for a benign tumor. The results are
discussed in Section 3.

3. Experimental Results

In the proposed classification scheme, for the classical feature-based classification
approach, the classification performances are investigated on B-mode US image, parametric
(P) image, Contourlet transformed image, parametric version of Contourlet transformed
image, weighted parametric version of Contourlet transformed image, etc. The results
are shown in Table 6, where it is evident that the application of statistical modeling and
Contourlet transform improves the accuracy of the classification. Here, it can be seen that
the features extracted from the B-mode image provide the least amount of accuracy. For
B-mode images without any statistical modeling or Contourlet transform applied on them,
the highest accuracies obtained for database-I, database-II, and database-III were 92%,
92.05%, and 92.15%, respectively, all of them obtained using the KNN classifier. Applying
Nakagami and RiIG statistical modeling on the B-mode images improves the accuracies
of the classification, the highest being 93.5%, 93.25%, and 92.55% for databases I, II, and
III, respectively, obtained from the SVM classifier. Applying Contourlet transform on the
B-mode images also proved to be effective in increasing the accuracies, the highest being
93%, 92.65%, and 93.05%, for databases I, II, and III, respectively, using the SVM classifier.
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Table 6. The classification performances for different types of images with databases I, II, and III.

Accuracy (%) with Database-I

Classifier B-Mode
B-Mode Parametric Contourlet Contourlet Parametric (CP) Weighted Contourlet Parametric (WCP)

Nakagami RiIG Nakagami RiIG Nakagami RiIG RiIG (CNN)
SVM 91.5 91.5 93.5 92 91.5 93 93 97.5 97.75
KNN 92 91 92.5 93 90.5 92 92.5 95.5 98.25
BCT 88.5 90.5 91 89.5 90 91.5 92.5 95 96.85

ECOC 90.5 90.5 91.5 91.5 91.5 92.5 92.5 94.5 96.45
BGKC 88 89.5 90.5 89.5 89.5 90 90 94 95.05
BLHD 89.5 88.5 90 90.5 88.5 90.5 91.5 94.5 95.95
ELC 91 92 92.5 93 91.5 93 93.5 96.5 97.05

Accuracy (%) with Database-II

Classifier B-Mode
B-Mode Parametric Contourlet Contourlet Parametric (CP) Weighted Contourlet Parametric (WCP)

Nakagami RiIG Nakagami RiIG Nakagami RiIG RiIG (CNN)
SVM 90.50 91.95 92.25 91.40 92.90 93.15 93.95 97.55 97.90
KNN 92.05 91.85 92.00 92.65 91.10 93.05 93.55 96.30 98.35
BCT 88.35 90.05 91.35 89.55 90.45 91.85 92.55 95.05 95.75

ECOC 90.15 91.65 91.80 90.85 91.95 92.40 93.55 96.95 97.20
BGKC 87.75 88.95 90.95 88.95 89.65 90.55 90.15 94.45 95.45
BLHD 87.15 89.20 90.55 89.20 88.25 90.05 90.75 95.05 95.15
ELC 90.20 91.45 92.05 90.55 91.55 92.15 93.10 96.95 97.65

Accuracy (%) with Database-III

Classifier B-Mode
B-Mode Parametric Contourlet Contourlet Parametric (CP) Weighted Contourlet Parametric (WCP)

Nakagami RiIG Nakagami RiIG Nakagami RiIG RiIG (CNN)
SVM 91.00 91.95 92.55 92.15 92.95 93.55 94.55 97.95 98.05
KNN 92.15 92.15 92.50 93.05 92.55 93.15 94.95 97.50 98.55
BCT 89.15 90.55 90.95 89.00 91.05 91.15 93.05 95.95 96.05

ECOC 90.75 92.00 92.05 91.15 92.15 92.50 94.15 97.05 97.55
BGKC 88.15 89.05 90.55 89.05 89.95 90.15 91.15 95.15 95.55
BLHD 87.95 89.25 90.15 89.25 89.85 90.05 91.55 95.55 95.95
ELC 90.75 91.15 92.15 91.55 92.15 92.45 93.15 97.05 97.95

From the results, it is seen that applying either technique on the B-mode images im-
proves the classification performance. In the case of CP images, where both the techniques
are applied together, the highest classification accuracies increased to 93%, 93.15%, and
93.55% for databases I, II, and III, respectively, all of them obtained from the SVM classifier.
In the case of our proposed WCP images, the highest accuracies increased further to 97.5%,
97.55%, and 97.95% for databases I, II, and III, respectively, and all were obtained from
the SVM classifier. Here, it could be easily seen that the RiIG statistical model provided
better performance for all seven classifiers compared to the Nakagami statistical model for
all types of images in database-I, database-II, and database-III, proving RiIG to be more
suitable for the statistical modeling of the B-mode images. As it was shown that the RiIG
modeled WCP images provided the best result for the feature engineering method, the
CNN method was applied on RiIG modeled WCP images only. From the results, it could
be easily seen that CNN-based feature extraction provided more accuracy than algorithm-
based feature extraction. For the CNN-based approach, the highest accuracies obtained for
databases I, II and III were 98.05%, 98.35%, and 98.55%, respectively, all of them obtained
from the KNN classifier. From Table 6, it is evident that the proposed RiIG based WCP
image is the most suitable choice for the classification of breast tumors in both the feature
extraction-based approach and CNN-based approach. Moreover, the CNN-based approach
provides higher accuracy over the feature extraction-based approach. The confusion matri-
ces of 10-fold cross-validation result for the proposed CNN-based approach employing
the KNN classifier are shown in Table 7 along with performance indices such as accuracy,
sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV)
by measuring true positive (TP), true negative (TN), false positive (FP), and false-negative
(FN), where positive stands for malignant tumor and negative stands for a benign tumor.
It is observed that for all three databases, the values of accuracy, sensitivity, specificity, PPV,
and NPV are greater than 98%.
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Table 7. The confusion matrices of 10-fold cross-validation result of three databases by WCP image-
based CNN Network with KNN classifier.

WCP Image Analysis with Database-I WCP Image Analysis with Database-II
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4. Discussion

In the previous section, it was shown that the best classification accuracy is achieved
using the CNN-based approach with the RiIG-based WCP images. A comparison with
other works is presented in Table 8. The work of P. Acevedo et al. [5] yielded an accuracy
of 94% with an F1 score of 0.942 using Database-I. Shivabalan et al. [20] also used the same
Database-I and reported an accuracy of 94.5% with an F1 score of 0.945. Therefore, the
accuracy level obtained by the proposed method using the same Database-I about 98.25%
with an F1 score of 0.982 is significantly better. In another work, Hou et al. [21] used the
Database-II and reported an accuracy of 94.8%. Shin et al. [22] reported an accuracy of
84.5% using the same Database-II combined with other databases. Byra et al. [23] reported
an accuracy of 85.3% with an F1 score of 0.765 using Database-II. Qi et al. [24] illustrated
an accuracy of 94.48% with an F1 score of 0.942 using Database-II. On the other hand, the
proposed method using Database-II gives an accuracy of 98.35% with an F1 score of 0.984,
which is significantly better. The method of Ka Wing Wan et al. [43] provides accuracies
of 91%, with an F1 score of 0.87 with a CNN, and 90%, with an F1 score of 0.83 using
a Random Forest classifier for the Database-III. Moon et al. [44] reported an accuracy of
94.62% with an F1 score of 0.911, using the same Database-III. In contrast, the accuracy and
F1 score for the proposed method are superior. Furthermore, the proposed CNN-based
approach is applied for classification on the Database-III with 80% training and 20% testing
ratio with the same validation approach as in [43,44]. This experiment provides an accuracy
of 96.45%, a sensitivity 93.09%, a specificity 98.14% with an F1 score of 0.946, still superior
to those of [43,44]. The box plots given in Figure 10 indicate the comparison of accuracies
of Table 8; these also indicate a consistent performance by the various methods including
the proposed method.
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Table 8. A comparison of selected studies with the proposed classification scheme using databases I, II, and III.

Author (Year) Major Contribution Database Classifier Performance (Accuracy in %)

P. Acevedo, (2019) [5] Gray level concurrency
matrix (GLCM) algorithm Database-I [26] SVM ACC: 94%, F1 Score: 0.942

Shivabalan K. R. (2021) [20] Simple Convoluted
Neural Network Database-I [26] CNN ACC: 94.5%, SEN: 94.9%

SPEC: 94.1%, F1 Score: 0.945

D. Hou, (2020), [21]
Portable device-based

CNN architecture Database-II [27] CNN ACC: 94.8%

S. Y. Shin, (2019) [22] Neural Network with
R-CNN and ResNet-101 Database-II [27] R-CNN ACC: 84.5%

M. Byra, (2019) [23] US to RGB Conversion
and fine-tuning using

back-propagation

Database-II [27] VGG19 CNN ACC: 85.3%, SEN: 79.6%
SPEC: 88%, F1 Score: 0.765

X. Qi, (2019) [24]
Deep CNN with

multi-scale kernels and
skip connections.

Database-II [27] Deep CNN ACC: 94.48%, SEN: 95.65%
SPEC: 93.88%, F1 Score: 0.942

Ka Wing Wan, (2021) [43] Automatic Machine
Learning model

(AutoML Vision)

Database-III [28] CNN

Random
Forest

ACC: 91%, SEN: 82%
SPEC: 96%, F1 Score: 0.87

ACC: 90%, SEN: 71%
SPEC: 100%, F1 Score: 0.83

Woo Kyung Moon, (2020) [44] CNN includes VGGNet,
ResNet, and DenseNet.

Database-III [28] Deep CNN ACC: 94.62%, SEN: 92.31%
SPEC: 95.60%, F1 Score: 0.911

Proposed Method WCP Image, Custom
made CNN architecture Database-I [26] Deep CNN ACC: 98.25%, SEN: 98.49%

SPEC: 98.01%, F1 Score: 0.982

Database-II [27] Deep CNN ACC: 98.35%, SEN: 98.11%
SPEC: 98.59%, F1 Score: 0.984

Database-III [28] Deep CNN ACC: 98.55%, SEN: 98.21%
SPEC: 98.89%, F1 Score: 0.986
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5. Conclusions

In this paper, two new approaches in breast tumors classification are presented, em-
ploying RiIG statistical model-based Weighted Contourlet Parametric images obtained
from the Contourlet transformed breast US images. In the first approach, various statistical,
geometrical, and texture-based features are extracted from RiIG statistical model-based
WCP images, which are then classified employing different classifiers. It is shown that by
employing the SVM classifier, a very good degree of accuracy can be achieved. Secondly, a
new custom CNN-based architecture is proposed to classify WCP images of breast tumors
which has shown a better performance than the first approach in terms of accuracy. The
proposed CNN architecture can also provide a very high degree of sensitivity, specificity,
NPV, and PPV values by employing the KNN classifier. Both the approaches demonstrate
better performance in classification as compared to existing methods on publicly available
benchmark datasets. In addition, the RiIG distribution is a highly suitable distribution
for modeling the statistics of the Contourlet transform coefficients of B-mode Ultrasound
images of breast tumors. There are scopes for further improvements by employing the pro-
posed approach in other multi-resolution transform domains and involving other datasets.
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