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Abstract: The use of the tapered Gutenberg-Richter distribution in earthquake source models is
rapidly increasing, allowing overcoming the definition of a hard threshold for the maximum mag-
nitude. Here, we expand the classical maximum likelihood estimation method for estimating the
parameters of the tapered Gutenberg-Richter distribution, allowing the use of a variable through-time
magnitude of completeness. Adopting a well-established technique based on asymptotic theory, we
also estimate the uncertainties relative to the parameters. Differently from other estimation methods
for catalogs with a variable completeness, available for example for the classical truncated Gutenberg-
Richter distribution, our approach does not need the assumption on the distribution of the number
of events (usually the Poisson distribution). We test the methodology checking the consistency of
parameter estimations with synthetic catalogs generated with multiple completeness levels. Then,
we analyze the Atlantic ridge seismicity, using the global centroid moment tensor catalog, finding
that our method allows better constraining distribution parameters, allowing the use more data than
estimations based on a single completeness level. This leads to a sharp decrease in the uncertainties
associated with the parameter estimation, when compared with existing methods based on a single
time-independent magnitude of completeness. This also allows analyzing subsets of events, to
deepen data analysis. For example, separating normal and strike-slip events, we found that they
have significantly different but well-constrained corner magnitudes. Instead, without distinguishing
for focal mechanism and considering all the events in the catalog, we obtain an intermediate value
that is relatively less constrained from data, with an open confidence region.

Keywords: statistical methods; statistical seismology; magnitude-frequency distribution; corner
magnitude; tapered Pareto; tapered Gutenberg-Richter

1. Introduction

The Gutenberg-Richter law [1] is the most widely applied magnitude frequency distri-
bution for earthquakes. If we look only to the distribution of the magnitudes, independently
from the rate of events, this law corresponds to an exponential distribution [2]. In this
case, it depends on only one parameter (the so-called b-value), controlling the slope of the
distribution, and does not have an upper bound for the magnitude. In order to have a more
physical behavior for the right tail of the magnitude distribution, two other formulations
of this law are usually applied: the truncated and the tapered Gutenberg-Richter distribu-
tions [3]. The truncated version applies a hard bound to the tail, i.e., a maximum magnitude
(Mmax). Instead, the tapered version applies a soft bound, i.e., a corner magnitude (CM):
the probability of an earthquake bigger than the corner magnitude decreases very rapidly
asymptotically reaching zero (see Figure 1).
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Figure 1. Probability density functions of the tapered (a) and truncated (b) Gutenberg-Richter distributions, in 
a log10 Y-axis scale. 

For these two formulations of the Gutenberg-Richter distribution, we need an extra 
parameter to be estimated: the maximum and the corner magnitude for the truncated and 
the tapered distributions, respectively. Regarding the estimation of the maximum mag-
nitude, Zöller and Holschneider summarized very well the state of the art: “the earthquake 
history in a fault zone tells us almost nothing about Mmax” [4]. This and other papers [5–7] 
clearly show that a maximum likelihood estimation (MLE) of Mmax is not applicable, as 
the MLE is equal to the maximum observed magnitude and this may be problematic, 
considering the relatively short observation time as compared with mean recurrence 
times of large magnitude events. Conversely, the corner magnitude can be properly es-
timated if a sufficiently large amount of data is available [8]. The tapered Guten-
berg-Richter distribution, also called tapered Pareto distribution or “Kagan distribution” 
by some statistical seismologists, was deeply investigated primarily by Kagan and 
Schoenberg [8], and then by Kagan [3], Schoenberg and Patel [9], and Geist and Parsons 
[7]. All these works use seismic catalogs with a single magnitude of completeness. These 
methods do not need any assumption on the distribution of the number of events. 
However, the size of the catalog can largely be expanded by adopting multiple levels of 
completeness, with a completeness magnitude that decreases in time, as the quality and 
quantity of the available instrumentation improve (Figure 2). This allows including in the 
estimation both the large number of relatively small events recorded by modern moni-
toring networks, and the larger events that occurred in the past, possibly also from 
pre-instrumental times [10]. 

Existing methods [10–12] that deal with this problem need an assumption regarding 
the distribution through the time of the events. The distribution usually assumed is the 
Poisson distribution. This assumption is not always correct for the events in seismic cat-
alogs, in particular if the magnitude of completeness of the catalog is lower than Mw 6.5 
[13], forcing the application of declustering algorithms. On the other hand, declustering 
decreases the number of usable data and may introduce important biases in parameter 
estimations [14], which may even depend on the declustering algorithm selected. 

This paper aims to develop a method to perform the parameters’ estimation for cat-
alog with a variable magnitude of completeness (see Figure 2), without making any as-
sumption on the distribution of the number of events. Thus, such a method can take the 
pros of both the previously described approaches, avoiding the cons relative to the single 
level of completeness and the Poisson assumption, allowing to use more data in the data 
estimation. 

Figure 1. Probability density functions of the tapered (a) and truncated (b) Gutenberg-Richter
distributions, in a log10 Y-axis scale.

For these two formulations of the Gutenberg-Richter distribution, we need an extra pa-
rameter to be estimated: the maximum and the corner magnitude for the truncated and the
tapered distributions, respectively. Regarding the estimation of the maximum magnitude,
Zöller and Holschneider summarized very well the state of the art: “the earthquake history
in a fault zone tells us almost nothing about Mmax” [4]. This and other papers [5–7] clearly
show that a maximum likelihood estimation (MLE) of Mmax is not applicable, as the MLE
is equal to the maximum observed magnitude and this may be problematic, considering
the relatively short observation time as compared with mean recurrence times of large mag-
nitude events. Conversely, the corner magnitude can be properly estimated if a sufficiently
large amount of data is available [8]. The tapered Gutenberg-Richter distribution, also
called tapered Pareto distribution or “Kagan distribution” by some statistical seismologists,
was deeply investigated primarily by Kagan and Schoenberg [8], and then by Kagan [3],
Schoenberg and Patel [9], and Geist and Parsons [7]. All these works use seismic catalogs
with a single magnitude of completeness. These methods do not need any assumption on
the distribution of the number of events. However, the size of the catalog can largely be
expanded by adopting multiple levels of completeness, with a completeness magnitude
that decreases in time, as the quality and quantity of the available instrumentation improve
(Figure 2). This allows including in the estimation both the large number of relatively small
events recorded by modern monitoring networks, and the larger events that occurred in
the past, possibly also from pre-instrumental times [10].

Existing methods [10–12] that deal with this problem need an assumption regarding
the distribution through the time of the events. The distribution usually assumed is the Pois-
son distribution. This assumption is not always correct for the events in seismic catalogs, in
particular if the magnitude of completeness of the catalog is lower than Mw 6.5 [13], forcing
the application of declustering algorithms. On the other hand, declustering decreases the
number of usable data and may introduce important biases in parameter estimations [14],
which may even depend on the declustering algorithm selected.

This paper aims to develop a method to perform the parameters’ estimation for catalog
with a variable magnitude of completeness (see Figure 2), without making any assumption
on the distribution of the number of events. Thus, such a method can take the pros of
both the previously described approaches, avoiding the cons relative to the single level of
completeness and the Poisson assumption, allowing to use more data in the data estimation.

In the following, we first introduce the method and then we apply it to the Atlantic
ridge seismicity. This region is characterized by shallow seismicity with a prevalence of
normal/strike-slip mechanisms. The statistics of seismicity for oceanic spreading ridges
was already studied in Bird et al. [15] and Bird and Kagan [16], which estimated for these
zones a corner magnitude lower than other parts of the world (CM ≈ 5.8). Here, focusing
on the Atlantic ridge with a longer catalog and our newly developed methodology, we
improve the estimation of the parameters of the tapered Gutenberg-Richter distribution
exploiting the potentiality of the newly developed method.
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Figure 2. Time vs. magnitude plot for a catalog with a variable magnitude of completeness (𝑀() ). 
The grey line represents the completeness, black dots the seismic events. 
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Figure 2. Time vs. magnitude plot for a catalog with a variable magnitude of completeness (M(i)
min).

The grey line represents the completeness, black dots the seismic events.

2. Methods
2.1. Maximum Likelihood Estimation of the Parameters

The Gutenberg-Richter distribution and all its derivations were originally devel-
oped using magnitudes. If we use seismic moments (Mom) instead of magnitudes, the
Gutenberg-Richter distributions (unbounded/truncated/tapered) correspond to the Pareto
distributions defined in Kagan [3], with slope parameter β equal to 2/3 the b-value.

The probability density function of the tapered distribution is [3]:

f (Mom) =
(

β
Mom + 1

CMom

)(
Mommin

Mom

)β
exp
(

Mommin−Mom
CMom

)
f or Mommin ≤ Mom < ∞

(1)

where Mommin is the seismic moment of completeness of the catalog, β is the parameter
controlling the slope of the distribution, and CMom is the corner moment that controls the
tail of the distribution. We stress that it is always possible to pass from the seismic moment
to the magnitude distribution (here, we adopt the relationship defined in Kanamori [17].
In this case the corner moment CMom is called “corner magnitude” (CM), and the seismic
moment of completeness corresponds to the magnitude of completeness.

If we have a seismic moment of completeness that varies with time (Mom(i)
min, Figure 2),

we can easily rewrite Equation (1) with:

f(i)(Mom) =
(

β
Mom + 1

CMom

)(
Mom(i)

min
Mom

)β

exp
(

Mom(i)
min−Mom
CMom

)
f or Mom(i)

min ≤ Mom < ∞
(2)

This relationship allows referring each observation to the completeness that holds at
the time of its occurrence: in this time frame, indeed, Equation (2) describes the statistical
distribution that holds.

Being both the parameters of the distribution (CMom and β) in common to all these dis-
tributions (Mom(i)

min is a parameter related to the seismic catalog, estimated independently),
their likelihood holds for all such distributions. Thus, if we have a seismic catalog with
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N earthquakes with moments x1, . . . , xi, . . . , xN , the log-likelihood of the tapered Pareto
distribution becomes:

LL(x1, . . . , xN |β, CMom) =
N

∑
i=1

ln
[

f(i)(xi)
]

(3)

In Equation (3) the probability density function f(i) depends on the seismic moment
of completeness relative to the i-th earthquake. In Figure 3 we summarize the scheme of
our methodology, applied to completeness thresholds relative to Figure 2: in this case the
log-likelihood of Equation (3) is obtained by summing up the log-likelihoods relative to the
three different thresholds of completeness. Notably, if the seismic moment of completeness
is the same for all the events, Equation (3) becomes the classical log-likelihood for the
tapered Pareto distribution [3].
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Figure 3. Graphical representation of the log-likelihood computation scheme proposed in this paper
in the case of three different magnitudes of completeness thresholds.

To maximize the likelihood of observations, and evaluate the maximum likelihood
estimation (MLE) of the parameters β and CMom, we adopt a brute-force approach, that
is, we evaluated the log-likelihood for many potential combinations of the parameters,
covering the entire parameter space [12], This allows obtain the complete description of
the log-likelihood function: the maximum of the function (LLmax) is, by definition, the
MLE of the parameters. Moreover, this approach allows evaluating also the shape of the
log-likelihood function, which is particularly useful to assess the uncertainty associated
with the parameters’ estimation, as it will be shown in the next section.

We stress the simplicity of our approach: to move from Equation (1) to Equation (2)
we only need to substitute Mommin with Mom(i)

min, i.e., using the time-variable seismic
moment of completeness instead of the fixed one. As the parameters of the distribution that
we want to evaluate are in common to all periods, we can simply stack their likelihoods,
passing to Equation (3). Noteworthy, this is based on the same principle exploited in
Vere-Jones et al. [18], who used a standard log-likelihood function for a tapered Pareto
distribution with one or more parameters that change with times (Vere-Jones et al. [18],
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Equation (19)), as also in that case, this is possible because each distribution holds at the
time of the observation and the different likelihoods can be stacked by summing them
(Figure 3).

To check the robustness of this approach, we test its performance by estimating the
distribution parameters from synthetic catalogs, for which such parameters are known.
To this end, we simulate, using the Taroni and Selva [11] toolbox (based on the Vere-
Jones et al. [18] method), thousands of synthetic catalogs with different input parameters
(β, CMom, and magnitude of completeness), obtaining a good agreement between the MLE
of the parameters and the input parameters, as expected. The results are shown in Table 1.
The goodness of the agreement should be evaluated based on the estimated uncertainty on
the parameters. Thus, the results of this comparison are discussed in the next section.

Table 1. Input and estimated β and CM relative confidence region for thousands of simulated synthetic catalogs.

Number of
Simulated

Events

Magnitude of
Completeness

Thresholds

Percentage of
Events for

Each
Completeness

β for the
Simulations

Mean of the
Estimated β

CM for the
Simulations

Mean of the
Estimated

CM

Percentage of
Confidence Regions

Containing the Values
Used in the Simulations

100 5.5; 5.0 50%; 50% 0.67 0.659 6.5 6.467 94.0%

1000 5.5; 5.0 50%; 50% 0.67 0.669 6.5 6.498 95.0%

100 6.0; 5.0 25%; 75% 0.80 0.785 7.5 7.232 93.1%

1000 6.0; 5.0 25%; 75% 0.80 0.798 7.5 7.459 95.2%

100 6.5; 5.3 75%; 25% 0.55 0.546 7.0 6.992 94.9%

1000 6.5; 5.3 75%; 25% 0.55 0.551 7.0 7.001 94.7%

2.2. Estimation of the Uncertainties

To evaluate the uncertainties relative to the parameters’ estimation, we use a widely
applied method [3,7,8,16,19] based on asymptotic theory [20], sometimes called profile-
likelihood confidence region estimation [21]. It states that, if we want to estimate the
confidence region of the parameters (in our case, of the tapered Gutenberg-Richter), we have
to “cut” the log-likelihood function at a fixed threshold, and then look at the contour plot
of this cut. Different thresholds correspond to different confidence intervals. For example,
to obtain a 95% confidence region, we have to look at the LL = LLmax − 2.995 threshold,
where LLmax is the maximum of the log-likelihood [8]. Hereinafter, the confidence region
that describes the uncertainties on the parameters’ estimation will be represented by the
contour plot of the selected threshold (see Figure 4 for an illustrative example).

This procedure is adopted to evaluate the goodness of the agreement between input
and estimated parameters for the thousands of synthetic catalogs discussed in the previous
paragraph. In particular, we verify that the input parameters are enclosed in the 95%
confidence region for the estimated parameters about 95% of the simulations, obtaining a
very good agreement. The results are shown in Table 1.



Appl. Sci. 2021, 11, 12166 6 of 13Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 13 
 

 
Figure 4. Contour plot of the bivariate log-likelihood function for the parameters of the Tapered 
Gutenberg-Richter distribution; different colors represent the different log-likelihood values, ac-
cording to the color bar on the left; the black curve represents the 95% confidence region, and the 
black dot represents the maximum likelihood estimation MLE. 

This procedure is adopted to evaluate the goodness of the agreement between input 
and estimated parameters for the thousands of synthetic catalogs discussed in the pre-
vious paragraph. In particular, we verify that the input parameters are enclosed in the 
95% confidence region for the estimated parameters about 95% of the simulations, ob-
taining a very good agreement. The results are shown in Table 1. 

3. Data 
As reference seismic catalog, we use the global centroid moment tensor (CMT) cat-

alog [22,23] of shallow seismicity (depth ≤ 50 km) from 1980 to 2019. We do not decluster 
the catalog, to better exploit the potentiality of our method that does not assume any 
temporal distribution for earthquakes. As already commented above, this allows using 
more data and avoiding the introduction of the biases induced by declustering on the 𝛽 
estimation [14,24]. We selected the events in the Atlantic ridge approximately in the lat-
itude range −60°:60° (see Figure 5a). 

Regarding the magnitude of completeness, we use 𝑀௪ 5.5 from 1980 and 𝑀௪ 5.0 
from 2004, the ones suggested by the authors of the catalog ([23], see Figure 6). We then 
carefully test this choice of completeness: as suggested by Marzocchi et al. [25], if the 
catalog is complete the magnitudes must follow an exponential distribution, and the 
exponentiality of the magnitudes can be tested through the Lilliefors [26] test. To apply 
this test with multiple completeness levels, we can build a vector of variables by sub-
tracting to each magnitude the corresponding magnitude of completeness (𝑀 − 𝑀), and 
test the exponentiality of this dataset [27]. The hypothesis of exponential distribution 
cannot be rejected at any confidence levels, as we obtain a very large p-value (0.50). This 
demonstrates the robustness of the chosen magnitudes of completeness. A further check 
is also performed in Figure 5b by plotting the 𝑀 − 𝑀  vs. the sequential number of 

Figure 4. Contour plot of the bivariate log-likelihood function for the parameters of the Tapered
Gutenberg-Richter distribution; different colors represent the different log-likelihood values, accord-
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3. Data

As reference seismic catalog, we use the global centroid moment tensor (CMT) cata-
log [22,23] of shallow seismicity (depth ≤ 50 km) from 1980 to 2019. We do not decluster
the catalog, to better exploit the potentiality of our method that does not assume any
temporal distribution for earthquakes. As already commented above, this allows using
more data and avoiding the introduction of the biases induced by declustering on the
β estimation [14,24]. We selected the events in the Atlantic ridge approximately in the
latitude range −60◦:60◦ (see Figure 5a).

Regarding the magnitude of completeness, we use Mw 5.5 from 1980 and Mw 5.0
from 2004, the ones suggested by the authors of the catalog ([23], see Figure 6). We then
carefully test this choice of completeness: as suggested by Marzocchi et al. [25], if the
catalog is complete the magnitudes must follow an exponential distribution, and the
exponentiality of the magnitudes can be tested through the Lilliefors [26] test. To apply this
test with multiple completeness levels, we can build a vector of variables by subtracting
to each magnitude the corresponding magnitude of completeness (M−MC), and test the
exponentiality of this dataset [27]. The hypothesis of exponential distribution cannot be
rejected at any confidence levels, as we obtain a very large p-value (0.50). This demonstrates
the robustness of the chosen magnitudes of completeness. A further check is also performed
in Figure 5b by plotting the M−MC vs. the sequential number of events: as suggested
by Zhuang et al. [28], a homogeneous pattern near the Y-axis (as it is possible to see in
Figure 1b) suggests the correct selection of completeness values for the catalog. The final
catalog contains 1168 events.
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4. Results

We estimate the corner magnitude and the β of the tapered Pareto distribution both
for the whole catalog and for two sub-catalogs: the one containing only normal events
and the one containing only the strike-slip events. To select the event in the sub-catalogs,
we use the classical Aki-Richards convention for rake: we consider as normal the events
with the rake of both nodal planes of the CMT catalog in the range from −45◦ to −135◦,
and as strike-slip the events with the rake of both nodal planes of the CMT catalog in the
range from −45◦ to 45◦ or 135◦ to 180◦ or −180◦ to −135◦. When the two nodal planes
have different classifications, the event is not classified. The results of this classification
are reported in Table 2. Notably, thrust and undefined events, not contained in either sub-
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catalog, represent only a small part of the events. We underline that in our computation we
do not take into account possible uncertainties in the focal mechanism estimation of the
CMT catalog; future development of the method will try to introduce these uncertainties in
the estimation process.

Table 2. Number of events, percentage (over the whole catalog), and maximum observed magnitude
for the different sub-catalogs.

Type Number of Events Percentage Maximum Observed
Magnitude

Whole catalog 1168 100% 7.10

Normal events 595 50.9% 6.14

Strike-slip events 523 44.8% 7.10

Thrust events 27 2.3% 6.31

Undefined 23 2.0% 5.83

In Figure 7 we show the results of the estimation for the whole catalog (black curve
and dot), for the normal events (green curve and dot), and strike-slip events (red curve
and dot); the curves represent the estimated 95% confidence regions (corresponding to
2 standard deviations in normal distributions), while the dots represent the MLE. In the
case of distributions with two parameters, the confidence intervals became confidence
regions (see Figure 4), to properly capture the 2D nature of these uncertainties.
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Looking at the shape of the confidence regions, it is evident that the two parameters
result fairly uncorrelated. Both for normal and strike-slip events we obtain closed confi-
dence regions, i.e., the confidence regions define a finite area for the uncertainty, showing
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a well-constrained estimation for all parameters; conversely, for the whole catalog, the
confidence region is open toward large corner magnitudes, indicating an unconstrained
estimation of the corner magnitude [7,8]. These results are compatible with an infinite
corner magnitude corresponding to an unbounded Gutenberg-Richter. We also obtain a
clear distinction of the β values for the two sub-catalogs, which results averaged when
the whole catalog is used. In Table 3 we show all the MLE for the corner magnitude and
β parameters.

Table 3. Maximum likely estimation MLE of the corner magnitude and the slope β , for the whole
catalog and for the two sub-catalogs.

Type Corner Magnitude (MLE) β (MLE)

Whole catalog 7.25 0.92

Normal events 5.78 1.08

Strike-slip events 7.01 0.66

5. Discussion

By adopting the newly developed procedure, we can consider a much larger dataset
for estimating the parameters of the tapered Gutenberg-Richter distribution, as catalog
should not be declustered and different magnitude of completeness can be adopted in an
older time, extending the temporal coverture of the catalog. This allows a deeper analysis
of the Gutenberg-Richter distribution, also considering possible variations in sub-catalogs.

We applied this principle to the seismicity of the Atlantic ridge, obtaining a much-
improved description of its seismicity. In particular, the different shapes of the confidence
regions obtained considering the whole catalog and the sub-catalogs clearly demonstrate
that a mixture of different types of events (i.e., with different focal mechanisms) with
different statistical properties for the Gutenberg-Richter distribution can lead to an un-
trustworthy estimation of its parameters, artificially enlarging their confidence bounds, in
particular for the corner magnitude.

We find instead that the corner magnitude for both normal and strike-slip events is
well constrained, and incompatible with an unbounded Guttenberg-Richter distribution.
This is in agreement with the observation that the size of such a structure is rather limited
in the case of oceanic ridges [15]. The estimation of the corner magnitude for the normal
event is particularly low (CM = 5.78), but it is in line with the estimation obtained by
Bird et al. [15] for oceanic spreading ridge earthquakes (CM = 5.83). Conversely, the
undifferentiated catalog provides an averaged corner magnitude (biased with respect to
both sub-catalogs), with an open confidence region that is compatible with unbounded
distribution. Notably, the sub-catalogs almost completely cover the entire catalog, and the
thrust and unclassified events not only represent a small subset of events, but also cannot
influence the estimation of the corner magnitude, as the maximum observed magnitude
for these events is considerably smaller than the one of the whole catalog (6.31 vs. 7.10).

The slope parameter β for strike-slip event is similar to the one of Schorlemmer et al. [29]
for the global catalog; on the contrary, the β for the normal events is very high (1.08),
corresponding to a b-value equal to 1.62; however, this estimation is quite uncertain (see
Figure 7, green curve), with the 95% confidence region for β ranging from 0.90 to 1.25. This
large confidence region is compatible with the β estimated by Bird and Kagan [16] for the
normal event in the oceanic spreading ridge (β = 0.91).

The results are pretty independent of the selected completeness. In the Supplementary
Material, we perform the same estimation shown in Figure 7, but using a more conservative
magnitude of completeness, obtaining very similar results, and thus demonstrating that
these results are robust and do not depend on the chosen completeness thresholds.

As discussed above, the newly developed estimation method allows increasing the
input dataset by not requiring declustering and by allowing a variation through time
of the completeness level. While the largest reduction is due to no declustering, we not
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that also the possibility of considering different completeness levels has a considerable
impact. In Figure 8 we show the specific impact of the use of different completeness
thresholds through time, allowed by the newly developed estimation method. The results
are compared with the classical estimation method, in which one level of completeness for
the whole catalog is used (Mw 5.5 from 1980 to 2019). The lower number of events available
using only one level of completeness leads to larger confidence regions. In particular, for
normal events, the confidence region computed with the classical method (light green
curve in Figure 8) is much bigger than the one computed with the new method (green
curve in Figure 8). As expected, a larger amount of available information leads to smaller
uncertainties in the estimated parameters, especially in this case. Notably, central values
(MLEs) also change, correcting potential biases. For example, the MLE for the entire catalog
results outside the confidence bounds defined using more data.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 13 
 

The results are pretty independent of the selected completeness. In the Supplemen-
tary Material, we perform the same estimation shown in Figure 7, but using a more con-
servative magnitude of completeness, obtaining very similar results, and thus demon-
strating that these results are robust and do not depend on the chosen completeness 
thresholds. 

As discussed above, the newly developed estimation method allows increasing the 
input dataset by not requiring declustering and by allowing a variation through time of 
the completeness level. While the largest reduction is due to no declustering, we not that 
also the possibility of considering different completeness levels has a considerable im-
pact. In Figure 8 we show the specific impact of the use of different completeness 
thresholds through time, allowed by the newly developed estimation method. The re-
sults are compared with the classical estimation method, in which one level of com-
pleteness for the whole catalog is used (Mw 5.5 from 1980 to 2019). The lower number of 
events available using only one level of completeness leads to larger confidence regions. 
In particular, for normal events, the confidence region computed with the classical 
method (light green curve in Figure 8) is much bigger than the one computed with the 
new method (green curve in Figure 8). As expected, a larger amount of available infor-
mation leads to smaller uncertainties in the estimated parameters, especially in this case. 
Notably, central values (MLEs) also change, correcting potential biases. For example, the 
MLE for the entire catalog results outside the confidence bounds defined using more 
data. 

 
Figure 8. 95% Confidence region estimation (curves) and maximum likelihood estimations MLEs (dots) for the 
classical estimation approach (light colors: gray, pink, and light green) and the new estimation approach (dark 
colors: black, red, and green). As in Figure 7, we report both results using for the whole catalog (gray and black), 
and the sub-catalogs with strike-slip events (pink and red), and with normal events (light green and green). 

The different shapes of the confidence region considering the whole catalog and the 
sub-catalogs show the importance of separating the contribution of different classes of 
earthquakes to correctly interpret their behavior. Indeed, the averaged behavior esti-
mated from the complete catalog is substantially incompatible with the actual behavior of 
each single seismicity class. Indeed, by applying the global statistics (obtained by the full 
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and green). As in Figure 7, we report both results using for the whole catalog (gray and black), and the sub-catalogs with
strike-slip events (pink and red), and with normal events (light green and green).

The different shapes of the confidence region considering the whole catalog and the
sub-catalogs show the importance of separating the contribution of different classes of
earthquakes to correctly interpret their behavior. Indeed, the averaged behavior estimated
from the complete catalog is substantially incompatible with the actual behavior of each
single seismicity class. Indeed, by applying the global statistics (obtained by the full
catalog) to each individual class, we would implement the wrong statistics to different
classes, impacting the hazard in a different way. In our case study for the Atlantic ridge,
we would artificially increase the probability of high magnitude normal events. On the
contrary, compared with strike-slip events, we demonstrated that normal earthquakes
have a significantly smaller corner magnitude coupled with a significantly larger b-value,
resulting in a smaller probability of high magnitude normal events.

This not only may complicate the interpretation of the parameter estimation, but also
may have a significant impact on hazard quantifications. For example, most of the recent
ground motion prediction equations to estimate the attenuation of seismic waves from
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the source to target are dependent on faulting mechanisms, applying different attenuation
laws to the different mechanisms (e.g., [30]). This is probably even more impacting is
tsunami hazard, where different mechanisms have a different capability of deforming the
sea bottom, resulting in different tsunamigenic capabilities (e.g., [31]). For example, normal
events are typically more tsunamigenic than strike-slip events. For not introducing artificial
bias in hazard quantification, it will be therefore fundamental to individuate potential
mechanism-dependent variation of earthquake statistics and apply hazard models allowing
for the aggregation of multiple classes of seismicity (e.g., [32]).

6. Conclusions

The main findings of this work can be summarized by the following two points:

(1) We introduce a new method to estimate the parameters of the tapered Gutenberg-
Richter distribution and their uncertainties in the case of catalogs with a variable
through-time magnitude of completeness;

(2) We apply this method to the Atlantic ridge seismicity, finding a clear distinct behavior
both for the parameters β and corner magnitude, depending on the faulting mecha-
nism: larger β and smaller corner magnitude for normal events, smaller β and larger
corner magnitude for strike-slip events.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/app112412166/s1. Figure S1: 95% confidence region estimation (curves) and MLE (dots) for the
whole catalog (black), strike-slip events (red), and normal events (green) (completeness thresholds
+0.1); Figure S2: 95% confidence region estimation (curves) and MLE (dots) for the whole catalog
(black), strike-slip events (red), and normal events (green) (completeness thresholds +0.2).
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