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Abstract: Non-destructive testing (NDT) is a broad group of testing and analysis techniques used in
science and industry to evaluate the properties of a material, structure, or system for characteristic
defects and discontinuities without causing damage. Recently, infrared thermography is one of
the most promising technologies as it can inspect a large area quickly using a non-contact and
non-destructive method. Moreover, thermography testing has proved to be a valuable approach for
non-destructive testing and evaluation of structural stability of materials. Pulsed thermography is
one of the active thermography technologies that utilizes external energy heating. However, due
to the non-uniform heating, lateral heat diffusion, environmental noise, and limited parameters
of the thermal imaging system, there are some difficulties in detecting and characterizing defects.
In order to improve this limitation, various signal processing techniques have been developed
through many previous studies. This review presents the latest advances and exhaustive summary
of representative signal processing techniques used in pulsed thermography according to physical
principles and thermal excitation sources. First, the basic concept of infrared thermography non-
destructive testing is introduced. Next, the principle of conventional pulsed thermography and
signal processing technologies for non-destructive testing are reviewed. Then, we review advances
and recent advances in each signal processing. Finally, the latest research trends are reviewed.

Keywords: active thermography; pulsed thermography; signal processing; data processing;
defect detectability

1. Introduction

Non-destructive testing (NDT) is helpful for manufacturing defect-free products, but
it is also used for maintenance and condition inspection of industrial structures and facili-
ties [1]. There are many NDT techniques, each based on different theoretical principles and
producing different results concerning the physical properties of an object. The solutions
provided through each non-destructive testing technology must be further analyzed to in-
terpret the object’s physical properties or structure. However, this interpretation inevitably
involves several assumptions [2–4].

Infrared thermography (IRT), also known as thermal imaging, is a rapidly developing
field in science and industry due to the tremendous advances made over the past few
decades in microsystem technology in the design of infrared detectors consisting of elec-
tronics and computer science [5]. In addition, IRT is an optical measurement technique,
evolving rapidly with the development of high spatial resolution and sensitivity detectors
and improved computation power. Today, IRT technology is being applied in research
and development in various industries [6,7], including non-destructive testing, detailed
structural condition monitoring, predictive maintenance, manufacturing quality assurance,
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energy cost reduction, metal and composite material evaluation, gas leak detection, and
more. Meanwhile, researchers worldwide are working to develop infrared thermography
technology to improve the reliability and ability to detect failures such as defects. Every
technique has its own limitations, and no technique can be considered good, effective, or
perfect. In this context, there is a growing trend to integrate thermography technology
into other conventional NDT technologies to compensate for each other’s limitations. It
will result in better inspection capability and the possibility that more information can
be acquired in a single test than a particular technique. Furthermore, it can solve the
limitations posed by one NDT technique to obtain the intended information and achieve
the required inspection efficiencies.

IRT has gained increased recognition in recent years because it has good benefits over
its counterparts. The benefits include high-speed contactless functioning, a higher level
of safety, and portability with the potential to encompass a large inspection area. IRT is
generally divided into two approaches: passive thermography and active thermography.
Passive thermography measures thermal variations of a material using an infrared vision
device without external thermal sources [8]. Contrary to passive thermography, active
thermography requires an external heat source to stimulate the materials under tests. Com-
monly, halogen lamps, high-power photographic flash, and laser beams are widely used,
and other high-power cinematographic lamps and quartz line IR lamps are used [9,10].
In addition, active thermography is subdivided into lock-in thermography (LIT), pulsed
thermography (PT), step-heated thermography (SHT), and vibration thermography (VT)
according to external heating methods [11–13], and PT and LIT are the most utilized. The
pulsed thermography (PT) idea was first proposed by Parker et al. [14]. However, other
researchers integrated this technique into various NDT applications. The concept of a PT
system for defect detection consists of applying a very short time and powerful energy
pulse to an object and then recording the temperature rise, decay, or both curves in tran-
sient mode. The thermal energy propagates under the surface by thermal diffusion. The
presence of subsurface defects interrupts the diffusion rate of the energy pulse.

Pulsed thermography is one of the active infrared techniques, which uses an optical
device as an external heat source. Among the active thermography techniques described
above, it is the easiest to apply and widely used. However, regardless of being one of the
most promising techniques for NDT&E of materials, IRT still presents significant challenges
due to non-uniform surface heating, lateral heat diffusion, environmental noise, and limited
parameters of the thermal imaging device as image acquisition frequency and spatial
resolution. In order to improve this problem, various IRT signal processing techniques were
developed, such as the Fourier transforms [15], Principal Component Thermography [16],
Thermography Signal Reconstruction [17], PCA data fusion [18], Wavelet transforms [19],
etc., and used to expand IRT. Thus, a profound work review is required, including the
principle, developments, strengths and limitations, signal processing, and research trends
for thermography NDT with optical excitation sources.

The rest of the paper is organized as follows. Firstly, the basic concepts of optical
thermography NDT are introduced in Section 2. Next, the developments of signal process-
ing methods in thermography NDT with optical thermography are reviewed in Section 3.
Then, some signal processing case studies are reviewed in Section 4. After that, the latest
trends in optical thermography signal processing are predicted, and finally, a conclusion is
presented in Chapter 6.

2. Basic Concepts of Optical Thermography NDT

IRT deals with the acquisition and analysis of thermal pattern from a non-contact ther-
mal imaging device based upon the fact that all objects above absolute zero (−273.15 ◦C)
emit infrared energy [20]. Infrared thermography (IRT) is an emerging NDT technique
developed rapidly in recent years with many advantages such as high speed, large area of
observation, wide area coverage and non-contact [2,5]. IRT is a thermal radiation measure-
ment technique that is used to detect spatial variations in the measured surface temperature
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pattern. From an experimental approach aspect, infrared thermography techniques are
classified into two major categories: passive and active. The passive approach is generally
used in the research on materials that are at different temperature compared with the
ambient, while in the case of active approach, an external excitation source, such as optical
flash lamps, halogen heat lamps, mechanical ultrasonic vibration, or hot and cold air gun
is employed with the intention of inducing thermal contrast. In the active approach of the
infrared thermographic non-destructive testing and evaluation (NDT&E), pulsed transient
thermography and lock-in thermography are the most commonly used approaches.

2.1. Passive Thermography

In passive thermography, no external energy is used to excite thermal gradients on
the surface of the structural component under investigation. The features of interest are
naturally at a lower or higher temperature than the background. In general, it is a qualita-
tive approach, since the main objective is to pinpoint discontinuities [21]. This approach
operates well in the SWIR range of 3–5 µm and LWIR range of 8–12 µm and has many
applications such as process monitoring, condition monitoring, predictive maintenance,
medical imaging, building thermal efficiency, forest fire detection, monitoring of road
traffic, monitoring of power stations, night vision and surveillance, agriculture, and bi-
ology [2,22]. Unfortunately, this technique is limited in NDT applications as a sufficient,
natural thermal contrast should be present.

2.2. Active or Dynamic Thermography

In active thermography, a certain amount of energy is introduced to the object, which
is initially in thermal equilibrium, and thermal contrast is produced to highlight the
features of interest. The energy transfer to the object can be pulses or either in a modulated
continuous form. A halogen lamp, optical flash lamp, and cold or hot air guns can
be used as an energy source. Figure 1 shows the experimental setup of typical active
thermography [23,24].

Figure 1. General schematic diagram of active thermography testing.

The controlled experimentation condition, such as the amount and form of stimulation,
allows not only identification of defect but also quantitative analysis of anomalies [6,25].
In NDT application, active thermography can be used to detect the layers structures
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such as delamination and inserts in the automotive and aerospace industry, investigate
the interior structures such as lightweight honeycomb structures, and recognize deeper
material deficiencies [26].

The inspection can be conducted either in transmission or reflection mode. In trans-
mission mode, the heating source and thermal imaging device are positioned on opposite
sides of the object being inspected, whereas in reflection mode, both the heating source
and the thermal imaging device are positioned on the same side of the object.

The two primary classical or conventional practices are pulsed thermography (PT) and
lock-in thermography (LIT). In both techniques, thermal energy is delivered into the object
in which the heat propagates by diffusion through the material. Then, the thermal response
recorded by the infrared imaging device is observed to reveal the presence of the defect.
In PT, a short- and high-power thermal energy is applied to the object’s surface being
inspected, and the thermal response of the stimulated surface is observed in a transient
state. It is a fast and popular thermal imaging technique in NDT&E, whereas in the LIT, the
object’s surface being inspected is stimulated by a periodically modulated thermal wave,
and the thermal response of the surface is observed in steady state.

To access the defect information, efficient signal processing and filtering is very
important. With the help of adapted image and signal processing algorithms, it is possible to
detect small discontinuities inside structures or extract material characteristic information.
By reducing the amount of acquired data, the process is accelerated, but a certain decrease
in accuracy has to be kept in mind [27].

Results obtained in active thermography are often damaged by different noise sources
such as moisture, external reflections, variations in the specimen’s emissivity, and non-
uniform heating. In thermal images, these noise effects create unusual thermal patterns
and complicate damage detection. To reduce noise in thermal images, several signal pro-
cessing techniques have been developed to improve the defect detection and quantification
evaluation of each active thermography method.

Table 1 compares representative optics utilized in active thermography methods,
including flash lamps used in pulsed thermography for defect detection [28,29]. The
primary differences between stimulation mechanisms of these devices determine two
essential methods of optical infrared thermography [28]. We can submit a high-energy
heat pulse in short (few milliseconds) time intervals using photographic flash. In contrast,
halogen lamps provide a lower amount of energy submitted to the object in a relatively
longtime frame (few seconds), usually in either continuous or modulated form.

Table 1. Summary of thermal heating devices most commonly used for active thermography for NDT application.

Thermal Source IRT Terminology Acronym Major Advantages Major Limitations

Photographic
Flashes

Pulsed
Thermography PT

- Very fast inspection time
(few ms)

- Wide inspection area
- High power energy
- Beneficial for flat defects

- Non-uniform heating
- Relatively expensive
- Limited to some field

applications

Halogen Lamp Lock-in
Thermography LIT

- Wide inspection area
- Beneficial for flat defects
- Less non-uniform heating

and environmental factors
Detecting defects located at
various depths

- Considering the optimal
modulation frequency
according to material
properties

- Long heating time
- Limited to some field

applications

2.3. Pulsed Thermography (PT)

The concept of a PT system for defect detection consists of applying a very short time
and powerful energy pulse to an object and then recording the temperature rise, decay, or
both curves in transient mode According to the thermal diffusion effect, pulsed thermal
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energy incident on the surface propagates under the surface. If a defect exists below the
surface, it interferes with the diffusion of the pulse energy [6].

Consequently, each defect will appear differently from the other defects located at
different depths. Dirac pulse is defined as an intense unit-area pulse of such a short
duration that no measuring equipment can differentiate it from a shorter pulse. However,
in practice, producing an ideal Dirac pulse is not possible [22].

Pulsed thermography (PT) is among the most prevalent thermographic techniques in
TNDT. Figure 2 depicts the principle of PT where a high-power pulse heating is employed
to the sample under inspection, and the response of the sample is recorded with an infrared
camera. The continuance of the pulse depends on the sample’s thermal conductivity
under inspection and runs between 2 to 15 ms, making PT well known for its quickness in
testing. As soon as the sample becomes excited, the surface absorbs the light energy, and
temperature increases instantly. Due to the propagation of thermal waves inside the sample,
the surface temperature starts to decay. Imperfections could be seen if there is variance in
the thermal decay rate across the sample surface. The transient temperature field T(z,t) of
PT can be expressed by an in-homogeneous one-dimensional (1D) Equation (1).

∂T(z, t)
∂z2 − 1

α

∂T(z, t)
∂t

= −g(z, t)
k

, t > 0 (1)

α =
k

ρ.Cp
(2)

where α is the material’s thermal diffusivity with k being the thermal conductivity, ρ is the
density, and Cp is the specific heat capacity. The one-dimensional solution of the Fourier’s
law for the propagation of a Dirac pulse in a semi-infinite isotropic solid by conduction can
be expressed by Equation (3) [6,22].

T(z, t) = T0 +
Q

e
√
πt

exp
(
− z2

4αt

)
(3)

e =
√

kρcp (4)

where T is the temperature rise at the time after the flash heating, T0 is the initial temper-
ature, Q is the energy density deposited on the surface, and e is the material’s thermal
effusivity to exchange heat with its surrounding.

Figure 2. Configuration of a pulsed thermography inspection system.
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At the surface (z = 0 mm), Equation (3) can be rewritten as Equation (5).

T(t) =
Q

e
√
πt

(5)

3. Development of PT Signal Processing
3.1. Pulsed Phase Thermography (PPT)

Pulsed Phase Thermography (PPT), which simultaneously combines the advantages
of PT and LIT, was initially developed in 1996 by Maldague and Marinetti [6]. Pulsed Phase
Thermography (PPT) is the phase analysis in the frequency domain of PT and is a signal
processing method that solves the problem of heating inhomogeneity as it is less sensitive
to the non-uniformity of heating, surface irregularities, and environmental reflections [30].
In Pulsed Phase Thermography (PPT), data are transformed from the time domain to the
frequency domain using the one-dimensional discrete Fourier transform [31]. FFT can be
used in any waveform to extract amplitude and phase angle from the transient signals.
As a quick algorithm of DFT, FFT can play an influential role in analyzing the amplitude
and phase of every harmonic frequency and is widely used in PPT. It can also image large
components on airframes relatively fast. Since PPT is widely used in the aerospace industry
to inspect metallic and composite components, it can be considered a valid alternative to
time-domain PT. The procedure to extract the phase from the thermal data T(k) is based on
the Fourier transform, which is computed according to the well-known formula [32,33]:

Fn = ∆t ∑N−1
k=0 T(k∆t)exp

j2πnk
N = Ren + Imn (6)

where Re and Im are the real and imaginary parts of the transform sequence, Fn, re-
spectively, N is the number of thermal images, j2 = −1 is the imaginary number, and
∆t is the sampling time interval. Real and imaginary parts of the complex transform
are then applied to evaluate the amplitude and phase angle and can be expressed by
Equations (7) and (8), respectively:

An =
√

Re 2
n + Im 2

n (7)

∅n = tan−1
(

Imn

Ren

)
(8)

presents enough phase contrast to be detected on the phase spectrum. The “blind frequency”
and the defect depth are typically correlated by the following formula [34]:

d = C1

√
α

π fb
(9)

where C1 is called a “correlation constant” and ranges between 1.5 and 2 [35].

3.2. Principal Component Thermography (PCT)

The Principal Component Thermography (PCT) technique was proposed by Rajic and
is a representative signal processing technique that is being applied to inspection and com-
ponent inspection in various fields of NDT&E [36,37]. Principal Component Thermography
(PCT) facilitates the reduction of undesirable data while preserving the major features
of thermal image sequences. Principal Component Thermography (PCT) is applied by
Principal Component Analysis (PCA) and utilizes the singular value decomposition (SVD)
of measured temperature characteristics [36]. This technology reduces the dimension of
temporal and spatial thermal data from three-dimensional to two-dimensional. In addition,
this technique reconstructs the input thermal image from a matrix where each row consists
of a raster-like arrangement of each single image pixel. As a result, each column represents
the temporal evolution of a particular pixel. Then, using eigenvalues and eigenvectors as
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the essential products of SVD, the input data as a reconstructed matrix will be decomposed
to its empirical orthogonal functions (EOFs).

Empirical orthogonal function (EOF) analysis (Emery and Thomson (1998)) provides
a framework for constructing a set of orthogonal statistical models that furnish a complete
description of the variability in a set of observations [38]. The analysis involves the
calculation of a covariance matrix or, alternatively, the application of a singular value
decomposition. The latter is computationally more efficient and is the approach employed
in the present work. This analysis produces a remarkably compact description of the salient
spatial and temporal signal variations relating to the contrasts associated with underlying
structural flaws when applied to thermographic data. In many cases, a richly informative
description of these contrasts is furnished in a single spatial mode and its complementary
characteristic time vector, known as the principal component.

Data acquired in the course of a normal active thermal inspection are customarily orga-
nized in the manner depicted in Figure 3, a three-dimensional array, which, for convenience,
is defined here as T(i, j, k),where i = 1, 2, . . . , Nx, j = 1, 2, . . . , Ny, and k = 1, 2 . . . , Nt. The
pixel values in each image frame are drawn out into a vector to condense the original
data “cube” into a matrix A with dimension M× N, where M = Nx × Ny with dimension
M× N, where M = Nx × Ny and N = Nt. Each M column vectors are then subjected to a
standardization process to ensure uniformity on a pixel-by-pixel basis. [33,39],

A(n, m) =
A(n, m)− µm

σm
(10)

µm =
1
N ∑N

n=1 A(n, m) (11)

σ2
m =

1
N − 1 ∑N

n=1(A(n, m)− µm)
2 (12)

Figure 3. Principle of signal processing by Principal Component Thermography (PCT): (a) Thermographic data conversion
from a 3D sequence to a 2D A matrix in order to apply singular value decomposition (SVD); and (b) rearrangement of 2D U
matrix into a 3D matrix containing the empirical orthogonal functions (EOFs).

This standardized matrix A is then reduced by singular value decomposition
as follows:

A = USVT (13)

where U is the orthogonal matrix of dimension M× N and comprises a set of empirical
orthogonal functions (EOFs) representing spatial variation. S is a diagonal matrix of
dimension M× N and possesses the singular values of matrix A on the diagonals. VT is
the transpose matrix of the N × N orthogonal matrix representing characteristic time.
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3.3. Thermographic Signal Reconstruction (TSR)

Shepard et al. [40] introduced Thermographic Signal Reconstruction (TSR), which
provides improved detection of low contrast and low aspect ratio features and the ability
to detect and measure the characteristics of extended interfaces [41].

A general TSR is used to qualitatively detect defects by selecting the best-derived
images related to all depth ranges or to evaluate depth at a characteristic time quantitatively
(Figure 4) [42]. Fitting and derivation of the thermogram depends on the time domain being
considered. It is necessary to define the time window for characterization, considering only
the part of the thermal image affected by the physical phenomenon. The defect image thus
obtained has a better signal-to-noise ratio and sharpness than the raw thermal image. It
may also be necessary to optimize the polynomial degree depending on the case.

Figure 4. Principle of signal processing by Thermography Signal Reconstruction (TSR).

TSR is a method of estimating the through-plane thermal diffusivity αz. This estimate
of αz is referred to as αez, the effective through-plane thermal diffusivity. The TSR algorithm
can be described in the following way. First, the ambient temperature Ta is subtracted from
the temperature–time sequence, yielding ∆T. Then, least-squares polynomial regression
is carried out in log-log scales. This polynomial is referred to as the TSR polynomial.
Suggestions based on analytical studies [39] have been made, to determine the degree n
of the TSR polynomial that should ideally be used. The optimal degree n depends on the
sample under consideration and measurement acquisition parameters, but it is in the range
of n = 7 to n = 9 [43]. The logarithmic transform of Equation (3) can be expressed by
Equation (14) [43,44].

ln(T) = ln
(

Q
e

)
− 1

2
ln(πt) = a0 + a1ln(t) + a2[ln(t)]

2 + . . . + an[ln(t)]
n (14)

where T is the increment in temperature as a function of time and a0, a1, . . . , an are the
polynomial coefficients. In NDT, fifth- or sixth-order polynomial was found effective in
temporal noise reduction, and the optimum degree of the polynomial in use was found
up to ninth-order. The first log-time derivative dln(T)/dln(t) and the second derivative
d2ln(T)/dln2(t) of the polynomial enhanced the defect detectability and SNR.

The maximum of the second derivative can be calculated in two ways: either by
evaluating the second analytic derivative or by deriving the TSR polynomial three times
and finding and evaluating all real-valued roots. The second derivative is, in essence, the
curvature of the temperature–time sequences, and one would also expect to find the depth
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of the air pocket by the TSR method [45]. In practice, this is not the case because polynomials
can only approximate the temperature–time sequences. The sequence obtained by plotting
the second derivative of the TSR polynomial often shows multiple peaks, wherein it is
often not clear which were caused by an air pocket and which were due to oscillations
(Runge’s phenomenon) of the polynomial [46].

3.4. Discrete Wavelet Transform (DWT)

Wavelet transform (WT) is widely applied in stationary and non-stationary signal
analysis. This technique removes electrical noise from the signal, detects discontinuities,
and compresses large amounts of data. Utilizing the WT, it is possible to decompose a
signal into a group of constituent signals known as wavelets, each with a well-defined and
dominant frequency, similar to the Fourier transform (FT) [47], which is represented by
sine and cosine functions of unlimited duration. In WT, a wavelet is a transient function of
limited duration centered on a specific time. The problem with the FT is that information
loss occurs in time when moving from the time domain to the frequency domain. It is
impossible to infer the time of occurrence or disappearance of the signal components of the
acquired frequency spectrum using the FT. Unlike the FT, the WT utilizes both the time
and frequency domains to provide frequency information of a signal over time.

Because the WT is discrete, it is known as the Discrete Wavelet Transform (DWT)
and has significant advantages over the FT. The WT decomposes the signal into multiple
scales representing a wide range of frequency bands, and the position of the WT at each
scale is determined from the temporal characteristic that identifies and efficiently removes
electrical noise [48]. A short-time WT is used to extract high-frequency component data.
This is an important characteristic to eliminate high frequency fluctuations due to electrical
noise. Long-term WT can acquire low-frequency data. High-frequency and low-frequency
data can be used to define thresholds and set electrical noise thresholds below zero.

DWT is considered as a new technology to replace electrical noise attenuation process-
ing using low-pass filter of Fast Fourier Transform (FFT) or lock-in amplifier system that
can be used independently in environments with very low electrical noise [49]. The overlap
of bands that are completely different or completely different from the signal and noise
for which filtering methods can be utilized is an important characteristic of the moment of
processing digital signals whose information does not change over time.

FT and WT applied to infrared thermography technology can extract phase angle
and amplitude data from the temperature–time history of each pixel. Analysis image
sequences by applying transient signals to detect and characterize defects. However,
the FT reconstructs all signals by using the infinite constant base of the sequence, which
causes a problem when there is a transient component or a sudden change in the signal.
However, the WT can be described as an extension of the FT that preserves the time domain
information directly related to the defect depth while maintaining the properties of the
FT. As a result, it affects the time frequency and resolution of the signal. Therefore, WT is
utilized as a transformation algorithm to extract transient function data.

The principle of the WT is that the analyzed function, f (t), is decomposed into a set of
basic functions, Ψs,τ(t), which are referred to as wavelets. The continuous WT is expressed
as in Equation (15) [50].

γ(s, τ) =
∫ ∞

−∞
f (t)Ψ∗s,τ(t)dt = Ren + jIMn (15)

where ∗ stands for complex conjugation, s is the scale and defines the wavelet dilation
(s > 1) or contraction (1 > s > 0), and τ corresponds to the WT along the analyzed
signal, t is the time, Ren is the real part of the transform, Imn is the imaginary part of the
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transform and j is the imaginary number (−11/2). Function Ψ∗s,τ(t) is generated by scaling
and translating the Mother Wavelet (MT) according to Equation (16).

γ(s, τ) =
1√

s
Ψ

(
t− τ

s

)
(16)

Ψ(x) =
1√
π fb

ej2π fcxee
− x2

fb

where fb is a constant that defines the width of the wavelet and fc is the wavelet center
frequency constant. In general, fb = 1 and fc = 1 were considered.

Real and imaginary parts of Equation (16) are used to calculate the phase angle of the
transform and is expressed as Equation (17).

∅n = tan−1
(

Imn

Ren

)
(17)

3.5. Differential Absolute Contrast (DAC)

Differential absolute contrast (DAC) is a based on a one-dimensional solution of a
Fourier diffusion equation (Dirac delta function) for a pulsed heatwave [51,52]. By applying
DAC, it is possible to obtain thermal response energy data at each point on the surface
by modeling the time-dependent profile of the specimen surface temperature [53,54].
Therefore, advanced as a Source Distribution Image (SDI) solution, it is possible to properly
establish a sound reference area based on the assumption that all pixels exhibit a similar
enumeration to the sound defect reference area in the initial thermogram.

Assuming that the heat transfer of the specimen under inspection can be described
with sufficient accuracy using the semi-finite body model, the equation for controlling the
temperature contrast of the specimen surface with time after the energy impulse Q(δ(t)) is
applied is as follows [55]:

Tsemi−in f inite body(z = 0, t) =
Q

e
√

πt
(18)

where z is the distance from the specimen object surface, t is time,e is effusivity, and Q is
input energy. Considering the thermal image acquired at time t′ before the first defect is
visually detected on the surface, the temperature ∆Ts[i,j](t′) of the sound area is as follows:

∆Tsound[i,j]
(
t′
)
= ∆T[i,j]

(
t′
)
=

Q[i,j]

e[i,j]·
√

πt′
(19)

Assuming that the energy incident on the specimen fluctuates, the value of local
Q[i,j]/e[i,j] is as follows:

Q[i,j]

e[i,j]
=
√

πt′·∆T[i,j]
(
t′
)

(20)

Therefore, the DAC can be calculated as the Q[i,j]/e[i,j] between the thermal response
solutions for semi-infinites describing Equation (21).

DAC[i,j] =
Q[i,j]

e[i,j]·
√

πt
=

√
t′

t
·∆T[i,j]

(
t′
)

(21)

The DAC scales for every pixel in the thermal map processing and provides a result
for the minimization of non-uniform heating of the surface.
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4. Case Study for Signal Processing of Pulsed Thermography

In Sections 2 and 3, the basic principles of optical infrared thermography and PPT,
PCT, TSR, DWT, and DAC signal processing, which are widely applied, were introduced.
Section 4 introduces the latest application of each signal processing technique and some
case studies. Each algorithm is used in similar cases overall but has different strengths and
differences. Some cases of pulsed thermography signal processing studies are as follows.

4.1. Advances of PPT

Combining the characteristics and benefits of PT and LIT, PPT is a common NDT
technique in various industries for inspection, including metal, non-metal, composite,
concrete, and other materials. As an algorithm representing thermography with a long
history, PPT has been applied as a signal processing technique for PT in almost all fields
where TNDT is used. Applications of optical-infrared thermography are numerous and in
different fields. Some typical applications include: detection of the subsurface defect and
surface crack; evaluation of coating thickness; detection of inclusion and delamination in
materials; evaluation of dissimilar metal joint, such as adhesively bonded and weld joints;
detection of steel corrosion; internal defects NDT&E of aircraft components; evaluation of
materials such as metals, non-metal and composite; inspection of the nuclear power plant,
solar cells, and electrical installation control; and assessment of cultural heritage objects.

Recently, in recent literature, studies have been conducted to detect and evaluate
defects by modifying the PPT algorithm. In [56], two modified algorithms for PPT were
defined. A first algorithm is defined using a frequency-dependent Gaussian window
function. Furthermore, a second algorithm is defined using a rectangular window function.
The algorithms were tested on synthetic signals modeling a subsurface cylindrical defect in
a plate and experimentally by PT on steel and a polymer sample. As a result, a significantly
enhanced contrast-to-noise ratio (CNR) from the defects was obtained for higher analysis
frequencies.

Thermal imaging cameras are very sensitive to noise and need to new processing
methods in PPT algorithms. Fleuret et al., inspired by Maldague’s work, investigated a
feature-based approach based on single–signal reconstruction for defect detection. Al-
though this approach was very sensitive to noise, promising results were obtained. In [57],
a phase and time-domain tomography for defecting defects in composite materials was
proposed. In general, PPT requires the evaluation of multiple-phase images at different
frequencies to obtain an in-depth evaluation of the sample. However, the selection and
subsequent evaluation of these images is cumbered by some and not always straightfor-
ward. In order to improve these shortcomings, [58] introduced an Adaptive Spectral Band
Integration (ASBI) processing. The technique is more powerful than the PPT and offers a
better SNR even for barely visible defects. It also returns a single index map of the defects
for a given sequence, making it easier to interpret.

4.2. Advances of PCT

With the PPT described in the previous section, PCT is most applicable for PT data
processing. PPT transforms the image sequence into the Fourier (frequency) domain, and
PCT applies PCA to the image sequence to extract the most meaningful frames.

Weng et al. [59] introduced Candid Covariance-free Principal Component Analysis
(CCIPCA). This method is a fast Incremental Principal Component Analysis (IPCA), used
to compute the principal components of a sequence of samples incrementally without
estimating the covariance matrix. After that, Yousefi et al. proposed Candid Covariance-
free Principal Thermography based on CCIPCA. This approach decomposes the defects of
the sample with the K-medoids clustering method based on the RGB of the PCT results.
In addition, shorter calculations are applied to estimate the covariance command and
singular value decomposition (SVD). The results of CCIPCT showed promising results in
simplifying computational complexity while increasing the number of data acquisition
frames. In addition, Yousefi et al. [60] introduced Sparse Principal Component Analysis
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(RPCA)-based K-means clustering on improving the noise of PCT and CCIPCT results.
This approach increased the robustness due to the norm addition terms to the PCA linear
transformation and improved noise significantly compared to the existing technique. Wu
et al. [61] proposed the Sparse Principal Component Thermography (SPCT), an application
of the SPCA to PT. They showed that SPCT outperforms existing techniques with high
computational performance. Wen et al. [62,63] introduced an improved version of SPCT
called Edge-Group Sparse Principal Component Thermography (ESPCT) that can preserve
the spatial connectivity of thermal image pixels. They showed in experiments conducted
on marquetry sample that ESPCT results provide higher contrast and SNR than PCT and
SPCT.

Yousefi et al. [64–66] introduced the Low-rank SPCT and applied several Non-negative
Matrix Factorization (NMF) approaches. They conducted a comparative analysis on low-
rank matrix approximation using the NMF approach and showed more promising results
than other component-based (PCT, CCIPCT, SCPT) methods.

Many PCT studies have focused mainly on improving the contrast of defects and
reducing the quantity of data. Recently, Independent Component Analysis (IPCA) has been
attracting attention, and various approaches have been proposed to solve ICA [67]. In [68],
Fleuret et al. investigated several recent ICA methods and evaluated their influence on
PT data compared with the state-of-the-art methods. They found that ICA outperformed
PCT for small defects and that the frequency of data acquisition and ICA methods had a
significant influence on the results.

4.3. Advances of TSR

Shepard et al. described the dependence of extended interface detection on the ratio
of layer thermal effectivities [69] and added the aspect ratio dependence for discrete
defects [70]. Like PPT and PCT, TSR is also an algorithm widely used recently, providing
improvements in noise reduction and detecting defects. The acquisition procedure required
to apply this post-processing should be a PT. Generally, TSR consists of using a low-order
polynomial function to fit the profile of the cooling process belonging to the temperature
evolution of each pixel of the thermal image tested over a specific period. A change in
effective thermal diffusivity characterizes defect detection with conventional TSR. Recently,
Schager et al. [71] studied an extended TSR technique that can automatically segment
defects into defects in the sound domain and generate defect maps by utilizing the signal
characteristics of defects. They showed that the defect map provides an estimate of the
depth of the defect and is inexpensive to compute. Roche et al. [72] introduced a new
approach to TSR. Instead of analyzing the time-derivate images, they proposed to utilize
the coefficient images generated from each term of the differential equation to detect all
defects.

Feng et al. [73] proposed a hybrid of TSR and Automatic Seeded Region Growing
(ASRG) algorithm for thermal image signal processing. The proposed approach signif-
icantly reduced the uneven illuminance and improved the detectability. They showed
improved detection resolution and were useful for the automatic selection of regions sus-
pected of being defective. In addition, the ASRG algorithm reliably extracts the internal
defect information and improves the contrast between the defect area and the sound area.
Ratsakou et al. [74] proposed combining TSR and Canny shape-reconstruction algorithms
for defect characterization. According to the TSR technique, the approach consists of fitting
the raw thermographic images to a low-degree polynomial in the log-log representation of
the time axis and then applying the Canny algorithm to reconstruct the original signals.
The proposed juxtaposition of the two methods benefits from the inherent signal denoising
and compression of the TSR algorithm, thus enhancing the performance of the overall
reconstruction process.



Appl. Sci. 2021, 11, 12168 13 of 21

4.4. Advances of DWT

Ahmad et al. [75] proposed the detection of damage to the cylindrical shell using DWT
analysis in a post-processing technique based on active IRT as one of the NDT. ABAQUS
simulation was used to analyze the transient heat transfer problem of the damaged double-
sided shell. Afterward, 1D- and 2D-DWT were applied to emphasize the location of
damage to the thermal response of the structure, and a deep neural network was used to
reduce image noise. Khaleel et al. [76] proposed a method for extracting features from the
histogram of oriented gradients (HOG) coefficient vectors using IRT and reducing HOG
vectors by combining continuous coefficients. Therefore, the sub-band HH was obtained
using 2D-DWT, and the image’s desired feature extraction was performed. In addition, a
technique for classifying normal and abnormal using the Support Vector Machine (SVM)
binarization classification method is presented. Anurag et al. [77] proposed an automated
defect detection technique for bearings of rotating machines using IRT. The thermal image
was filtered with 2D-DWT, and detectability was improved using PCA. Through this,
images were acquired for multi-resolution analysis in the time and frequency domains.
Ranjit et al. [78] presented experimental results for shape and size analysis at various depth
stages of GFRP composites using LIT. To improve the SNR of inclusions, PCA and DWT
techniques based on pixel-level data fusion were applied. As a result, it was demonstrated
that the higher the frequency range in the region where inclusions are detected, the more
significant the improvement in the SNR value.

4.5. Advances of DAC

Quang et al. [79] proposed depth characterization of delamination defects on concrete’s
front and back surfaces using a PT-based DAC. Comparative analysis of SNR values was
performed by applying thermal contrast, histogram equalization, and PPT and FFT to
the raw image. In addition, predictive characterization analysis of the size and depth of
delamination defects was performed using linear regression analysis.

Xiangning et al. [80] proposed an intelligent diagnostic system based on active infrared
thermal imaging for solder joint inspection. TSR and DAC processing techniques were
applied to improve the SNR of images acquired by IRT. After that, the hot spots of the solder
balls were classified, and statistical features were extracted using the K-means algorithm,
and it was suggested that it is an efficient inspection technique. Babar et al. [81] presented
factors affecting the heat flux and wind velocity thermal contrast of the surface of the bridge
deck by applying the IRT technique to analyze the optimal inspection time for various
geometrical properties of delamination. To compare and analyze the data of experiments
and simulations, the validity was verified using DAC. Poelman et al. [82] proposed a flash
lamp’s damage characterization of CFRP composites based on IRT. The measured thermal
image sequence was evaluated, and comparative analysis was performed using DAC, PPT,
and PCT signal processing.

5. IRT Trends
5.1. IRT Utilized Deep Learning

In recent years, it has been a trend that IRT and other technologies are integrated and
utilized, and research is being conducted. Deep learning is an emerging area of machine
learning (ML) research. Recently, interest in IRT technology incorporating deep learning
has been emerging. Deep learning refers to a set of machine learning algorithms that
attempt to summarize critical contents or functions in high-level data (big data or complex
data) through a combination of non-linear transformation methods. In [83], a system
for predicting the depth of defects in composites obtained through PT and COMSOL
simulations using a deep learning model was presented. Fang et al. [84] conducted an
evaluation of the POD improvement of CFRP composites by collecting data obtained
from simulations and PT experiments based on Mask-RCNN. Marani et al. [85] used step-
heated thermography to normalize the temperature profile of GFRP laminate defects and
presented an efficient inspection technique for high-sensitivity specimens by applying deep
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learning for the characterization of difficult-to-detect defect areas. Bang et al. [86] proposed
various detection techniques for images with various types of defects using Faster RNCC.
Hu et al. [87] conducted a comparative analysis of POD based on RNCC after applying
various types of signal processing to images acquired using the ECPT technique. Wei
et al. [88], by grafting a deep neural network to pulsed infrared thermography, conducted
a study to detect impact damage of curved laminates exposed to a thermal stress cycle
and subsequent ballistic impact and segment them into medium and long wave infrared
sequences.

5.2. IRT Utilized Unmanned System

Recently, the study has been actively conducted to integrate an Unmanned Aerial
Vehicle (UAV) or drone into IRT to enable inspection in an environment that is difficult for
inspectors to access. UAV refers to a vehicle that flies automatically or semi-automatically
according to a pre-programmed route without an actual inspector boarding it. Carvalho
et al. [89] conducted a semi-automatic examination of accessibility and mobility using a
system equipped with an infrared camera on the UAV. Deane et al. [90] conducted a study
on the detection of defects in aerospace structures that reduced inspection time and cost by
performing PPT and PCT signal processing on images acquired using UAV. Pant et al. [91]
reduced unnecessary motion by using Black Border (BB) and evaluated the stabilization of
the Multi-Scale Structural Similarity (MS-SSIM) algorithm of images acquired by active
IRT. Omar et al. [92] conducted a surface inspection of a concrete structure using an
IRT-based UAV and presented a mapping image mechanism for delamination detection
by applying a threshold algorithm. Cheng et al. [93] presented a framework applying
deep learning for automatic delamination profiling by utilizing IRT for applications based
on limited image data acquired by UAV experiments with infrared cameras. Genest
et al. [94] evaluated stabilization technology for aircraft applications using UAV-based
active infrared thermography. They also performed foreign body detection studies in
lightweight composites utilizing terahertz imaging techniques.

5.3. Active Thermography for Enhanced Detectability

The IRT technique, alone or in combination with other NDT techniques, has emerged
as a good alternative for the evaluation of the condition of “invisible” structures and
materials. Some of the recent studies on active infrared thermography are as follows.
Kim et al. [78,95,96] conducted the quantitative evaluation of defects on the backside
of composite materials, coating thickness, and metallic materials using thermography
and conducted a study to improve detectability by applying signal processing to images.
They also presented a defect detection mechanism by applying an automated algorithm
through binarization processing utilizing threshold values. Ibarra-Castanedo et al. [97,98]
performed a study on the inspection of composite materials for aircraft applications using
integrated infrared thermography. They also conducted automated defect detection studies
utilizing learning algorithms. Paoletti et al. [99,100] performed a comparative study of
coating thickness and non-destructive testing techniques to evaluate ceramic materials.
They also performed broadband infrared imaging analysis studies in the NIR-MIR-FIR
region. Laureti et al. [101] conducted a study of delamination detection of glass/silicon
composites using active infrared thermography and ultrasound examination, and it was
demonstrated that the modulated frequency chirped signal and pulse compression can
successfully be utilized for delamination detection. Fernandes et al. [102,103] conducted
a defect detection study of a 3-dimensional hybrid composite structure using infrared
thermography. They also presented a technique for the experimental analysis of composites
by presenting thermography with a mixture of optical-mechanical excitation.

Yang et al. [104,105] performed electromagnetic-thermal mixed infrared thermography
studies using pulsed and transient eddy current thermography. They also presented a
thermal imaging technique incorporating electromagnetic waves to inspect and diagnose
composites utilized in industrial applications. He et al. [106,107] performed a study to
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measure defects and geometrical profiles of motors using non-destructive eddy current
pulsed thermography. They described the current status of infrared thermal imaging
technology applying deep learning and the progress and trend of fault diagnosis. Tian
et al. [108,109] performed a study on a fault diagnosis system for composites composed of
multiple physical structures using pulsed eddy current thermography. They also performed
imaging studies for visualization of this lateral defect.

Sfarra et al. [110,111] performed research on damage behavior, deformation measure-
ment, and thermal stress measurement of building structures and composites using hybrid
infrared thermography technology. Barreira et al. [112] performed an emissivity evaluation
study of black tape to measure the exact emissivity using infrared thermography and ra-
diometer. Through this, the degree of influence on the emissivity according to the moisture
content of the building material was confirmed. In addition, in [113], pulse compression
infrared thermography technique was used to acquire data on the internal structure, and it
was used as a heat source to minimize a low-power light emitting diode (LED) chip whose
emission was modulated through a noise sequence. In addition, it shows how to maximize
the number of objects by applying a statistical algorithm (PCA and ICA), and proposes
a clear mapping technique that displays both surface and interior in-depth information
at a glance. Lerma et al. [114] conducted a study to evaluate the risk of condensation and
identify the period and area affected by the building by comparing the NDT techniques
of temperature and relative humidity sensors, CFD and IRT. Garrido et al. [115], in order
to detect and classify moisture on the inner wall of a building according to its severity,
proposed a method combining infrared thermography and GRP (Ground-Penetrating
Radar), and a study was conducted to detect the movement of moisture on the surface and
the point of accumulation of moisture inside the building. Lopez et al. [116,117] researched
on the minimization and detection of reflectance in thermal images. They also presented
a high-level signal processing technique for the monitoring of chemical plants. Sannikov
et al. [118] conducted a study in which induction heating and resistance heating were used
to excite the corroded rebar, and thermal property evaluation was conducted by monitoring
the dynamic temperature distribution using infrared thermography.

Ahmadi et al. [119] proposed a virtual wave-based image processing technique com-
bining three different approaches to significantly improve the defect reconstruction of
active thermal imaging tests. The combination of photothermal structured illumination
(SI) measurements and virtual-wave (VW) plus iterative joint sparsity (IJOSP) image recon-
struction represented a novel super resolution (SR) reconstruction technique for subsurface
defects in metals. They applied a stainless-steel sample with internal defects to evaluate
the proposed treatment technique. As a result, the approach showed at least four times
better spatial resolution compared to conventional thermal reconstruction techniques.

Moskovchenko et al. [120] introduced a quantitative evaluation technique for coating
thickness using the apparent thermal effusivity method. The proposed algorithm in pulsed
thermography is based on determining the threshold of apparent utilization that can be
found in a specific coating-on-substrate structure. They demonstrated the effectiveness
of the proposed approach by testing and analyzing thermally-sprayed coating sample.
Svantner et al. [121] introduced a time-power transformation method for quantitative
evaluation of coating thickness using flash-pulse thermography. They demonstrated that
the measured thermal response approximation had a significant effect on the quantitative
results of thermal imaging, and showed that the exponential decay function could be well
utilized for the thermal imaging data.

Hu et al. [122], in order to improve the sequence processing and detectability of
infrared thermography, proposed a framework by applying a sparse pattern extraction
algorithm to reduce the data dimension and improve the contrast between the cropping
operator and the defect region. Gavrilov et al. [37] proposed an approach to isolate
independent image patterns (circular pattern) from a set of principal component images
based on infrared thermography technology, and presented it through application of
composite inspection and non-invasive analysis of works of art.
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6. Conclusions

This paper presented an overview of pulsed thermography signal processing tech-
niques recently used for non-destructive evaluation. Pulsed thermographic methods are
today the most widely used infrared thermography NDT application. Flaws and damages
such as crack, subsurface defect, delamination, and disbond are inevitable during either
fabrication or lifetime of a structure or component. Thus, NDT is required to prevent
failures and increase the reliability of structures and/or components in both manufacturing
and service. IRT NDTs have shown great potential and benefits with faster inspection rates,
higher resolution and sensitivity, and the possibility of defect detection. PPT, PCT, TSR,
DWT, and DAC, typical signal processing technologies for pulsed thermographic testing,
have enhanced significant thermographic data quality. Each signal processing method is
based on a totally different principle. In this work, a fully in-depth and comprehensive
review of these pulsed thermography and signal processing techniques for NDT&E was
reported based on an orderly and concise literature survey. Next, the developments of
thermography NDT and signal processing were reviewed. Then, the fundamental concepts
of TSR, PPT, PCT, DWT, and DAC were reviewed for the signal processing and analysis of
thermal images. After that, some signal processing latest advances for pulsed thermog-
raphy testing were reviewed. At last, some research trends in thermography NDT were
reviewed, such as IR integration with other technologies.
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