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Abstract: Pre-tunneling exploration for rock mass classification is a common practice in tunneling
projects. This study proposes a data-driven approach that allows for rock mass classification. Two ma-
chine learning (ML) classification models, namely random forest (RF) and extremely randomized
tree (ERT), are employed to classify the rock mass conditions encountered in the Pahang-Selangor
Raw Water Tunnel in Malaysia using tunnel boring machine (TBM) operating parameters. Due to
imbalance of rock classes distribution, an oversampling technique was used to obtain a balanced
training dataset for unbiased learning of the ML models. A five-fold cross-validation approach was
used to tune the model hyperparameters and validation-set approach was used for the model evalua-
tion. ERT achieved an overall accuracy of 95%, while RF achieved 94% accuracy, in rightly classifying
rock mass conditions. The result shows that the proposed approach has the potential to identify
and correctly classify ground conditions of a TBM, which allows for early problem detection and
on-the-fly support system selection based on the identified ground condition. This study, which is
part of an ongoing effort towards developing reliable models that could be incorporated into TBMs,
shows the potential of data-driven approaches for on-the-fly classification of ground conditions
ahead of a TBM and could allow for the early detection of potential construction problems.

Keywords: tunnel boring machine (TBM); rock classification; Japanese highway classification system
(JH System); random forest (RF); extremely randomized trees (ERT)

1. Introduction

Tunnel boring machines (TBMs) are currently the most utilized equipment for deep
and long tunnels in both civil and mining industries. One important consideration prior to
the actual excavation is evaluating ground conditions along the proposed tunnel alignment.
This initial evaluation provides critical information for selecting the excavation type and
developing preliminary ground support systems. Ground conditions are obtained by the
characterization and subsequent classification of the rock mass based on a pre-defined
system known as a rock mass classification system. Since the introduction of rock mass
classification by Terzaghi, it has become a useful tool for rock engineering and is widely
considered the most practical method for evaluating the quality of the rock mass in under-
ground engineering practices. The common and widely used classification systems are
the Q-system [1], Rock Mass Rating (RMR) [2], Rock Mass Index (RMi) [3], and Geological
Strength Index (GSI) [4]. Aside from these classification systems, the Japanese Highway
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Classification System (JH system) and the Hydropower Classification System (HC system)
are also popular in Asia.

One of the serious concerns in the use of rock mass classifications schemes is that they
are subjective. Field engineers with different experience levels classifying the same rock
mass using for example, RMR, can produce significantly different rock mass behavior [5].
This is because most of these classification systems use both quantitative and qualitative
methodologies. To reduce, if not to eliminate, the subjectivity or experience factor in rock
mass classification, a data-driven system is necessary. Some of the early attempts on data-
driven approaches focused on the use of non-destructive forward geological prospecting
techniques including tunnel seismic prediction (TSP), and ground penetration radar (GPR)
to assess the rock mass quality ahead of TBMs [6,7]. Although these geophysical techniques
provide reliable and accurate results, they are expensive and cause undue project delays.
Zhang et al. [8] indicated that these forward geophysical prospecting techniques are not di-
rectly related to the rock tunneling/excavation process since they can only be implemented
when the TBM is not in operation. Besides the subjective nature of rock mass classification
systems, limited space between the TBM cutterhead and the tunnel face makes geologic
mapping for classifying in-situ ground conditions difficult, if not impossible [9].

Another data-driven approach for classification of rock mass conditions in tunnels
excavated by TBMs is the application of artificial intelligence (AI) and machine learning
(ML) techniques to TBM operating parameters. Several researchers [10–17] have applied
ML algorithms, capable of handling complex non-linear problems, to establish the rela-
tionship between TBM operational data and rock mass conditions. Liu et al. [18] used
cutterhead thrust, cutterhead torque, revolution per minute (RPM), and penetration rate
to develop a simulated annealing-back propagation neural network (SA-BPNN) model
to predict rock mass properties (UCS, brittleness index (Bi), and the distance between
plane of weakness (DPW). Current research in rock excavation and tunneling is focused on
developing reliable AI and ML models based exclusively on TBM operational data.

The overall objective of these efforts is to develop some kind of on-board rock mass
classification system on TBMs that will allow automated rock mass classification and pos-
sibly ground support system selection. Liu et al. [19] used TBM operational data to train
a support vector classifier coupled with genetic algorithm to classify rock masses based
on the improved basic quality (BQ) classification system. Jung et al. [20] applied ANN
to shield TBM operational data (penetration rate, cutterhead torque and thrust force) to
predict ground conditions ahead of the TBM. Zhang et al. [8] used RF, K-NN, and support
vector classification (SVC) to predict ground conditions in tunnels using four TBM param-
eters namely; cutterhead torque, cutterhead thrust, cutterhead speed, and advance rate,
and concluded that SVC outperformed the other techniques with an accuracy of 98%.
They also indicated that out of the four TBM parameters analyzed, the cutterhead torque
and thrust were found to better reflect the changes in rock types. Based on the Hydropower
classification (HC) system, [9] used TBM operational data to train five predictive models:
AdaBoost-CART, CART, SVC, ANN, and KNN, and concluded that AdaBoost-CART was
the best model for predicting rock mass conditions. Zhang et al. [21] used ANN, SVM, KNN,
and CART to develop geologic type recognition classifiers based on advance rate, cylinder
thrust, cutterhead torque, and cutterhead rotational speed. Erharter and Marcher [22]
proposed the multivariate sequence segmentation, abstraction, and classification (MSAC),
a data-driven rock mass classification model, using the advance force, cutterhead torque,
penetration rate, cutterhead rotations, advance speed, specific penetration, specific energy,
and torque ratio.

This study explores the suitability of two supervised machine learning algorithms,
random forest (RF), and extremely randomized trees (ERT) in predicting the ground
conditions on the tunnel face ahead of a TBM based on the Japanese Highway Classification
System. RF and ERT harness the predictive capabilities of multiple decision trees. Different
sets of predictors are used at each node; hence, the variance of the resulting model is
significantly reduced compared to the individual regression trees. RF was selected for
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this analysis because it has been applied successfully in a wide variety of projects and
has seen tremendous acceptance in many disciplines due to its tendency to decrease the
models’ variance [23]. ERT, on the other hand, is relatively unknown especially in the area
of rock excavation but it was selected due to its high performance with less noisy data.
In this study, TBM operating parameters namely; rate of penetration, cutterhead torque,
cutterhead thrust force, cutterhead revolution per minute, hydraulic cylinder stroke speed,
boring pressure, pitching, and motor amps were analyzed using the two ML algorithms
to develop models for classifying the rock mass conditions in TBM tunnels. This research
contributes to the ongoing research efforts towards developing reliable models that could
be incorporated into TBMs to allow for on-the-fly characterization and classification of
ground conditions in tunnel excavation as well as eventual automation of ground support
systems selection.

1.1. The Japanese Highway Classification System (JH System)

The Japanese Highway Classification System was first developed in Japan in the 1960s
for large dam foundation and later extended to tunnel rock mass characterization [24].
This classification system commonly referred to as JH System, like many rock mass classi-
fication systems, has undergone several revisions since its introduction. The JH System
relies primarily on seven rock mass parameters namely: intact rock strength (compressive
strength), weathering, spacing of discontinuities, condition of discontinuities, effect of
discontinuities orientation, groundwater condition, and degradation by water. Each of
these parameters is further subdivided into subgrades and assigned a grade point corre-
sponding to the level of the rock mass feature being characterized. For example, the intact
rock property (UCS), is divided into six subgroups: less than 3 MPa, 3–10 MPa, 10–25 MPa,
25–50 MPa, 50–100 MPa, and greater than 100 MPa. Each of these subgroups is assigned a
grade point reflecting the strength of the intact rock material.

Once each rock mass parameter is graded/rated, the grade point for the intact rock
property, weathering, joints spacing, condition of joints are added up and the grade
points for groundwater conditions, deterioration due to water, and effect of discontinuities
orientation are subtracted from the sum to obtain total grade points of the rock mass at
that location. The total grade point ranges from 0 to 100 representing very poor rock to
very good fresh rock respectively. The total grade point is then used to categorize the rock
mass into classes. The system has six rock mass classes; A, B, CI, CII, D, and E. In terms of
rock mass competence, it decreases from class A through class E, with class E been the least
competent rock mass. In tunnel excavation, these rock mass groups are used to determine
the ground support system required to stabilize the tunnel walls. Table 1 shows typical
JH System data collection sheet used in the Pahang-Selangor Raw Water Tunnel (PSRWT)
while Table 2 shows typical ground support systems for the different rock mass classes.
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Table 1. Example of the JH System Data Collection Sheet Used in the PSRWT project.

Geological Observation Rating

1. Strength of the
intact rock material

Uniaxial Comp.
strength. >100 MPa 100–50 MPa 50–25 MPa 25–10 MPa 10–3 MPa <3 MPa

Point-load Strength. >3 MPa 4–2 MPa 2–1 MPa 1–0.4 MPa <0.4 MPa –

Strength judged by
blow of hammer

Not broken by
strong blow
of hammer

Broken by strong blow of hammer
Broken by

normal blow
of hammer

Broken by striking
rocks against

each other
Broken easily by hand Deformed

by finger

Grade Point 36 29 22 14 7 0

2. Weather-
ing/Alteration

Degree of
weathering Fresh Weathered along discontinuities Weathered to the rock mass core Sedimentary

Unconsolidated

Hydrothermal
alteration No Alteration Partially altered and infilled

with clay Altered and weakened to the rock core
heavily altered and

become clayey
or sedimentary

Grade Point 19 12 6 0

3. Spacing of
discontinuities, mm

Spacing of
Discontinuity. D = 1 m 1 m > d = 50 cm 50 > d = 20 cm 20 > d = 5 cm 5 cm > d

R.Q.D >80 80–50 60–30 40–10 <20

Grade Point 19 14 9 5 0

4. Condition of
discontinuities

Degree of opening Fracture
Totally-attached Fracture Partly opened Fracture mostly

opened
Fracture opened

–5 mm width
Fracture opened

>5 mm

Infilled width Nil Nil Nil Clay(<5mm) Clay (>5mm)

Degree of
Roughness Coarse Flat and Smooth Partly

Slickenside Well-sharpened slickenside

Grade Point 26 20 13 7 0
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Table 1. Cont.

Geological Observation Rating

5. Effect of
discontinuity strike
and dip orientation

declination

Strike
perpendicular to

Tunnel Axis

1. Drive with
dip-Dip 45–90 2. Drive with dip-Dip 20–45

3. Drive
with/against
dip-Dip 0–20

4. Drive against dip-Dip 20–45 4. Drive against
dip-Dip 45–90

Evaluation Very favorable Favorable Normal Unfavorable Fair

Strike parallel to
Tunnel Axis – – 1. Dip 0–20 2. Dip 20–45 3. Dip 45–90

Evaluation – – Normal Unfavorable Fair

Evaluation on Ground water and Degradation (including the possibility in the future) at the length of 10 m from face

6. Groundwater

Amount of inflow per 10m tunnel length <1 L/min 1–20 L/min 20–100 L/min >100 L/min

General conditions Dry/Moist Wet Dripping water Flowing
water

Classification 1 2 3 4

7. Degradation by
water

Degradation by water Nil Partially weakened Loosened Washed out

Classification 1 2 3 4
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Table 2. Rock Mass Classes and Support Requirement of JH System (modified after Shinji et al. [24]).

Rock Class Range of Total Grade Points (%) Description Support Requirement

A 100–90 Very good rock, hard and fresh No support

B 89–70 Good rock, hard and fresh but
affected by weathering Spot bolting, shotcrete to crown/wall

CI 69–51 Fair rock, rock is weathered,
some clay in joints

Pattern bolting to crown, shotcrete to
crown/wall

CII 50–40 Fair to poor rock weathered,
loosed rock mass

Pattern bolting to crown/wall,
shotcrete to crown/wall

D 39–20

Very poor to extremely poor
rocks: considerably weathered
rock mass, soft zones, partially

soil properties

Pattern bolting to crown/wall,
shotcrete to crown/wall, steel rib

E <20 Faults and crushed rock zone,
squeezing zones

Pattern bolting to crown/wall,
shotcrete to crown/wall, steel rib,

steel lagging

2. Project Description and Geology
2.1. Project Background

The Pahang Selangor Raw Water Tunnel (PSRWT) is a property of the Malaysian
Government that was constructed to convey raw water from the Semantan River, located in
the southwestern part of Pahang, to Selangor State to address perennial water challenges.
The tunnel is gravity driven and conveys approximately 1.89 billion liters of water per day
to the Hulu Langat treatment plant. The tunnel, which is 44.6 km long, the 11th longest
tunnel in the world, was constructed using two tunneling methods, i.e., the new Austrian
tunneling method (NATM) and TBM method. The TBM was used to drill 33 km of the
tunnel length utilizing three (3) different Robbins Main Beam Tunnel Boring Machines,
labeled TBM 1, TBM 2, and TBM 3. Figure 1 shows TBM 1, a Robbins 5.2 m Diameter Main
Beam Tunnel Boring Machine, which was used to collect the data analyzed in this paper.

Figure 1. Robbins 5.2 m diameter main beam Tunnel Boring Machine (TBM).

2.2. Geologic Setting

Geologically, Peninsular Malaysia is made up of four major tectonic zones namely, the
Western Stable Shelf, the Main Range Belt, the Central Graben and the Eastern Belt [25].
Figure 2 is a geologic map depicting the geologic units within the project area. The tun-
nel cuts through two major formations; the Karak Formation and Main Range Granite.
The Karak formation, which is a Silurian-Devonian age, extends from the inlet portal to
chainage 3.82 km. The Main Range Granite extends from chainage 3.82 km to the outlet in
Langat, Selangor, at chainage 44.4 km. The Main Range Granite is subdivided into the Bukit
Tinggi Granite, Genting Sempah Micro-granite and Kuala Lumpur Granite. The Kuala
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Lumpur Granite and the Genting Sempah Micro-granite are separated by the Kongkoi
Fault and the Bukit Tinngi Fault also separates the Genting Sempah Micro-granite and
the Bukit Tinggi Granite. While the Kuala Lumpur Granite is megacrystic, the Genting
Sempah Micro-granite consists of micro-granodiorite. The Bukit Tinggi Granite consists
of very coarse-grained biotite granite. The Main Range Granite is strongly deformed due
to the intrusion of other granitic rocks. In general, the study area is underlain by coarse
grained, porphyritic biotite granite cut by minor porphyritic differentiates. Micro-granite,
granodiortite, diorite, monzonite, granite porphyry, quartz porphyry, megacrystic biotite
granite, megacrystic muscovite-biotite granite and equigranular tourmaline-muscovite
granite are the other rocks within the study area. Figure 3 is a geologic cross- section
showing the tunnel alignment.

Figure 2. Geologic map of the study area.

Figure 3. Schematic cross section of the tunnel alignment.

3. Database and Data Collection

The Pahang-Selangor Raw Water Tunnel was constructed by a Japanese firm. Conse-
quently, the JH system was employed in the tunnel rock mass characterization. To do this,
the tunnel was divided in three zones: right, left and center sides as shown in Figure 4.
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Each of these zones were characterized using the JH system described in Section 1.1. For the
intact rock strength, Schmidt hammer measurements were made and converted to UCS
values. The tunnel face was mapped by geologist to provide the needed information to
calculate the grade points for each zone. The final grade point was a weighted average
of the grade points of the three zones. The tunnel was mapped every four (4) to ten (10)
meters along the length of the tunnel. The database used for this paper consists of 180 rock
mass data and 79,813 TBM operating data points. This dataset represents 11.6 km of the
tunnel from chainage 6.85 km to chainage 18.59 km.

Figure 4. Tunnel zones during characterizations.

3.1. Data Exploration

The dataset used in this study contained 23,947 records after cleaning to remove
missing values, and duplicates. A summary of the input variables is presented in Table 3
with the cutterhead torque having the largest range followed by the boring pressure.
A pairwise correlation of the input variables presented in Table 4.

Table 3. Summary statistics of the TBM data.

TBM Parameter Mean Median Minimum Maximum

Boring pressure (N/mm2) 56.35 47.10 −5448.20 1155.80
Cutterhead torque (kN-m) 562.57 622.00 −31,962 22,523.00
Cutterhead thrust force (kN) 9910.15 10,619.00 0.00 11,424.00
Cutterhead RPM (rev/min) 10.29 11.00 0.00 12.10
Rate of penetration (m/h) 2.30 2.10 0.00 107.80
Stroke speed (mm/min) 38.18 35.00 0.00 1797.00
Gripper cylinder pressure (bar) 301.67 306.00 0.00 691.00
Pitching (◦) −0.06 −0.09 −0.52 1.26
Average motor amps (A) 138.79 138.00 0.00 427.00

tabreftabref:applsci-1041145-t004 shows that, apart from stroke speed and penetration
rate, that have a strong positive correlation, the rest of the variables have very weak
correlations. This shows that there are no concerns of multicollinearity.

From Figure 5, the median cutterhead RPM decreases with decreasing rock mass
competence. In a more competent rock mass, the penetration of the cutting tools into the
rock mass is limited by the rock mass strength, therefore, the RPM of the cutterhead is
higher than when rock mass is less competent (e.g., CII), where the cutting tool penetrates
deeper. This is a possible explanation for the behavior of the cutterhead RPM observed
in Figure 5.

A close observation of Figure 6 shows a consistent decline in the median boring
pressure from rock class A through rock class CII. This general decline in the applied
pressure can be attributed to the decrease in the integrity of the rock mass from class
A to CII. Massive competent rock, like rocks in class A, will require high excavation
pressure for fragmentation than fractured rock such as those in class CII. In each rock type,
the boring pressure is widely variable with a lot of outliers (Figure 6). This variability
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stems from instantaneous heterogeneities that are encountered within one rock mass class.
The variability is more pronounced in the first three classes and not as much in class CII.

Table 4. Pairwise correlation of some input variables.

TBM
Parameter

Boring
Pressure

Cutterhead
Torque

Cutterhead
Thrust
Force

Cutterhead
RPM

Rate of
Penetra-
tion

Stroke
Speed

Gripper
Cylinder
Pressure

Pitching
Average
Motor
Amps

Boring
Pressure 1.00

Cutterhead
torque 0.21 1.00

Cutterhead
thrust force 0.26 0.28 1.00

Cutterhead
RPM 0.14 −0.03 0.45 1.00

Rate of
Penetration −0.10 0.05 0.07 −0.02 1.00

Stroke speed −0.10 0.05 0.07 −0.01 0.98 1.00
Gripper
Cylinder
pressure

0.07 0.08 0.38 0.40 0.09 0.07 1.00

Pitching 0.04 −0.04 −0.06 0.14 0.00 −0.01 −0.09 1.00
Average
motor amps 0.11 0.23 0.41 −0.07 0.21 0.22 0.24 −0.02 1.00

Figure 5. Distribution of cutterhead RPM in different rock mass classes.

Figure 6. Distribution of boring pressure in different rock mass classes.
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In terms of the rate of penetration or advancement rate, the median penetration rate
increased from class A to class CI. This is intuitive since it is expected to be more difficult
to advance in competent rock. CII however, shows an unexpected low penetration rate
as shown in Figure 7. This may be attributed to other operation factors that accompany
excavation in relatively weak rocks like class CII.

Figure 7. Distribution of TBM penetration rate in different rock mass classes.

The dataset had an obvious imbalance in the number of data points in each rock mass
class (Figure 8, Table 5). This imbalance tends to affect the performance of classification
models. Majority of the rock mass in the dataset were in class B. The number of rock mass
data points in classes A and CI are comparable with only a small fraction of the dataset
falling in class CII. Due to this imbalance, an oversampling technique was employed to
obtain a balanced training dataset for unbiased learning of the ML models. The upSample()
function in the caret package in the R software was used to conduct the oversampling of
the minority classes, A, CI, and CII to equal the majority class, B. It must be stated that the
oversampling was only conducted in the training set and not the test set since an imbalance
in the test set does not affect the performance of the already trained models.

As stated in Section 1.1, the Japanese highway classification system has six rock
classes, but the dataset used in this study only contained four rock classes, A through CII.
These classes fall in the general category of hard rock. Therefore, this study is applicable to
hard rock tunnel excavations.

Figure 8. Amount of data from each rock class showing an imbalanced dataset.
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Table 5. Amount of data from each rock class before and after oversampling the minority classes.

Rock Class Count

Unbalanced Balanced

A 5460 13,817
B 13,817 13,817
CI 4382 13,817
CII 288 13,817

3.2. Variable Importance

A sensitivity analysis was conducted to ascertain the level of influence each input
variable has on the models’ classification capabilities. Permutation of each input variable
was done while keeping the rest of the input variables constant and the mean decrease
in Gini index, a measure of total variance across the rock mass classes, was recorded.
The higher the mean decrease in Gini index, the higher the sensitivity to that variable.

Based on this analysis, cutterhead RPM is the most sensitive variable to the rock
mass class followed by the cutterhead thrust (Figure 9). Zhang et al. [8] observed a
similar relationship between cutterhead torque, cutterhead thrust, and rock mass classes,
and concluded that torque and thrust were good indicators of rock mass behavior. The least
sensitive variables are the stroke speed and rate of penetration, respectively. The high
sensitivity to the cutterhead RPM is somewhat intuitive since it is directly related to the
integrity of the rock mass being excavated. With the same level of cutterhead torque,
RPM will decrease significantly in less competent rock masses (e.g., class CII) as compared
to more competent rock (e.g., class A) as seen in Figure 5. A similar analogy can be given
for the cutterhead thrust. In general, it is expected that the rate of excavation/penetration
would increase significantly when cutting class CII as compare to operating in class A.
This was observed from class A through CI but the rate of penetration decreased in CII.
The rate of penetration can be affected by several factors such as intentional maneuvers by
the operator due to the unstable nature of the weak rocks (e.g., class CII). This response
can be seen in Figure 7.

Figure 9. Sensitivity level of rock mass class to input variables based on mean decrease in Gini index
expressed a percentage of the maximum Gini index.

4. Development of Machine Learning (ML) Models

Two machine learning techniques, random forest, and extremely randomized trees,
were applied to develop models for classifying the rock mass dataset into categories based
on JH rock classification system. This section discusses the data preprocessing, machine
learning models that were applied, and their learning process.
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4.1. Data Preprocessing

The TBM operation parameters were recorded at a much higher resolution, about a
fraction of a meter, as compared to the rock mass data, which were collected every 4 to10 m.
The rock mass data was taken at a coarse resolution because the rock properties in this
section of the tunnel were not changing much within a short interval. Where a change in
rock mass characteristics was observed, a finer rock mass data collection resolution was
used in order to capture all the variations in the rock mass. Another possible reason for
coarser resolution in the rock mass data is that taking the rock mass data involves shutting
down the operations to allow for geologist to be able to access the tunnel walls. On the
other hand, the machine operating parameters are easier to collect and does not require
any downtime. For this study, the resolution of the machine data and the rock mass data
had to be matched to enable usage of the machine data to predict the rock mass conditions.
The chainage interval in the two datasets was used as a key to match the two datasets.
That is, the rock mass record for a particular chainage interval is adjoined to all the TBM
records in that chainage interval. This was done for all the data points in the rock mass
dataset, creating the aggregate dataset used for this study.

The variables in the dataset consist of a wide range of scales, tens to thousand. Con-
sequently, the data was normalized so that the input variables are in the same scale.
According to Jayalakshmi and Santhakumaran [26], normalization helps minimize bias
caused by different scales of the input variables. Computational speed is also improved by
data normalization since the features are put on the same scale. As a result, that dataset
in this study was normalized using the min-max normalization which preserves the re-
lationship between the input and output variables. The input variables were scaled to a
range between a minimum of zero and a maximum of one. The preProcess() function in R
software was used to normalize the data in this study. The normalization is achieved using
Equation (1) [26].

x′ = (xmax − xmin)×
(xi − xmin)

(xmax − xmin)
+ xmin (1)

where x′ is the rescaled feature x, xmax is the maximum value of feature x, xmin is the
minimum value of feature x, and xi is the ith value of feature x.

4.2. ML Models Description
4.2.1. Random Forest (RF)

According to Zhang and Ma [23], random forest (RF) has been applied successfully in
a wide variety of projects and has seen tremendous acceptance in many disciplines, thus,
its inclusion in this study. RF also has the capability of ranking the importance of all the
input variables contributing to the prediction of the target variable.

The predictive abilities of multiple decision trees are harnessed by Random Forest,
an ensemble method. To practice each decision tree, bootstrapped samples are used and the
predictive capabilities of all the trained trees are aggregated to form the final model. A num-
ber of predictors, mtry, was randomly chosen in constructing the trees to be considered
at each node during the recursive binary splitting instead of using all the predictors [27].
This gives the technique its name, random forest. At each node, a different set of predictors
are used for node splitting; therefore, the variance of the resulting model is significantly
reduced compared to the individual regression tree. In training the decision trees, each split
is done to obtain two regions R1 and R2 as in Equation (2).

R1(j, s) =
{

X
∣∣XJ < s

}
and R2(j, s) =

{
X
∣∣XJ ≥ s

}
(2)

where j is the index in the predictor space with an upper limit of mtry and s is the cut point
for the split.
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The objective is to obtain j and s values that minimize the function (Equation (3)).

∑
i:xiεR1(j,s)

(
yi − ŷR1

)2
+ ∑

i:xiεR2(j,s)

(
yi − ŷR2

)2 (3)

with ŷR1 is the mean response for the training observations in R1(j, s); and ŷR2 is the mean
response for the training observations in R2(j, s).

This process is repeated until there is no decrease in residual sum of squares by further
splitting, at which point the terminal node is reached. The number of predictors to be
considered in the splitting at the nodes, mtry, is a hyperparameter that has been calibrated
using 5-fold cross-validation (CV) to achieve an optimum value for the best prediction
output in training the random forest model [27]. The optimal mtry was then used to fit the
final model.

4.2.2. Extremely Randomized Tree (ERT)

ERT is also an ensemble method similar to RF. The difference between RF and ERT is in
the mode of tree nodes splitting. While the splitting is deterministic in RF, it is randomized
in ERT. The randomized splitting in ERT has the tendency to further reduce the prediction
variance when the dataset has a low level of noise. This implies that when the dataset is less
noisy, ERT tends to perform significantly better than RF. However, when the data is noisy
ERT does not necessarily have an improved performance over RF. Due to the randomized
nature of node splitting, ERT is more computationally expensive than RF. Therefore, if the
performance of ERT is not significantly better than that of RF, it is recommendable to adopt
RF. A detailed description of ERT can be found in [28]. ERT is considered in this study
because of its semblance to the RF model which has proven to be effective in predicting
mechanical excavator’s performance [29] and its tendency to have improved performance
over RF.

4.3. Machine Learning Process

Since the response variable—rock mass class—has four levels, multi-class classification
was conducted using Random Forest and Extremely Randomized Trees. The models
were trained on 70% of the dataset and the remaining 30% was used to evaluate their
classification performance. These fractions were chosen because the dataset is large and
oversampling of the minority classes in the training set further increased the size of the
training set, hence, 70% of the data was used for the model training instead of the usual
80% that is generally used.

During the model training, 5-fold CV was used to tune the hyperparameters of the
models. In RF, the hyperparameter, mtry, is the number of predictors that are considered
in deciding the best split at each decision node [27]. The mtry for this dataset was 5.
The hyperparameters for the ERT are mtry and numRandomCuts. numRandomCuts is the
number of randomly selected splits for each mtry. The mtry and numRandomCuts in this
study were both 6. After obtaining the optimal hyperparameters the cross-validation run,
the final models were then fitted using these hyperparameters.

4.4. ML Model Performance Metrics
4.4.1. Accuracy and Balanced Accuracy

Accuracy is the measure of correct classifications. It is the ratio of the number of
observations that are correctly classified to the total number of observations. This metric is
only meaningful when evaluating balanced datasets. It loses its relevance when evaluating
an unbalanced dataset [30]. In studies involving unbalance datasets, balanced accuracy is
a more meaningful performance metric. It is calculated as the average of the proportion
corrects of each class individually, that is, the arithmetic mean of the precision and recall
(Equation (4)).

b =
p + re

2
(4)
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where b is the balance accuracy, p is the precision, and re is the recall

4.4.2. F1 Score

Precision measures the proportion of positive classifications that are correct in binary
classification. It is the ratio of the number of correct positive classifications to the total
number of positive observations [30]. Recall is a measure of the proportion of actual
positives that are identified correctly. This is also known as the sensitivity of the model [30].
There is usually a trade-off between precision and recall depending on the purpose of the
classification and the risk associated with the false-positive classification. The F1 score is
the harmonic mean of precision and recall (Equation (5)).

F1 =
2× p× re

p + re
(5)

4.4.3. Cohen’s Kappa Coefficient (k)

Kappa is a statistical measure of the agreement between different raters [31]. In this case,
it is the measure of the agreement between the predicted and observed rock mass classes.
Unlike accuracy, kappa takes into account classifications made by chance. It is given
by Equation (6). The following descriptions are given to various ranges of kappa: 0 =
agreement equivalent to chance; 0.1–0.20 = slight agreement; 0.21–0.40 = fair agreement;
0.41–0.60 = moderate agreement; 0.61–0.80 = substantial agreement; 0.81–0.99 = near perfect
agreement; 1 = perfect agreement [31]. In formula,

k =
p0 − pe

1− pe
(6)

where p0 is the relative observed agreement among raters; and pe is the hypothetical
probability of chance agreement.

5. Results and Discussion
5.1. Classification Performance the ML Models

The overall performance of the ML models was measured by the accuracy and Cohen’s
kappa. These were calculated by considering all the correct predictions and all the wrong
predictions. The performance of the models in predicting each rock class was measured by
the F1-score and balanced accuracy. Since the study involved a multi-class classification,
the performance metrics were computed by considering one class, e.g., class A, as positive,
while the other three classes, e.g., classes B, CI, and CII, were considered negative. This was
done until each rock mass class was considered positive to obtain the metrics presented
in Table 6.

Table 6. Performance metrics of the ML models in predicting each rock class.

Random Forest Extremely Randomized Trees

Rock Class F1 Score Balanced Accuracy F1 Score Balanced Accuracy

Class: A 0.92 0.95 0.93 0.95
Class: B 0.95 0.94 0.96 0.95
Class: CI 0.95 0.97 0.96 0.97
Class: CII 0.96 0.99 0.97 0.99

Based on the F1-score and the balanced accuracy, both RF and ERT accurately predicted
rock class CII with at least 96% in terms of the F1-score and 99% in terms of the balanced
accuracy. The worse model performance was recorded when predicting class A with
F1-score of at least 92% and balanced accuracies of 95%. The variation in performance
level in predicting the different rock mass classes could be related to the TBM operation
and excavation process. Rock mass class A consists of slightly weathered with few or no
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fractures, to fresh massive granites, which causes excessive cutter wear resulting in frequent
replacement of consumable components, e.g., cutters. This wear and tear, and subsequent
replacement of cutters can cause fluctuations in the TBM operating parameters and could
have resulted in the low prediction performance of class A as can be seen Table 6. As the
rock mass gets highly weathered and intensively fractured, like rock mass classified as CII,
less cutter wear will be observed, resulting in a fairly consistent set of operating parameters,
all other factors held constant. This can also be seen in Figure 6, where the boring pressure
showed less variability in class CII as compared to the rest of the rock mass categories.
In general, more consistent set of operating parameters should lead to models with high
prediction performance. In terms of classifying the overall rock mass in the various rock
mass classes, both models performed very well with the overall accuracy greater than 0.94
and Cohen’s kappa greater than 0.90, as shown in Table 7.

Table 7. Overall performance metrics of the ML models.

Model Accuracy Kappa

Random forest 0.942 0.901
Extremely randomized trees 0.950 0.914

Visual presentation of the classification by the two models in the form of confusion
matrix heatmaps are shown in Figures 10 and 11. The counter-diagonal boxes (top right
to the bottom left corner) represent correct prediction of the rock mass class while the
rest of the boxes represent misclassification. The intensity of the fill color of the boxes
represents the proportion of the data points that have been categorized into that class by
the model (misclassification and correct classification). It is interesting to note that in both
models, class A was only misclassified as class B but was not CI or CII (Figures 10 and 11).
Class B was misclassified as A and CI on a few occasions and only misclassified as CII once.
The misclassifications of CI were mostly as B with only one being labeled as class A by RF
and three labeled as CII. Both models only misclassified CII as CI once. This shows that
the models do not predict rock classes that are far off from the actual class, especially in
the case of A and CII. This means that on a very worst-case scenario of misclassification,
there is still confidence that the prediction is within the immediate neighborhood of the
actual rock mass class. Since the predicted rock mass classes will be used to determine the
required support type, it would be detrimental to classify CII as A and assume that it needs
no support. On the other hand, classifying A as CII will result in an unnecessary escalation
of the project cost in terms of the needed ground support for class CII.

Figure 10. Confusion matrix of the classification performance of the RF model.
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Figure 11. Confusion matrix of the classification performance of the ERT model.

5.2. Comparison of the ML Models

The overall classification performance of the two models was compared using boot-
strap sampling. 1000 bootstrap samples were taken from the test dataset with replacement
and the performance of both models was tested on each sample set. This gave normal
distributions of accuracy and kappa (Figure 12). The mean performance of ERT is higher
than that of RF, however, the 95% confidence interval for the two models overlap in terms
of both accuracy and kappa as shown in Table 8.

Figure 12. Distribution of kappa and overall accuracy of the ML models obtained from a bootstrap
sampling of the test.

Table 8. 95% confidence intervals of the overall performance metrics of the ML models.

Model Metric Lower (2.5%) 50.0% Upper (97.5%)

Random forest Kappa 0.889 0.901 0.912
Extremely randomized trees 0.902 0.913 0.924

Random forest Accuracy 0.935 0.942 0.949
Extremely randomized trees 0.944 0.950 0.956

This indicates that statistically, ERT does not significantly outperform RF.

6. Conclusions

In this study, two machine learning (ML) classification algorithms; random forest and
extremely randomized trees, were employed to characterize and classify ground conditions
along the Pahang-Selangor Raw Water Transfer (PSRWT) tunnel alignment in Malaysia
based on TBM operating parameters and rock mass data obtained based on JH rock mass
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classification system. The TBM operating parameters included in this approach are rate
of penetration, cutterhead torque, cutterhead thrust, cutterhead revolution per minute,
hydraulic cylinder stroke speed, boring pressure, and motor amps. Due to imbalance in the
rock mass data, an oversampling technique was used to obtain a balanced training dataset
for unbiased learning of the machine learning (ML) models. Multi-class classification was
done, categorizing the rock mass condition into A, B, CI, and CII classes per the JH system.
The JH classification system categorizes rock mass into six classes but the tunnel section
from which the dataset was obtained consisted primarily of hard rocks. Consequently,
only rock classes consistent with hard rock were encountered and analyzed in this paper.
An extension of this study is needed with a dataset that includes all the soft rock mass
classes to make the developed models compressive in all ground conditions that the TBM
may encounter along the tunnel tract.

The main conclusions of this study can be summarized as follows:

1. The proposed approach was applied to a dataset from the Pahang-Selangor Raw
Water tunnel (PSRWT) project in Malaysia. A comparison between the ML model
classification results and the measured rock mass classes shows that the proposed
approach is effective. The identification and classification accuracies were 95% and
94% for ERT and RF, respectively with kappa values of at least 0.90.

2. A bootstrap comparison of the performance of the two ML models, RF and ERT,
indicated no model outperformed the other. Due to the randomized nature of node
splitting, ERT is more computationally expensive than RF. Therefore, if the perfor-
mance of ERT is not significantly better than that of RF, it is recommendable to
adopt RF.

3. The most influential TBM operating parameter in classifying the rock mass is the
cutterhead RPM followed by cutterhead thrust. The two least influential parameters
are stroke speed and rate of penetration. Therefore, TBM thrust and RPM can be
adjusted in real-time by determining the rock mass class being excavated using the
ML models developed in this paper.

4. From a practical standpoint, the overall results obtained in this study show that the
data-oriented approach is a useful tool for on-the-fly rock mass conditions identifica-
tion, characterization and classification of ground conditions along tunnel alignment.
It can be a tool for on-site decision making such as selecting support systems or
refining preliminary support systems based on ground condition encountered.

5. Extension of this research should also focus on exploring other ML techniques includ-
ing deep learning methods as well as developing a framework for operationalizing
this approach in TBMs.
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