
applied
sciences

Article

Model Checking Resiliency and Sustainability of In-Vehicle
Network for Real-Time Authenticity

Jin Hyun Kim 1,* , Hyo Jin Jo 2,* and Insup Lee 3

����������
�������

Citation: Kim, J.H.; Jo, H.J.; Lee, I.

Model Checking Resiliency and

Sustainability of In-Vehicle Network

for Real-Time Authenticity. Appl. Sci.

2021, 11, 1068. https://doi.org/

10.3390/app11031068

Academic Editor: Kyungtae Kang

Received: 13 December 2020

Accepted: 6 January 2021

Published: 25 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Information and Communication, Gyeongsang National University, Jinju 52828, Korea
2 School of Software, Soongsil University, Seoul 06978, Korea
3 Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA 19104, USA;

lee@cis.upenn.edu
* Correspondence: jin.kim@gnu.ac.kr (J.H.K.); hyojin.jo@ssu.ac.kr (H.J.J.); Tel.: +82-10-9253-1935 (J.H.K.);

+82-10-4138-7957 (H.J.J.)

Featured Application: MAuth-CAN is a new CAN authentication mechanism, and the proposed
CAN model and verification techniques are useful to analyze timing properties of CAN applications.

Abstract: The Controller Area Network (CAN) is the most common network system in automotive
systems. However, the standardized design of a CAN protocol does not consider security issues,
so it is vulnerable to various security attacks from internal and external electronic devices. Recently,
in-vehicle network is often connected to external network systems, including the Internet, and can
result in an unwarranted third-party application becoming an attack point. Message Authentication
CAN (MAuth-CAN) is a new centralized authentication for CAN system, where two dual-CAN
controllers are utilized to process message authentication. MAuth-CAN is designed to provide an
authentication mechanism as well as provide resilience to a message flooding attack and sustainably
protect against a bus-off attack. This paper presents formal techniques to guarantee critical timing
properties of MAuth-CAN, based on model checking, which can be also used for safety certificates of
vehicle components, such as ISO 26262. Using model checking, we prove sufficient conditions that
MAuth-CAN is resilient and sustainable against message flooding and bus-off attacks and provide
two formal models of MAuth-CAN in timed automata that are applicable for formal analysis of other
applications running on CAN bus. In addition, we discuss that the results of model checking of those
properties are consistent with the experiment results of MAuth-CAN implementation.

Keywords: controller area network bus; authentication; authenticity; resiliency; sustainability; formal
verification; model checking; in-vehicle network

1. Introduction

Advanced digital control technology provides more convenience, safety, and pre-
dictability to automotive systems. Recently, many vehicles would not only make use of
local sensors, but also cooperate with other vehicles and infrastructures, such as the Intelli-
gent Transport System (ITS). For instance, Right-turn Collision Caution (RtCC) cooperating
with infrastructures can alert drivers in a risky situation hidden when they would make
right turn. ITS monitors the situation about oncoming vehicles and pedestrians around
intersections or a corner with poor visibility from drivers where a vehicle would make a
right turn. It cooperates with the vehicle via road-to-vehicle communication so the infor-
mation on potential approaching risk is conveyed by vehicle-to-vehicle communication
with audio and visual alerts to warn the driver, and when necessary, the driver is alerted
about the approach risk. The infrastructure uses a dedicated ITS frequency of 760 MHz for
road-to-vehicle and vehicle-to-vehicle communication to gather information that cannot be
obtained by vehicle sensors. In addition, various features, such as Communication Radar
Cruise Control, Red Right Caution, and Emergency Vehicle Notification using network

Appl. Sci. 2021, 11, 1068. https://doi.org/10.3390/app11031068 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-2308-1638
https://doi.org/10.3390/app11031068
https://doi.org/10.3390/app11031068
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11031068
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/3/1068?type=check_update&version=3

Appl. Sci. 2021, 11, 1068 2 of 23

communication also helps drivers be more predictive against approaching risky situations
so that their driving is safe and predictable.

However, the vehicle connecting to open networks can be vulnerable to security attacks.
For instance, many studies such as [1–6] have shown that the adversary is able to easily access
an in-vehicle network from the outside and control vehicles. Once an adversary compromises
an ECU, it disguises itself as a normal node, breaches to other ECUs, and controls and disrupts
normal driving function. In addition, DoS (Denial of Service) is also one of the most common
attacks that exhausts data processing and communication resources.

To prevent the masquerade attack to a vehicle network, the most popular defense
technologies are intrusion detection systems (IDS) and authentication systems. Most pro-
posed IDS techniques are not, however, fast enough to protect the attack, i.e., the adversary
can compromise the vehicle system before IDS detects the attack [7–13]. In order to ad-
dress these issues, many authentication protocols have been studied, such as [14–20].
These works can be classified into two categories: authentication using group keys [14–17]
or authentication using pairwise keys [18–20]. In case that CAN uses a group key for
message authentication, the group key could be exploited if any node using the group
key is compromised. In case of authentication using pairwise keys, CAN bus can be
overflowed by authentication tags (e.g., message authentication code) if CAN bus uses a
basic pairwise key-based authentication method where every destination node requires
a unique authentication tag for verification of a CAN message. Thus, the work [18–20]
adopts a centralized node-based authentication to deal with the overflow issue.

However, this centralized node-based authentication has two problems. First, the au-
thentication by a centralized node can be delayed by DoS attack on the centralized node.
Second, in case of the centralized authentication, the authenticator could miss a message if it
is too slow to process every message. Thus, it should be guaranteed that the authentication
is complete on time no matter how often the adversary sends an attack message.

To address the above problems, Jo et al. have proposed a new authentication pro-
tocol, named MAuth-CAN (Message Authentication-CAN), in [21]. MAuth-CAN uses
an ECU node dedicated to authenticating each message over the CAN bus by using
pairwise keys. For sharing the authentication result with other ECUs, the authenticator
uses an authentication-fail error (AFR) message. The authentication fail report (i.e., AFR
message) is transmitted and gives alerts to other nodes only when a message is authenti-
cated. This minimizes the communication overload caused by a centralized authentication
because the authentication fail report is transmitted only when a message cannot pass
authentication. In addition, Jo et al. addresses Bus-off Attacks (BoAs) by introducing their
centralized message authentication to dual-CAN controllers. Under the adversary’s BoA
to the authenticator, the AFR message from the authenticator can also be destroyed by the
adversary, resulting in consecutive transmission errors. If the transmission error count of
the authenticator steps over a threshold, it is enforced to leave CAN bus for a while and
reset to recover the connection to CAN bus. Jo et al. adopts dual-CAN controllers for the
authenticator to be more sustainable under BoA. Jo et al. [21] also showed that (1) MAuth-
CAN is robust against the masquerade attack and BoA, (2) it requires approximately 46%
less CAN bandwidth than a comparable protocol [19], and (3) it does not need to modify
the current CAN controller to apply the CAN protocol.

However, they have not provided the proof of timing-related properties of MAuth-
CAN that can be used for security proof and evidence for practical use of real applications.
For instance, MAuth-CAN should prove that no adversary message is accepted by any
node while authentication is in processing under DoS attack. It is related to a timeout
for AFR, which delays message communication. Thus, it is necessary to check if such a
timeout is bounded to check if the authentication delay meets the maximum acceptance
communication delay.

In this paper, we show that the authentication of MAuth-CAN is resilient enough to
prevent a masquerade attack for the given timing constraints and is sustainable under a
DoS attack. In addition, we prove that the timeout for authentication can be bounded with

Appl. Sci. 2021, 11, 1068 3 of 23

respect to the message transmission time. In this paper, we apply formal methods of model
checking to prove the timing properties of MAuth-CAN. We build formal models of CAN
and MAuth-CAN using timed automata and perform model-checking to verify the critical
timing properties of MAuth-CAN using UPPAAL SMC and UPPAAL MC. We present
two formal models of CAN and MAuth-CAN. The first model abstracts MAuth-CAN by a
producer-consumer model in terms of authenticator and attacker, so that it is proved that
the authenticator in terms of a consumer addresses all attack messages from the attacker in
terms of a producer. The second model details CAN in the level of MAC frame of the data
link layer, so that the model of MAuth-CAN is shown to be valid in the data-link layer of
CAN networking.

This paper presents sufficient conditions to ensure:

• The centralized authentication of MAuth-CAN never fails to make AFR messages
reach individual ECUs within a specific bounded time,

• The authentication of MAuth-CAN can never be a victim of BoA.

The above conditions are relevant to (1) the size of reception queue of authenticator’s
CAN controller, (2) the relation between authentication time and CAN bus transmission
time, and (3) the number of CAN controllers of the authenticator.

This paper presents the following three contributions:

• In terms of MAuth-CAN security, it shows that MAuth-CAN is resilient and sustain-
able against a message flooding attack and bus-off attack under the specific conditions
this paper provides;

• It presents a usage of formal methods to obtain certificates of safety and security standards
and regulations, such as ISO (International Organization for Standardization) 26262;

• It presents new formal models of CAN bus at the level of MAC (Media Access Con-
trol) of the data link layer that can be useful for verification of properties of other
applications running on CAN bus.

The rest of the paper is organized as follows: Section 2 discusses the related work.
Section 3 presents the background theory of this work. Section 4 overviews MAuth-CAN,
a centralized CAN authentication, two attack scenarios i.e., masquerade attack and BoA
attack, and MAuth-CAN’s countermeasure to those attacks. Section 5 shows formal proof
of our proposed sufficient conditions for MAuth-CAN resiliency to a masquerade attack
and sustainability to BoA attack, using symbolic and statistical model checking techniques.
Section 6 presents more results from the implementation of MAuth-CAN. In Section 7,
we conclude this paper with the potential future work.

2. Related Work

In 2010, Koscher et al. were the first to demonstrate attacks on in-vehicle network
using a real vehicle [1]. They introduced the CARSHARK tool, which makes it easy for
an adversary to analyze and inject attack packets on in-vehicle network, i.e., CAN bus.
After the first vehicle attack, many studies included new attack surfaces on an in-vehicle
network [2–6]. To deal with these cyber-attacks on in-vehicle network, intrusion detection
systems [7–13] and message authentication protocols [5,14–21] were studied.

In the work of [7–10], the transmission frequencies or sequences of CAN packets
were used to detect the CAN traffic abnormality caused by in-vehicle network attacks.
Recently, deep neural network (DNN) model-based intrusion detection systems that take
transmission frequencies or sequences of CAN packets as input values have been proposed
in [11,12]. However, these studies [7–12] cannot detect masquerade attacks by a compro-
mised ECU because the compromised node can mimic the transmission frequencies or
sequences of CAN packets to bypass intrusion detection algorithms.

To handle the masquerade attacks, Cho et al. proposed an ECU’s clock-based intrusion
detection system [13]. In this study, a clock skew for each ECU is profiled as a hardware fingerprint,
which is unique for every ECU, and this inimitable value is used to identify a masquerading
ECU. However, this study cannot be used to deal with masquerade attacks using aperiodic CAN

Appl. Sci. 2021, 11, 1068 4 of 23

messages generated from aperiodic vehicle operations, such as auto-parking, lane keeping aid
(LKA), and adaptive cruise control (ACC) functions. Furthermore, this clock-based intrusion
detection can be defeated by the clock emulation attack proposed in [22].

To address the limitations of existing intrusion detection systems, message authentica-
tion protocols for in-vehicle network have been designed. In general, message authentica-
tion protocols can be divided into two categories: a group key-based authentication [14–17]
and a central node-based authentication [18–21]. In the group key-based authentication
studies [14–17], one group key shared by all ECUs is used to generate authentication tags
such as message authentication code. However, these studies cannot also handle masquer-
ade attacks because one group key could be accessed by a compromised node. In light
of this, centralized node-based authentication studies have been presented in [18–21] for
handling masquerade attacks by compromised ECUs. Since the centralized node-based
authentication does not share one group key with all ECUs, a compromised ECU cannot
access the authentication keys stored in other ECUs. However, the methods [18,19] cannot
be applied into legacy vehicles because the CAN-controller must be modified to include
new functions that do not follow the CAN-standard or incurs network overhead that
exceeds the maximum capacity of the CAN bus. Furthermore, the protocol [20] also has
limitation that several bytes of a CAN message is not included in the authentication value
generation process.

To handle these issues of authentication protocols, Jo et al. presented an authentication
report-based message authentication [21]. This protocol does not incur network overhead
nor require CAN controller modification, but there is a message authentication delay
caused by an authentication report message. Even though the work of [21] evaluated the
authentication delay by using CAN development boards, there is no formal analysis about
the delay which could affect real-time operations of vehicles. Thus, this paper puts the
authentication delay of [21] into formal analysis using UPPAAL SMC and UPPAAL MC.

In addition, we did the several Arduino-based authentication tests, which are related
to what-if analysis and robustness checking defined in [23], by measuring the authentication
delay of [21] in the worst case scenarios to show that the authentication delay is bounded
within a certain amount of time even when there are DoS attacks such as message flooding
and bus-off attacks on CAN.

3. Preliminaries

In this section, we give the overall of our approach and overview our formal tech-
niques, model checking, UPPAAL and CAN communication, prior to MAuth-CAN in the
following section.

3.1. Our Approach

The CAN authentication in MAuth-CAN meets two goals: (1) No receiver can open
any message that does not go through a centralized authentication of MAuth-CAN, (2) The
CAN controller for message authentication is never enforced to leave CAN bus by consecu-
tive and numerous transmission errors by intention.

In this paper, we show why MAuth-CAN never fails to meet the above goals. To sim-
plify the above goals, we present sufficient conditions in theorems, which should be satisfied
to meet the goals (Section 4.4, and then prove them by model checking (Section 5)). We use
a high-level model of MAuth-CAN, where the reaction of the authenticator to the attack
message is highlighted (Section 5.1). Then, using model checking, we prove that the au-
thenticator of MAuth-CAN passes no attack message without verification even under even
consecutive attacks if the sufficient conditions in Theorem 1 consisting of Lemma 1 and
Lemma 2 are satisfied. We present a low-level formal model of MAuth-CAN in the MAC
level of the data link layer of CAN, which is detailed enough to be able to reflect actual
behaviors of CAN. This model ensures our verification is practical enough to provide valid
proofs of security of MAuth-CAN (Section 5.2). Then, we prove Theorem 2 by proving
Lemma 3, which is the essential property of MAuth-CAN assumed by Theorem 2. Finally,

Appl. Sci. 2021, 11, 1068 5 of 23

we show that our verification results are consistent with the actual implementation of
MAuth-CAN (Section 6).

In the following subsection, we present our model method technique, model checking
using UPPAAL.

3.2. Model Checking

Model checking is a rigorous verification method that presents a mathematical proof
for a given property of the system. It accepts a system model and properties that the
system model should satisfies. During verification, model checking explores all states of
the system by taking every symbolic computational step and exhaustively check if every
state satisfies given properties. Since model checking explores thoroughly all states of the
system, it requires numerous time and memories. It is used to obtain guarantee of given
properties of safety critical systems by mathematical proving techniques.

In this paper, we apply UPPAAL, a model checker, to prove MAuth-CAN’s properties.
UPPAAL tool suite includes various analysis techniques such as symbolic model checking,
statistical model checking, and simulation. Symbolic model checking of UPPAAL accepts
timed automata (TA) [24] as modeling language and use CTL (Computational Tree Logic)
for property specification. CTL in UPPAAL comprises path formulas and state formulas.
A path formula consists of branch quantifiers and path quantifiers. A and E, branch
quantifiers, denotes “all paths” and “any path”, respectively. � and ♦, path quantifiers,
represent “all states” and “exist a state”, respectively.

Letφ a state formula. A path formula along with a state formula is expressed by the grammar:

ϕ ::= φ|A�φ|E�φ|A♦φ|E♦φ|φ1→φ2

Using such a formula, reachability, safety and liveness properties can be formulated in
UPPAAL. Reachability properties are expressed by the path formula E♦φ, meaning that a
state satisfying φ is reachable.

Safety properties are formulated by the path formula A�. For example, A�φ requires
that φ should be true in all reachable states. Meanwhile, E�φ denotes that there exists
a maximal path such that φ is always true. A maximal path is a path that is either
infinite or where the last state has no outgoing transitions [25]. Liveness properties are
formulated by the path formula A♦φ, which means that there exists a state satisfying φ
in all the branches, i.e., φ is eventually satisfied. One of useful formulas is the leads to or
response property, which are written A�(φ→A♦ψ). That means that whenever φ happens,
ψ should hold eventually [25]. For instance, whenever a message is sent, that should
always be acknowledged.

UPPAAL SMC accepts a network of stochastic timed automata (NSTA). A model of
network of timed automata in UPPAAL is redefined by a network of stochastic timed
automata where the non-determinism of behavior in a timed automata model is refined
by a probability distribution, so that the property for a given model is characterized by a
probability that an event happens or a property holds.

The specification of UPPAAL SMC is based on Metric Interval Temporal Logic [26].
For an NSTA M, PM (]φ) denotes the probability that a random run of M satisfies φ.
The problem of checking PM (φ) ≥ p (p ∈ [0, 1]) is undecidable. For this reason, for the
sub-logic of cost-bounded reachability problem PM(♦(x≤C) AP) ≥ p, where x is a clock, C
is a time bound, and AP is a conjunction of predicates over the state of a NSTA, UPPAAL
SMC approximates the answer using simulation-based algorithms [27]. In UPPAAL SMC,
the following three types of questions can be answered:

1. Probability estimation: What is the probability PM(♦(x≤C) AP) for a given M?
2. Hypothesis testing: Is the probability PM(♦(x≤C) AP) for a given M greater or equal

to p [0, 1]?
3. Probability comparison: Is the probability PM(♦(x≤C)AP1) greater than the probability

PM(♦(x≤C)AP2)?

Appl. Sci. 2021, 11, 1068 6 of 23

PM(♦(x≤C)AP) is expressed by “P[⇐ C](<> AP)” in UPPAAL. This formula omits x
from the original formula assuming that the global clock is used implicitly by formula.
Besides, the following two forms of queries to simulate a given model:

• simulate [bound; N] {E1, E2, . . . , Ek}: Simulate a model and return results in E1, . . . ,
Ek expressions. N represents the number of simulations.

• E[bound; N] (min|max: expr): Simulate a model N rounds of which each precedes up
to bound time units and return the min or max of the expression expr.

where bound is a time bound on the simulation, Ek is an expression that would be
monitored and visualized.

In this paper, we use both UPPAAL and UPPAAL MC for proving properties of
MAuth-CAN and simulating our model of MAuth-CAN. In Section 5, we present MAuth-
CAN model of TA and various properties specification in CTL and verification results from
UPPAAL.

3.3. CAN (Controller Area Network)

A Controller Area Network (CAN) is a de-facto standard for an in-vehicle network.
Basically, once a node using CAN releases a message onto CAN bus, CAN broadcasts the
message to all nodes, and the message is selectively picked up by an ECU that is one of
message’s destinations. Table 1 shows the structure of the CAN packet frame.

Table 1. CAN packet frame (Unit: bits).

SOF ID Control Data CRC ACK EOF

1 11 6 0–64 16 1 7

Table 2 shows the individual frames of a CAN packet. Each node is given its own
CAN ID, which plays a role as priority for CAN bus. Two or more nodes release messages
into CAN bus at the same time, then one of them with the higher priority can transmit the
message. In CAN bus, 0 (dominant bit) has a higher priority over 1 (recessive bit). That is,
CAN controller permits 0 to flow over CAN bus rather than 1 when both are released
at time same time. CAN causes various errors, such as bit, stuff, CRC, and ACK errors.
Once a node on CAN bus encounters one of the errors, rest of nodes are informed the error
simultaneously. Each node updates one of error counters, such as Receive Error Counter
(REC) and Transmit Error Counter (TEC), according to error types error mode depending
on error counter. For instance, a node transits into the passive error from the active error
state when REC or TEC is over 126 (≥127). A node under the passive error state goes to
bus-off state when TEC is over 255 (≥256), but the node is not driven to bus-off state by
REC. Once a node is at bus-off state, it is enforced to leave the CAN bus for a specific time.
TEC has different increasing and decreasing rates. Every time a transmission error happens,
TEC increases by 8. Meanwhile, it decreases by 1 every time a transmission is successful.

Table 2. Symbol and variable definitions.

Var UPPAAL Var Description

ECUi nodid ECU with id i
AUTH Authenticator

CANIDi canid CAN id used by ECUi
Msgi Message with absolute sequence id i

AFRi,1|2 AFR message for message Msgi
Auth(Msgi) Authentication of message Msgi
Tran(Msgi) Transmission by CAN bus for message Msgi

Accept(Msgi) Action of accepting message Msgi by ECU
TxMsgi txMsg[i] Message released by CANIDi
RxMsgi rxMsg[i] Message read by CANIDi

CANBus canstat Predicate to indicate whether CAN bus is occupied or not

Appl. Sci. 2021, 11, 1068 7 of 23

Table 2. Cont.

Var UPPAAL Var Description

Tauth AUTU_TIME Authentication processing time of authenticator
Ttx TX_TIME Transmission time of CAN bus

UCMsgCnt AttkMsgCnt The number of messages that remain unchecked by the authenticator
TB A waiting time that CAN controller waits for AFR message

IQSizei MAX_QSIZEi The reception queue size of CANIDi

4. MAuth-CAN

This section overviews MAuth-CAN, a new CAN authentication technology, and their
properties for protection of masquerade attack and BoA. In addition, we formulate proper-
ties for model checking of MAuth-CAN. Prior to description of MAuth-CAN protocol and
models, Table 2 defines symbols and variables for formal descriptions.

4.1. System and Adversary Assumptions

In this subsection, we provide the assumptions for CAN and adversary (attacker),
in particular, their capability for defense and attack.

4.1.1. System Assumptions

First, the system dedicates to the authenticator an ECU with two CAN controllers
for CAN message authentication. The dedicated ECU is assumed to be assigned to the
highest priority CANID, which is open to anyone. Second, we assume that it is possible to
compute the maximum acceptable communication delay for a given application running
and communicating over CAN. Third, we assume that the ECU, i.e., the authenticator,
for authentication is very hard for the attacker to compromise so as to drop the assumption
that CAN is a victim of a single point failure (SPF) where all points lose a specific security
once a point is compromised. This assumption can be achieved by applying lightweight
tamper-resistance hardware such as SMART [28] and TrustLite [29] into the authenticator.

4.1.2. Adversary Assumptions

An adversary is subject to the following assumptions: First, any adversary reaches a
node responsible for driving controls and can cause bad driving consequences. Second,
two or more adversary nodes cannot perform DDoS (Distributed DoS), i.e., attacker cannot
compromise more than one ECU node. Third, the information of CAN messages, such as
source address, data, etc., transmitted on CAN bus can be fabricated, forged by adversary
node. Fourth, the highest priority ID can be exploited by an adversary. Fifth, each ECU has
a different CAN controller and the different number of the message receiving queues from
the others. Sixth, each ECU is equipped with a single message buffer each for transmission
and reception.

4.2. Attack Scenarios
4.2.1. Masquerade Attack

An adversary fabricates CAN messages with a normal CANID so that vehicle driving
is illegally controlled by adversary’s control messages. For example, the compromised
ECU can transmit a CAN message using the CANID of an ECU related to the engine to
control the vehicle’s speed. According to [5], the CANID of 0x43F was transmitted by a
compromised node to actuate the vehicle’s engine.

4.2.2. Denial of Service Leading to Bus-Off

Figure 1 describes a scenario of an adversary’s Denial of Service attack using BO.
The adversary performs DoS attack with consecutive attack messages, in particular, while
the authenticator needs to broadcast an authentication-fail report. When both the adversary
and the authenticator attempt to send messages with the same identifier simultaneously,

Appl. Sci. 2021, 11, 1068 8 of 23

the AFR and the attack message collide with each other. As a result, the transmission error
occurs and increases TEC on both sender and receiver. If the TEC of the authenticator
goes behind the threshold of Passive Error mode, it has less chances to transmit messages
than the attacker. This situation can continue by the crafty attacker until the authenticator
becomes off CAN bus.

Figure 1. Bus-off attack scenarios from a single-point adversary (IFS: Interframe space, Suspend: Suspend transmission,
RX mode: Reception mode, Active: Error active state, Passive: Error passive state, C#1: Controller #1, C#2: Controller #2).

4.3. Countermeasures of MAuth-CAN

To protect from the above attacks, MAuth-CAN performs the authentication using
dual-CAN controllers as shown in Figure 2.

Figure 2. New authenticator model with dual CAN controllers.

As the authenticator uses two CAN controllers, the reception and transmission queues
are doubled. The controller has its own transmission error counter (TEC) and receive error
counter (REC), thus dual-CAN controllers have two TECs and RECs for authentication.
In particular, TEC is the decisive variable that determines to expel a CAN controller from
CAN bus.

4.3.1. Countermeasure to Masquerade Attack

To avoid masquerade attacks, MAuth-CAN performs the authentication for every
single message via CAN bus, as shown in Figure 3. When an ECU transmits a message
upon CAN bus, every CAN controller takes the message into its reception queue but
delays in reading it until the authentication for the message is done. A CAN controller
keeps a new message in its reception queue for T B time units, as shown in Figure 3.
The controller reads a new message when the TB expires (Pass scenario in Figure 3). If a
message does not pass authentication, then a CAN authenticator creates and broadcasts an
error report i.e., an authentication-fail report (AFR) and ECUs discard the message (Fail
scenario in Figure 3). MAuth-CAN uses the duration of the length of 4 × Ttx for TB under
the assumption that the transmission time is always greater than the authentication time.
In this paper, we present the results of model checking for proving that the condition and
the assumptions of MAuth-CAN authenticator are sufficient to protect masquerade attack
to CAN system. The details regarding the AFR message is given in [21].

Appl. Sci. 2021, 11, 1068 9 of 23

Figure 3. Basics of MAuth-CAN.

4.3.2. Countermeasure to DoS and Bus-Off Attacks

Figure 4 shows a scenario that MAuth-CAN performs CAN message authentication
under BoA, and consequently sends all AFR messages to ECUs when a message cannot
pass the authentication.

Figure 4. MAuth-CAN resistant against flooding.

AFR Flooding
Every time an unauthenticated message comes in, the authenticator instantiates and

broadcasts an AFR. Ideally, if the authenticator always dominates CAN bus over any nodes
including the attacker, every ECU under masquerade attack must receive the AFR message
within 4 × Ttx time units according to Figure 4. In order for the attacker not to be able to
infer anything from AFR messages or reuse the previous AFR messages, the authenticator
uses the reversed hash chain. An AFR message consists of two packets. Thus, the AFR
message for the first adversary message can reach all nodes within 3× Ttx time unit, but the
AFR message for the second adversary message can be delayed by the first AFR message.
For this reason, the waiting time of ECU for authentication needs to be 4 × Ttx time units.

BO Avoidance

Appl. Sci. 2021, 11, 1068 10 of 23

Both authenticator and attacker attempt to dominate CAN bus at the same time if the
highest priority CANID is open. If they send messages simultaneously with the same ID,
the transmission error occurs and increases TEC of message senders i.e., the authenticator
and the attacker, here. If either of authenticator or attacker’s TECs steps over a threshold
of Active Error mode, it transits to Passive Error mode. When TEC goes over the limit
of Passive Error mode, the ECU in Passive Error mode is enforced to leave CAN bus for
a while.

To avoid this situation, the authenticator is equipped with two CAN controllers
using two TECs of each CAN controllers. Consequently, both CAN controllers of the
authentication cannot be enforced to enter into Passive Error mode at the same time.

MAuth-CAN is resilient to masquerade attacks if the authenticator leaves no missing
message to verify at all. It is also sustainable under BoA because the attacker is disabled to
send adversary messages faster than authenticator using two TECs in dual-CAN controllers.

4.4. Sufficient Conditions for MAuth-CAN Resiliency and Sustainability

CAN is resilient to masquerade attack if the authentication makes it to investigate
every single message. Also, it is sustainable if the authentication is never disabled by BoA.
MAuth-CAN achieves the above two goals by introducing a new authenticator equipped
with two CAN controllers. In this paper, we show that MAuth-CAN achieves the above
two goals with the following properties and prove them using model checking.

Theorem 1. If MAuth-CAN authenticator uses a reception queue of size 2 for incoming new
messages and the authentication time is always less than the message transmission time, it never
fails to transmit AFR messages and the duration for ECUs to wait for AFR message needs no longer
than 4 × Ttx.

Theorem 1 emphasizes on the size of the reception queue for the CAN controller of the
authenticator and the relation between the authentication time and the transmission time.
The size of the CAN controller’s reception queue is relevant to the resiliency of MAuth-
CAN authenticator. The relation between the authentication time and the transmission
time is relevant to the waiting time of ECUs for AFR messages.

Theorem 2. MAuth-CAN authenticator is sustainable under BoA if it uses two CAN controllers.

The sustainability of MAuth-CAN in Theorem 2 means that MAuth-CAN is never
enforced to be off from CAN bus. In order to prove Theorem 2, we focus on TEC of authenti-
cator’s CAN controllers because TEC of the CAN controller goes over the threshold of Passive
Error mode, then the CAN controller is enforced to leave CAN bus for a while. Thus, we will
show that TEC of authenticator’s CAN controllers never goes over the threshold of Passive
Error mode even if that of attacker’s CAN controller goes over the threshold. In next section,
we will prove the above two theorems using model checking techniques.

5. Formal Analysis of MAuth-CAN

In this section, we present two formal models of CAN authentication in TA: An abstract
CAN networking model and a detailed ECU model. The first model, the CAN networking
model, captures the interlocking between three components: the authenticator, CAN bus,
and ECUs. It focuses on verification of Theorem 1. The second model, the ECU model,
details the behaviors of ECUs and bus at a bit-wise level so that the analysis can be done at
a lower level. It focuses on verification of Theorem 2.

5.1. Model Checking Analysis of Theorem 1

To avoid the complexity of formal analysis, we abstract interaction between CAN
components, as shown in Figure 5.

Appl. Sci. 2021, 11, 1068 11 of 23

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 27

with two CAN controllers. In this paper, we show that MAuth-CAN achieves the above
two goals with the following properties and prove them using model checking.

Theorem 1. If MAuth-CAN authenticator uses a reception queue of size 2 for incoming new mes-
sages and the authentication time is always less than the message transmission time, it never fails
to transmit AFR messages and the duration for ECUs to wait for AFR message needs no longer
than 4 × Ttx.

Theorem 1 emphasizes on the size of the reception queue for the CAN controller of
the authenticator and the relation between the authentication time and the transmission
time. The size of the CAN controller’s reception queue is relevant to the resiliency of MAuth-
CAN authenticator. The relation between the authentication time and the transmission
time is relevant to the waiting time of ECUs for AFR messages.

Theorem 2. MAuth-CAN authenticator is sustainable under BoA if it uses two CAN controllers.

The sustainability of MAuth-CAN in Theorem 2 means that MAuth-CAN is never en-
forced to be off from CAN bus. In order to prove Theorem 2, we focus on TEC of authenti-
cator’s CAN controllers because TEC of the CAN controller goes over the threshold of Pas-
sive Error mode, then the CAN controller is enforced to leave CAN bus for a while. Thus,
we will show that TEC of authenticator’s CAN controllers never goes over the threshold of
Passive Error mode even if that of attacker’s CAN controller goes over the threshold. In next
section, we will prove the above two theorems using model checking techniques.

5. Formal Analysis of MAuth-CAN
In this section, we present two formal models of CAN authentication in TA: An ab-

stract CAN networking model and a detailed ECU model. The first model, the CAN net-
working model, captures the interlocking between three components: the authenticator,
CAN bus, and ECUs. It focuses on verification of Theorem 1. The second model, the ECU
model, details the behaviors of ECUs and bus at a bit-wise level so that the analysis can
be done at a lower level. It focuses on verification of Theorem 2.

(a) Authenticator

(b) ECU in transmission (c) CAN Bus

Figure 5. CAN networking model. (a) This figure shows the state transitions of the authenticator in
MAuth-CAN. (b) It shows the state transitions of an ECU in data transmission. (c) It shows the state
transitions of the CAN bus for data transmission.

The model of CAN interaction comprises authenticator, attacker, and CAN bus. The at-
tacker model has the same behavior as normal ECUs, but the authenticator in our model
responds to the message from the attack by broadcasting AFR messages. We do not include
the behavior of the CAN controller of CAN message receiver nodes in our model since the
authenticator model has the same behavior as CAN message receiver and we focus on the
resiliency of MAuth-CAN’s authentication that handles every attack message.

The authenticator model in Figure 5a waits for any message through CAN bus. When
the authenticator reads a message (RxMsg) from CAN bus, the authenticator in Figure 5a
transits into the location Authenticate for processing authentication. If the message passes
the authentication, it returns to Idle state. Otherwise, it joins SendRep state. Then, it sends
the AFR message for the unauthenticated message when CAN bus is available (CANBUS
= FREE). The authenticator keeps any message in its reception queue (EnQ) when it is in
authentication. If the queue is empty, the authenticator returns to the initial location Idle.
Otherwise, it returns to Authenticate and performs authentication for another incoming
message again.

The CAN controller model of an attacker in Figure 5b is simpler than the authenticator.
If the CAN controller has a message to send and CAN bus is available, it just sends it
through CAN bus. Notice that it returns to the initial location when the transmission of the
message is acknowledged by CAN bus through the event RxMsg.

The CAN bus model in Figure 5c controls the permission for a CAN controller to
access CAN bus. Initially, it allows any controller to use CAN bus by setting CAN-
BUS:=FREE. If the CAN bus receives a message via TxMsg, it locks the key by setting
CANBUS:=OCCUPIED, prohibits any node from using CAN bus, moves to Transmit loca-
tion, and notifies the transmitting of a message. Finally, the CAN bus returns to the initial
location Idle with unlocking the key with setting CANBUS:=FREE.

Based on the CAN networking model in Figure 5, Figure 6 captures CAN behavior
models in TA. It also comprises three models: Authenticator, ECU and CAN bus. Four TA
processes are instantiated for simulation and verification: Two authenticator processes
from the authenticator model, one CAN attacker process from the ECU model, and one
CAN bus process from the CAN bus.

Appl. Sci. 2021, 11, 1068 12 of 23

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 27

Figure 5. CAN networking model. (a) This figure shows the state transitions of the authenticator
in MAuth-CAN. (b) It shows the state transitions of an ECU in data transmission. (c) It shows the
state transitions of the CAN bus for data transmission

The model of CAN interaction comprises authenticator, attacker, and CAN bus. The
attacker model has the same behavior as normal ECUs, but the authenticator in our model
responds to the message from the attack by broadcasting AFR messages. We do not include
the behavior of the CAN controller of CAN message receiver nodes in our model since the
authenticator model has the same behavior as CAN message receiver and we focus on the
resiliency of MAuth-CAN’s authentication that handles every attack message.

The authenticator model in Figure 5a waits for any message through CAN bus. When
the authenticator reads a message (RxMsg) from CAN bus, the authenticator in Figure 5a
transits into the location Authenticate for processing authentication. If the message passes
the authentication, it returns to Idle state. Otherwise, it joins SendRep state. Then, it sends
the AFR message for the unauthenticated message when CAN bus is available (CANBUS
= FREE). The authenticator keeps any message in its reception queue (EnQ) when it is in
authentication. If the queue is empty, the authenticator returns to the initial location Idle.
Otherwise, it returns to Authenticate and performs authentication for another incoming
message again.

The CAN controller model of an attacker in Figure 5b is simpler than the authentica-
tor. If the CAN controller has a message to send and CAN bus is available, it just sends it
through CAN bus. Notice that it returns to the initial location when the transmission of
the message is acknowledged by CAN bus through the event RxMsg.

The CAN bus model in Figure 5c controls the permission for a CAN controller to access
CAN bus. Initially, it allows any controller to use CAN bus by setting CANBUS:=FREE. If the
CAN bus receives a message via TxMsg, it locks the key by setting CANBUS:=OCCUPIED,
prohibits any node from using CAN bus, moves to Transmit location, and notifies the trans-
mitting of a message. Finally, the CAN bus returns to the initial location Idle with unlocking the
key with setting CANBUS:=FREE.

Based on the CAN networking model in Figure 5, Figure 6 captures CAN behavior
models in TA. It also comprises three models: Authenticator, ECU and CAN bus. Four TA
processes are instantiated for simulation and verification: Two authenticator processes
from the authenticator model, one CAN attacker process from the ECU model, and one
CAN bus process from the CAN bus.

(a) CAN authentication using two buffers of the incoming queue in TA.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 27

(b) ECU in TA (c) CAN bus in TA

Figure 6. Simulation of CAN networking in TA. (a) This figure shows two UPPAAL processes of
message authenticator that individually process authentication of incoming message. (b) This fig-
ure shows an UPPAAL process of an ECU that continuously sends messages, simulating message
flooding attack. (c) This figure shows an UPPAAL process of a CAN bus that simulates the mes-
sage transmission in the synchronization with the sender ECU and the receiver ECU.

As shown in Figure 6a, two authenticator processes are instantiated from the authen-
ticator model to capture message queuing behavior using the reception queue of size 2. It
particularly highlights the concurrent behavior of the CAN controller’s authentication, re-
ception, and message transmission using the reception queue of size 2. When a new mes-
sage arrives, authenticator’s CAN controller checks the message and sends AFR messages
for unauthenticated messages. While the authenticator is sending AFR, it can simultaneously
receive another new message. It is because the reception queue and sending queue of a CAN
controller are separate. However, only one of them can process authentication at the same
time. The authenticator processes, ECUAuth_Q1 and ECUAuth_Q2, in Figure 6a have an
invariant over Authenticate location, which limits the authentication time to a specific
time bound AUTH_TIME. The authenticator process leaves Authenticate location after
AUTH_TIME expires and transits to TxRep location so as to send one of AFR messages.
In this interaction model, canstat represents the status of CAN bus. The authenticator pro-
cess can send the AFR message through CAN bus when no node occupies CAN bus, then
canstat value of CANBus1 is set to true (1). When TA authenticator enters RepeatAFRMsg
location, it broadcasts two consecutive packets for one AFR message.

The ECU process in ECUTx1_Q1 of Figure 6b may send any attack message
(txMsg[canid][attkid]) at any time if CAN bus is available. If the reception of the attack mes-
sage is acknowledged by the authenticator i.e., rxMsg[canid][attkid] is received, it may send
another message.

The CAN bus in CANBus1 of Figure 6c manages the permission for use of CAN bus
using canstat. If the CAN bus process receives a message from an ECU and the authentica-
tor, it sets canstat to false (0). Then, any CAN controller cannot occupy CAN bus. The trans-
mission of messages is captured with the clock x and the invariant TRX_TIME over Transmit
location. The CAN bus process stays over Transmit location for TRX_TIME time units, and
then it leaves Transmit location with synchronizing the channel rxMsg and setting canstat
to true (1). Particularly, The CAN bus model is designed to count the number of attack mes-
sages using the function checkAttk(). The number is denoted by AttMsgCnt. AttMsgCnt
keeps increasing, meaning that the authenticator fails to check the attack message. If AttMs-
gCnt keeps below a specific number, particularly the reception queue size of the authenti-
cator, it means that the authenticator succeeds in authenticating every attack message.

MAuth-CAN authenticator must not miss any message without verification, mean-
ing that no ECU should not read unauthenticated message. All CAN controllers on ECUs

Figure 6. Simulation of CAN networking in TA. (a) This figure shows two UPPAAL processes of message authenticator
that individually process authentication of incoming message. (b) This figure shows an UPPAAL process of an ECU that
continuously sends messages, simulating message flooding attack. (c) This figure shows an UPPAAL process of a CAN bus
that simulates the message transmission in the synchronization with the sender ECU and the receiver ECU.

As shown in Figure 6a, two authenticator processes are instantiated from the au-
thenticator model to capture message queuing behavior using the reception queue of size
2. It particularly highlights the concurrent behavior of the CAN controller’s authenti-
cation, reception, and message transmission using the reception queue of size 2. When
a new message arrives, authenticator’s CAN controller checks the message and sends
AFR messages for unauthenticated messages. While the authenticator is sending AFR,
it can simultaneously receive another new message. It is because the reception queue
and sending queue of a CAN controller are separate. However, only one of them can
process authentication at the same time. The authenticator processes, ECUAuth_Q1 and
ECUAuth_Q2, in Figure 6a have an invariant over Authenticate location, which limits
the authentication time to a specific time bound AUTH_TIME. The authenticator process
leaves Authenticate location after AUTH_TIME expires and transits to TxRep location so
as to send one of AFR messages. In this interaction model, canstat represents the status of
CAN bus. The authenticator process can send the AFR message through CAN bus when

Appl. Sci. 2021, 11, 1068 13 of 23

no node occupies CAN bus, then canstat value of CANBus1 is set to true (1). When TA
authenticator enters RepeatAFRMsg location, it broadcasts two consecutive packets for
one AFR message.

The ECU process in ECUTx1_Q1 of Figure 6b may send any attack message
(txMsg[canid][attkid]) at any time if CAN bus is available. If the reception of the at-
tack message is acknowledged by the authenticator i.e., rxMsg[canid][attkid] is received,
it may send another message.

The CAN bus in CANBus1 of Figure 6c manages the permission for use of CAN
bus using canstat. If the CAN bus process receives a message from an ECU and the
authenticator, it sets canstat to false (0). Then, any CAN controller cannot occupy CAN bus.
The transmission of messages is captured with the clock x and the invariant TRX_TIME
over Transmit location. The CAN bus process stays over Transmit location for TRX_TIME
time units, and then it leaves Transmit location with synchronizing the channel rxMsg
and setting canstat to true (1). Particularly, The CAN bus model is designed to count the
number of attack messages using the function checkAttk(). The number is denoted by
AttMsgCnt. AttMsgCnt keeps increasing, meaning that the authenticator fails to check the
attack message. If AttMsgCnt keeps below a specific number, particularly the reception
queue size of the authenticator, it means that the authenticator succeeds in authenticating
every attack message.

MAuth-CAN authenticator must not miss any message without verification, meaning
that no ECU should not read unauthenticated message. All CAN controllers on ECUs
temporarily store any incoming message in the reception queue during authentication.
They postpone reading it until a predefined authentication time ends. However, when the
AFR message arrives within the predefined authentication time, the CAN controller regards
that the message in the reception queue fails the authentication and discards it. For the
reasons, it is crucial to characterize the AFR waiting time TB i.e., the duration that an ECU
waits for AFR message. Also, the CAN authenticator is capable of verifying consecutive
adversary messages and transmit AFR messages within a predefined authentication time so
as to protect every ECU from adversary messages. In terms of the authenticator, we prove
the following lemma in order to characterize the CAN controller of the authenticator that
can protect adversary messages in any forms:

Lemma 1. If the CAN controller of the authenticator is given the reception queue of size 2 and the
transmission time is less than the authentication time, it can always verify every new message and
every ECU does not miss AFR.

In order to prove Lamma 1, we model-check the CAN controller model of the authen-
ticator and checks the number of delayed AFR messages in the transmission queue. If the
variable AttkMsgCnt is not larger than the size of the reception queue, we can say that
the authenticator has no remaining AFR to send. The following two CTL properties are
checked by UPPAAL MC and the verification results are also shown in Table 3:

CTL-Property-1: A[] not deadlock (1)

CTL-Property-2: A[] AttkMsgCnt ≤ IQSizeAUTH (2)

Table 3. Setting of the model checking for Lemma 1 and model-checking results.

Case IQSizeAUTH Tauth~Ttx CTL-Property-2 Case IQSizeAUTH Tauth~Ttx CTL-Property-2

1 1 = Not Satisfied 4 2 = Not Satisfied

2 1 < Not Satisfied 5 2 < Satisfied

3 1 > Not Satisfied 6 2 > Not Satisfied

Appl. Sci. 2021, 11, 1068 14 of 23

CTL-Property-1 specifies that the system is put into no deadlock where no progress is
made. CTL-Property-2 states that AttkMsgCnt is not larger than the maximum reception
queue size of authenticator’s CAN controller.

To prove Lemma 1, we have six different configurations in Table 3, where the maxi-
mum reception queue size of the authenticator, the authentication time, and transmission
time are varied. The maximum reception queue size is either of one or two. The transmis-
sion time and the authentication time are also varied in such a way that Tauth~Ttx where
~= {<, =, >}.

In Table 3, Tauth and Ttx denote the authentication processing time and the transmis-
sion time, respectively. The results show that CAN authentication needs no more than two
queues if the authentication time is less than the transmission time, so that no message is
missed without verification.

To validate our models, we simulate the model using statistical model checking
technique and the following query:

Sim-Property-1: simulate [≤100;1] CANBus1.srvCANID (3)

This query states which CANID preempts CAN bus over time.
Figure 7 shows a simulation of CAN authentication with different number of CAN

controller. The x-axis represents the time and the y-axis represents the identifier of a
CAN controller which makes it to transmit a message. Thus, Figure 7 shows which CAN
controller makes it to transmit messages over time. The attacker’s CANID is 2 and the
authenticator’s is 1.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 27

controller which makes it to transmit a message. Thus, Figure 7 shows which CAN con-

troller makes it to transmit messages over time. The attacker’s CANID is 2 and the authen-

ticator’s is 1.

Figure 7a shows the case where the authenticator’s CAN controller uses a single

buffer of a reception queue so it cannot handle no more than one message. The first two

messages are adversary messages sent by the attacker. The third and fourth messages are

the AFR messages sent by the authenticator after addressing the first adversary message.

Note that authenticator’s CAN controller succeeds in sending the AFR messages for the first

adversary message, but not the rest of the adversary messages.

(a) Simulation of CAN authentication with a single buffer (size 1) of the incoming queue of

CAN.

(b) Simulation of CAN authentication with two buffers (size 2) of the incoming queue of CAN.

Figure 7. Simulation of CAN authentication nodes. (a) This figure shows that the attack messages

are overwhelming CAN bus by message flooding attack, and blocking all AFR messages from the

authenticator. (b) This figure shows that two consecutive AFR messages for one attack message

are transmitted on CAN bus without failure and the attack message cannot dominate CAN Bus.

Meanwhile, the plot in Figure 7b shows different behavior of CAN authentication

when authenticator’s CAN controller 2 size of the reception queue. In Figure 7b, the first

two transmissions are made by the attacker. The second adversary message transmission

is possible while the authenticator is checking the first adversary message. However, the

4 transmissions following the first two adversary messages are made for AFR messages by

the authenticator. That is consistent with Figure 4: Two attack messages can be consecu-

tively transmitted over CAN bus, but AFR messages follow those attack messages. In fol-

lowing, all AFR messages are successfully sent following every attack message. No AFR

message is delayed by adversary message, then no adversary message is adopted by ECUs

due to AFR messages.

In order to compute the minimum TB, we present Lemma 2:

Lemma 2. If the CAN authenticator makes it to address all consecutive attack messages, TB is not

necessarily longer than 4 × Ttx.

In our model, for a given authentication time, denoted by Tauth, and transmission

time, denoted by Ttx, we can measure the maximum communication delay, using the

clocks ECUAuth_Q1.x and ECUAuth_Q2.x on the locations ECUAuth_Q1.TxAck and EC-

UAuth_Q2.TxAck. For given Tauth = 1 and Ttx = 2, we check the worst-case time for the AFR

message to arrive all ECUs. We use the following queries:

Figure 7. Simulation of CAN authentication nodes. (a) This figure shows that the attack messages are overwhelming CAN
bus by message flooding attack, and blocking all AFR messages from the authenticator. (b) This figure shows that two
consecutive AFR messages for one attack message are transmitted on CAN bus without failure and the attack message
cannot dominate CAN Bus.

Figure 7a shows the case where the authenticator’s CAN controller uses a single
buffer of a reception queue so it cannot handle no more than one message. The first two
messages are adversary messages sent by the attacker. The third and fourth messages are
the AFR messages sent by the authenticator after addressing the first adversary message.
Note that authenticator’s CAN controller succeeds in sending the AFR messages for the
first adversary message, but not the rest of the adversary messages.

Meanwhile, the plot in Figure 7b shows different behavior of CAN authentication
when authenticator’s CAN controller 2 size of the reception queue. In Figure 7b, the first
two transmissions are made by the attacker. The second adversary message transmission

Appl. Sci. 2021, 11, 1068 15 of 23

is possible while the authenticator is checking the first adversary message. However, the
4 transmissions following the first two adversary messages are made for AFR messages
by the authenticator. That is consistent with Figure 4: Two attack messages can be con-
secutively transmitted over CAN bus, but AFR messages follow those attack messages.
In following, all AFR messages are successfully sent following every attack message. No
AFR message is delayed by adversary message, then no adversary message is adopted by
ECUs due to AFR messages.

In order to compute the minimum TB, we present Lemma 2:

Lemma 2. If the CAN authenticator makes it to address all consecutive attack messages, TB is not
necessarily longer than 4 × Ttx.

In our model, for a given authentication time, denoted by Tauth, and transmission
time, denoted by Ttx, we can measure the maximum communication delay, using the
clocks ECUAuth_Q1.x and ECUAuth_Q2.x on the locations ECUAuth_Q1.TxAck and
ECUAuth_Q2.TxAck. For given Tauth = 1 and Ttx = 2, we check the worst-case time for the
AFR message to arrive all ECUs. We use the following queries:

CTL-Property-3: sup{ECUAuth_Q1.TxAck}: ECUAuth_Q1.x (4)

CTL-Property-4: sup{ECUAuth_Q2.TxAck}: ECUAuth_Q2.x (5)

“sup{expr}: list” in UPPAAL MC returns the maximum value of variables in “list”.
That is, the expression in list is evaluated only on the states that satisfy expr (a state
predicate) that acts like an observation.

Model checking shows that the worst-case response time of the AFR is always
8 (4 × Ttx). That is consistent with the illustration in Figure 4, thus we can conclude
that 4 × Ttx is the minimum TB.

In the results of model-checking for CTL-Property-1, 2, 3, and 4, we prove Lemma 1
and Lemma 2. Consequently, Theorem 1 is proved by the proofs of Lemma 1 and Lemma 2.

In this section, we show that MAuth-CAN is resilient to masquerade attack using
consecutive adversary messages if the authenticator reads incoming message using 2 size of
reception queue and the authentication time is less than the message transmission time. In
particular, it is shown that the consecutive two messages of AFR sent by the authenticator
can prevent the flooding of adversary messages by preempting CAN bus. However, it is
true only if the AFR messages is successfully transmitted to other nodes.

In next section, we will show that MAuth-CAN is sustainable to BoA even if CAN
priority is not secure and attacker can utilize the highest priority of CAN.

5.2. Model Checking Analysis of Theorem 2

Recall the scenario that BoA enforces the CAN controller of the authenticator to leave
CAN bus for a while. When the authenticator tries to transmit AFR messages, the attacker
causes transmission error. The attacker with the same priority of CAN bus begins the
attack message transmission at the same time when the authenticator begins message
transmission. Then, two messages conflicts, resulting in transmission error. The repeated
transmission errors accumulate up to a specific count, then CAN system gets rid of the
attacker and the authenticator from CAN bus for a while. The CAN authentication should
be designed to sustainable against this BoA.

In order to capture such a complicated situation, we present more concrete and
detailed model of the CAN controller and bus in TA. Our CAN controller model in TA
captures a detailed behavior of the CAN controller based on the CAN protocol in Figure 8.
We capture CAN controller’s behavior in a bit-wise level as if a simple protocol is captured
by a TA as shown in Figure 9. In Figure 9, a frame consists of a specific number of bits and
TA captures the behavior of such a frame with the same series of time units. Here, we do
not consider the semantics of bits and focus on a bit-wise timing behavior of the protocol.

Appl. Sci. 2021, 11, 1068 16 of 23

Figure 8. CAN-Frame in base format in bit levels [30].

Figure 9. Modeling a dummy protocol into TA. (a) This figure gives an example of a simple protocol
in packet frames. (b) This figure captures the simple protocol into a TA model in a bit-wise level.

If a protocol evolves from one frame to another frame, TA captures the frames transits
from one location and to another location. Basically, a frame is captured by a location
in our TA model, where our TA model stays for the same time units as the number of
bits of a frame. For example, the Start frame using 1 bit in Figure 9 is captured by the
Start location where TA stays for the same number of time units as 1 bit. A specific event
occurring on a frame can be captured by an event causing a transition leaving off the
location representing the frame. For example, if a Data frame in Figure 9 encounters an
error and needs re-transmission, then TA captures it by a transition returning from Data
location to Start location.

Figures 10 and 11 shows TA models of CAN bus and controller in the MAC level of
the data link layer. The CAN controller has three modes: Receiving mode, transmission
mode, and error handling mode. The receiving mode consists of receiving (Rxing) and
error handing locations (RxErrRep, RxErrStuffing, RxErrDelimite). The transmission mode
is composed of multiple transmissions of different frames, as shown in Figure 11. When
a CAN controller needs data transmission, the CAN controller model at the location
Rxing in Figure 10 checks if CAN bus is available by checking the condition variable
canstat. The SOF frame of Figure 8 is modeled by the invariant x ≤ SOF over the location
StartTrans and the guard x==SOF on the transition leaving StartTrans in Figure 11. Note
that the Arbitration Field frame needs an interaction of CAN controller with the CAN bus
for CAN bus arbitration and such a scheduling responsibility is placed upon the CAN
bus, so the Arbitration Field frame is modeled on the location CANArbitration in CAN
bus model of Figure 10. The last 1 bit of Arbitration frame field and the first 2 bits of
Control field are abstracted together by the location DestControl. When more than one
CAN controller attempt to make any frame transmissions simultaneously, it may lead to a
transmission error status of CAN controller and bus. The transmission error is captured
by the transition leaving the location Txing of Figure 11 having no guard. The transition
may be taken non-deterministically to leave the location Txing, and that implies that our
CAN controller model of TA can go to a transmission error (handling) status at any time.
When a transmission error occurs, the CAN controller is put into one of Active Error model,
Passive Error mode, or Reset. When a transmission error happens, the CAN controller goes
to at Active Error mode and an Active Error frame will be transmitted on the bus if TEC
(Transmission Error Counter) is lesser than 128. If TEC is greater than 127 and lesser than

Appl. Sci. 2021, 11, 1068 17 of 23

255, then the CAN controller is led to Passive Error mode and a Passive Error frame will be
transmitted on the bus.

Figure 10. CAN bus model in TA.

Figure 11. A CAN controller model in TA.

The CAN controller in Passive Error mode is given a penalty in such a way that it is
more delayed to make transmission than the CAN controller in Active Error or Normal
modes. The situation is captured by our CAN controller model of TA where the CAN
controller in Passive Error mode should stay over SuspTrans location for 8 time-units.
When TEC of a CAN controller is greater than 255, then the controller enters Bus Off state,
where no frames cannot be transmitted by the controller [30]. We capture the BO situation
with Reset location in Figure 11, where the CAN controller stays for a while without being
able to send any message.

Now, we present the formal verification results of model checking for MAuth-CAN
under BoA. In order to prove Theorem 1 that the CAN controller in charge of the authenti-
cation is sustainable to BoA, we need to verify if our dual-CAN controllers can never be
put into Passive Error mode when the attacker crafts continually to cause transmission
errors. We introduce to Lemma 3 as follows:

Appl. Sci. 2021, 11, 1068 18 of 23

Lemma 3. Dual-CAN controllers of MAuth-CAN authentication is never put into Passive Error
mode together at the same time when the attacker is in Passive Error mode.

We prove Lemma 3 by model checking as follows: In order to reduce the state space of
our models, the TA authenticator model and the TA at-tacker model in Figures 12 and 13
are mutated from the CAN controller model of Figure 11 so that they terminate analysis
when one of them goes into Passive Error mode. That is, when either of the authenticator
controller or the attack controller goes to Passive Error mode first, then the analysis is
over. We verify that both dual-CAN controllers for authentication never go to Passive
Error mode at the same time. In this way, our model checking using the mutated CAN
controller models can be less suffering state-explosion issue. We use the following queries
to prove Lemma 3:

CTL-Property-5: A[] not deadlock (6)

CTL-Property-6: A[] CANContAttk3.errMod==ERR_PAS imply
(CANContAuth1.errMod != ERR_PAS or CANContAuth2.errMod != ERR_PAS)

(7)

CTL-Property-7: A[] (CANContAuth1.errMod! = ERR_PAS or CANContAuth2.errMod! = ERR_PAS) (8)

Figure 12. An ECU controller model of the authenticator in TA.

CTL-Property-5 specifies that the system model should never be in deadlock status in
which every process stops running. We use it to check if our TA model is valid to check
using model checking. CTL-Property-6 specifies that the error mode (errMod) of both
authenticators (CANContAuth1 and CANContAuth2) would never be in Passive Error
mode (ERR_PAS) together at the same time when the error mode (errMod) of the attacker
(CANContAtt3) happens to be in Passive Error mode (ERR_PAS). Similarly, CTL-Property-7
is used to check if they can fall into Passive Error mode.

Appl. Sci. 2021, 11, 1068 19 of 23

Figure 13. An ECU controller model of the attacker in TA.

Figure 14 shows that the properties above are met by our model, implying that Lemma
3 is proved by the model checking of the CTL properties. By proving Lemma 3, we conclude
that Theorem 1 is proved and that our authentication using dual-CAN controllers is resilient
to BoA even when the attacker can exploit the highest priority of CAN controller.

Figure 14. Model checking results for MAuth-CAN’s resiliency to BoA.

Our model checking environment is as follows:

• Processor: Intel Core i7 CPU, 1.80GHz, 2.30GHz
• RAM: 16.0GB
• OS: Windows 10-64Bits

6. Implementation and Experiments

In this section, the implementation and experimental results of MAuth-CAN are pro-
vided to check whether Theorem 1 and 2 proved in the formal analysis are applicable to the
CAN testbed considering real CAN traffic with message authentication. In the experiment
of MAuth-CAN, we adopt the BLAKE2S algorithm with keyed mode for implementation
of message authentication code, which is used to generate authentication tags for CAN
messages and report messages. BLAKE2S is a cryptographic hash function which is faster
than keccak (SHA3) in software implementations. The security proof of BLAKE2S with
keyed mode is referred to [31]. We tested the implemented source codes on the Raspberry
Pi 3 Model B and Arduino Zero that are assumed to be the authenticator and the normal
ECUs, respectively.

6.1. Message Authentication Time

When an ECU transmits a CAN message, it always generates a message authentication
tag (i.e., a MAC value). The CAN message then is verified by the authenticator and a

Appl. Sci. 2021, 11, 1068 20 of 23

report message (an AFR message) is generated if there is a verification failure. The normal
ECUs verify an AFR message to see if it is transmitted by the authenticator only when they
receive it. We tested each operation one hundred times, and the average the computation
time and the corresponding standard deviation for individual cryptographic operations
are presented in Table 4.

Table 4. Individual operations of MAuth-CAN (µs).

Authenticator ECU

Message Report Message Report

Authentication (TM
Auth) Generation (TR

Gen) Generation (TM
Gen) Verification (TR

Ver)

Mean 28.26 28.14 258.8 516.4

Std. Dev. 0.46 0.34 0.43 1.02

6.2. Reception Time of an AFR Message

We evaluate the reception time of an AFR message under the following two attacks:
message flooding attack and BoA.

6.2.1. Reception Time of an AFR Message under Message Flooding Attacks

As shown in Table 4, the sum of TM
Auth and TR

Gen is approximately 56.4 µs and less
than the transmission time of an AFR message, i.e., 444 µs = Packet_Size

Bus_Speed = 2× 111 bits
500,000 bits/s

(111 bits is size of a CAN data frame with an 8 byte data field if the bit-stuffing rule of the
CAN standard is ignored). Since the time to authenticate a CAN message and to generate a
report message is less than the transmission time of the report message, the authenticator
can authenticate all CAN messages without increasing its own message queue. Thus,
every report message for an invalid CAN message can be transmitted successfully within a
bounded time, which is the length of 4 × the transmission time as described in Theorem
1. According to our implementation result, the worst time of report reception under the
flooding attacks is approximately 1012 µs, as shown in Figure 15a.

Figure 15. The reception time of an AFR message under attacks. (a) This figure shows the AFR
reception time under message flooding. Note that the maximum time of AFRs is 1012 µs. (b) This
figure shows the ARF reception time under BoA where the malicious ECU creates the bit-error at
the FIRST bit position in the AFR message. (c) This figure shows the ARF reception time under BoA
where the malicious ECU creates the bit-error at the LAST bit position in the AFR message.

The reception time shown in Figure 15a is slightly larger than 888 µs = Packet_Size
Bus_Speed

Appl. Sci. 2021, 11, 1068 21 of 23

= 4× 111 bits
500,000 bits/s , which is the theoretical transmission time of four CAN packets. The

reason is that this experimental time is affected by the bit stuffing rule for synchronization
of CAN bus and the time measurement error originating from Arduino UNO. In order to
maintain synchronization of CAN bus, a bit stuffing rule is defined in the CAN standard.
In this rule, a bit of opposite value is inserted after every five consecutive bits of the same
value. For example, if six consecutive dominant bits, 000000, are transmitted by the host
controller of an ECU, the CAN controller of the ECU adds one recessive bit after every five
consecutive dominant bits 0000010. This additional bit is automatically removed by the
CAN controllers of receiver ECUs.

6.2.2. Reception Time of an AFR Message under BoA

BoA on the authenticator causes the transmission delay of an AFR message. In general,
the continuous BoA can permanently interfere with the communication from an ECU.
However, since the authenticator of MAuth-CAN has two CAN controllers, it is possible
for the authenticator to put a malicious ECU that performs the BoA into Passive Error
mode which allows the transmission of an AFR message from the authenticator.

The time it takes for the malicious node performing BoA to become the error passive
state varies depending on the attack bit position for the BoA (i.e., a bit-error position in
the data field of an AFR message). If the malicious node performing BoA creates the first
bit-error at the first bit position in the data field of an AFR message, the reception time
of an AFR message is approximately 2355 ms as shown in Figure 15b. In other hands,
to maximize the transmission delay of an AFR message by the BoA, the malicious node
performing BoA can create a bit-error at the last bit position (i.e., 64th bit position in the
data field) of an AFR message. In this the worst case, the reception time of an AFR message
is approximately 4495 ms as shown in Figure 15c.

Through this experiment, we show Theorem 2 by validating that Passive Error mode
of the malicious node performing BoA on the authenticator allows the authenticator with
dual CAN-controllers to transmit an AFR message within the bounded time and the worst
case time is 4495 ms.

7. Conclusions

CAN is the most common in-vehicle network system. The latest automobiles devel-
oped recently are equipped with numerous ECUs. The ECU over CAN bus can be a victim
of security attacks leading to critical risks of vehicle safety. In particular, in case that the
infotainment system of unwarranted third party vendor and driving control systems share
CAN bus, the security risk is dramatically escalated.

MAuth-CAN is a centralized authentication mechanism for CAN. In MAuth-CAN, the
response timing is critical for the properties since a timeout works for the indication that a
message passes authentication and ECUs accept a new message stored in its temporary
queue when the timeout expires. MAuth-CAN utilizes two CAN controllers for fault-
tolerance mechanism so that it continues its functionality under message flooding and
bus-off attacks.

This paper presents the formal proofs of resiliency and sustainability of MAuth-CAN
authentication against message flooding and bus-off attacks where timing is critical to
maintain such properties. Also, this paper shows how model checking, a formal verification
technique, works for safety and security certificates of in-vehicle network. In this paper, we
present a novel CAN model in a formal model, which captures CAN’s timing behavior in
MAC level of the data-link layer and can thus be used for verification of safety properties
of other CAN applications. Using this CAN model, we perform formal verification for the
sufficient conditions of those properties of MAuth-CAN.

As conclusions, we show that MAuth-CAN authenticator is sufficiently resilient and
sustainable against those two kinds of attacks if MAuth-CAN authenticator can handle two
consecutive attack messages, the authentication time is less than the message transmission
time, and MAuth-CAN authenticator uses two CAN controllers. Also, we conclude that

Appl. Sci. 2021, 11, 1068 22 of 23

4 × Ttx is the minimum and sufficient length of the timeout for ECUs to open incoming
messages that have passed MAuth-CAN authentication. The experiment results from the
implementation of MAuth-CAN are shown to be consistent with that propositions and
conditions we have shown in this paper.

Author Contributions: Conceptualization, J.H.K., H.J.J. and I.L.; methodology, J.H.K.; validation, I.L.
and H.J.J.; writing—original draft preparation, J.H.K. and H.J.J.; writing—review and editing, I.L.;
supervision, I.L.; project administration, I.L.; funding acquisition, I.L., J.H.K., H.J.J. and All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by NRF-2020R1A2C1014855, NRF-2018R1C1B5086261,
and ONR N00014-17-1-2012 and ONR N00014-20-1-2744.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Koscher, K.; Czeskis, A.; Roesner, F.; Patel, S.; Kohno, T.; Checkoway, S.; McCoy, D.; Kantor, B.; Anderson, D.; Shacham, H.; et al.

Experimental Security Analysis of a Modern Automobile. In Proceedings of the 2010 IEEE Symposium on Security and Privacy,
Berkeley, CA, USA, 22–25 May 2011; pp. 447–462. [CrossRef]

2. Checkoway, S.; McCoy, D.; Kantor, B.; Anderson, D.; Shacham, H.; Savage, S.; Koscher, K.; Czeskis, A.; Roesner, F.; Kohno, T.
Comprehensive Experimental Analyses of Automotive Attack Surfaces. In Proceedings of the 20th USENIX Conference on Security;
SEC’11; USENIX Association: Berkeley, CA, USA, 2011; p. 6.

3. Foster, I.; Prudhomme, A.; Koscher, K.; Savage, S. Fast and Vulnerable: A Story of Telematic Failures. In Proceedings of the 9th
USENIX Workshop on Offensive Technologies (WOOT 15), Washington, DC, USA, 10–11 August 2015.

4. Miller, C.; Valasek, C. Remote Exploition of an Unaltered Passenger Vehicle. Black Hat USA 2015, 2015, 91.
5. Woo, S.; Jo, H.; Lee, D. A Practical Wireless Attack on the Connected Car and Security Protocol for In-Vehicle CAN. IEEE Intell.

Transp. Syst. 2015, 16, 993–1006. [CrossRef]
6. Jo, H.J.; Choi, W.; Na, S.Y.; Woo, S.; Lee, D.H. Vulnerabilities of Android OS-Based Telematics System. Wirel. Pers. Commun.

2017, 92, 1511–1530. [CrossRef]
7. Taylor, A.; Japkowicz, N.; Leblanc, S. Frequency-based anomaly detection for the automotive CAN bus. In Proceedings of the

2015 World Congress on Industrial Control Systems Security (WCICSS), London, UK, 14–16 December 2015; pp. 45–49. [CrossRef]
8. Song, H.M.; Kim, H.R.; Kim, H.K. Intrusion detection system based on the analysis of time intervals of CAN messages for

in-vehicle network. In Proceedings of the 2016 IEEE International Conference on Information Networking (ICOIN), Kota Kinabalu,
Malaysia, 13–15 January 2016; pp. 63–68. [CrossRef]

9. Tomlinson, A.; Bryans, J.; Shaikh, S.A.; Kalutarage, H.K. Detection of Automotive CAN Cyber-Attacks by Identifying Packet
Timing Anomalies in Time Windows. In Proceedings of the 2018 48th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks Workshops (DSN-W), Luxembourg, 25–28 June 2018; pp. 231–238. [CrossRef]

10. Marchetti, M.; Stabili, D. Anomaly detection of CAN bus messages through analysis of ID sequences. In Proceedings of the 2017
IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 1577–1583. [CrossRef]

11. Kang, M.J.; Kang, J.W. Intrusion Detection System Using Deep Neural Network for In-Vehicle Network Security. PLoS ONE
2016, 11, 1–17. [CrossRef] [PubMed]

12. Song, H.M.; Woo, J.; Kim, H.K. In-vehicle network intrusion detection using deep convolutional neural network. Veh. Commun.
2020, 21, 1–13. [CrossRef]

13. Cho, K.T.; Shin, K.G. Fingerprinting Electronic Control Units for Vehicle Intrusion Detection. In Proceedings of the 25th USENIX
Security Symposium (USENIX Security 16), Austin, TX, USA, 10–12 August 2016; pp. 911–927.

14. Hartkopp, O.; Reuber, C.; Schilling, R. MaCAN—Message Authenticated CAN. In Proceedings of the 10th International
Conference on Embedded Security in Cars (Escar Euroupe 2012), Berlin, Germany, 28–29 November 2012.

15. Kang, K.D.; Baek, Y.; Lee, S.; Son, S.H. An Attack-Resilient Source Authentication Protocol in Controller Area Network.
In Proceedings of the 2017 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS),
Beijing, China, 18–19 May 2017; pp. 109–118. [CrossRef]

16. Nürnberger, S.; Rossow, C. vatiCAN—Vetted, Authenticated CAN Bus. In Proceedings of the 18th International Conference
on Cryptographic Hardware and Embedded Systems (CHES 2016), Santa Barbara, CA, USA, 17–19 August 2016; Springer:
Berlin/Heidelberg, Germany, 2016; pp. 106–124. [CrossRef]

17. Radu, A.I.; Garcia, F.D. LeiA: A Lightweight Authentication Protocol for CAN. In Proceedings of the 21st European Symposium on
Research in Computer Security (ESORICS 2016), Heraklion, Greece, 28–30 September 2016; Springer: Berlin/Heidelberg, Germany, 2016.

http://doi.org/10.1109/SP.2010.34
http://doi.org/10.1109/TITS.2014.2351612
http://doi.org/10.1007/s11277-016-3618-9
http://doi.org/10.1109/WCICSS.2015.7420322
http://doi.org/10.1109/ICOIN.2016.7427089
http://doi.org/10.1109/DSN-W.2018.00069
http://doi.org/10.1109/IVS.2017.7995934
http://doi.org/10.1371/journal.pone.0155781
http://www.ncbi.nlm.nih.gov/pubmed/27271802
http://doi.org/10.1016/j.vehcom.2019.100198
http://doi.org/10.1109/ANCS.2017.25
http://doi.org/10.1007/978-3-662-53140-2_6

Appl. Sci. 2021, 11, 1068 23 of 23

18. Kurachi, R.; Matsubara, Y.; Takada, H.; Adachi, N.; Miyashita, Y.; Horihata, S. CaCAN—Centralized Authentication System
in CAN (Controller Area Network). In Proceedings of the 12th International Conference on Embedded Security in Cars (escar
Euroupe 2014), Hamburg, Germany, 18–19 November 2014.

19. Groza, B.; Murvay, S.; Herrewege, A.V.; Verbauwhede, I. LiBrA-CAN: Lightweight Broadcast Authentication for Controller Area
Networks. ACM Trans. Embed. Comput. Syst. 2017, 16, 1–28. [CrossRef]

20. Wang, E.; Xu, W.; Sastry, S.; Liu, S.; Zeng, K. Hardware Module-based Message Authentication in Intra-vehicle Networks.
In Proceedings of the 8th International Conference on Cyber-Physical Systems, ICCPS ’17, Pittsburgh, PA, USA, 18–20 April 2017;
ACM: New York, NY, USA, 2017; pp. 207–216. [CrossRef]

21. Jo, H.J.; Kim, J.H.; Choi, H.; Choi, W.; Lee, D.H.; Lee, I. MAuth-CAN: Masquerade-Attack-Proof Authentication for In-Vehicle
Networks. IEEE Trans. Veh. Technol. 2020, 69, 2204–2218. [CrossRef]

22. Sagong, S.U.; Ying, X.; Clark, A.; Bushnell, L.; Poovendran, R. Cloaking the Clock: Emulating Clock Skew in Controller Area
Networks. In Proceedings of the 9th ACM/IEEE International Conference on Cyber-Physical Systems, ICCPS ’18, Porto, Portugal,
11–13 April 2018; IEEE Press: Piscataway, NJ, USA, 2018; pp. 32–42. [CrossRef]

23. Testa, A.C.M.; Coronato, A. Heuristic strategies for assessing wireless sensor network resiliency: An event-based formal approach.
J. Heuristics 2015, 21, 145–175. [CrossRef]

24. Bengtsson, J.; Yi, W. Timed automata: Semantics, algorithms and tools. Lect. Notes Comput. Sci. 2004, 3098, 87–124.
25. Behrmann, G.; David, A.; Larsen, K. A Tutorial on Uppaal. In Formal Methods for the Design of Real-Time Systems; Springer:

Berlin/Heidelberg, Germany, 2004; pp. 33–35.
26. Alur, R.; Feder, T.; Henzinger, T.A. The benefits of relaxing punctuality. JACM 1996, 43, 116–146. [CrossRef]
27. David, A.; Larsen, K.G.; Legay, A.; Mikučionis, M.; Poulsen, D.B. Uppaal SMC tutorial. Int. J. Softw. Tools Technol. Transf. 2015, 17, 397–415.

[CrossRef]
28. Eldefrawy, K.; Francillon, A.; Perito, D.; Tsudik, G. SMART: Secure and Minimal Architecture for (Establishing a Dynamic) Root of

Trust. In Proceedings of the 19th Annual Network and Distributed System Security Symposium (NDSS 2012), San Diego, CA, USA,
5–8 February 2012.

29. Koeberl, P.; Schulz, S.; Sadeghi, A.R.; Varadharajan, V. TrustLite: A Security Architecture for Tiny Embedded Devices. In Proceedings
of the Ninth European Conference on Computer Systems, EuroSys ’14, Graz, Austria, 7–13 May 2006; ACM: New York, NY, USA,
2014; pp. 1–14. [CrossRef]

30. Wikipedia. CAN Bus. Available online: https://en.wikipedia.org/wiki/CAN_bus (accessed on 20 January 2021).
31. Luykx, A.; Mennink, B.; Neves, S. Security Analysis of BLAKE2’s Modes of Operation. IACR Trans. Symmetric Cryptol. 2016, 2016, 158–176.

[CrossRef]

http://doi.org/10.1145/3056506
http://doi.org/10.1145/3055004.3055016
http://doi.org/10.1109/TVT.2019.2961765
http://doi.org/10.1109/ICCPS.2018.00012
http://doi.org/10.1007/s10732-014-9258-x
http://doi.org/10.1145/227595.227602
http://doi.org/10.1007/s10009-014-0361-y
http://doi.org/10.1145/2592798.2592824
https://en.wikipedia.org/wiki/CAN_bus
http://doi.org/10.46586/tosc.v2016.i1.158-176

	Introduction
	Related Work
	Preliminaries
	Our Approach
	Model Checking
	CAN (Controller Area Network)

	MAuth-CAN
	System and Adversary Assumptions
	System Assumptions
	Adversary Assumptions

	Attack Scenarios
	Masquerade Attack
	Denial of Service Leading to Bus-Off

	Countermeasures of MAuth-CAN
	Countermeasure to Masquerade Attack
	Countermeasure to DoS and Bus-Off Attacks

	Sufficient Conditions for MAuth-CAN Resiliency and Sustainability

	Formal Analysis of MAuth-CAN
	Model Checking Analysis of Theorem 1
	Model Checking Analysis of Theorem 2

	Implementation and Experiments
	Message Authentication Time
	Reception Time of an AFR Message
	Reception Time of an AFR Message under Message Flooding Attacks
	Reception Time of an AFR Message under BoA

	Conclusions
	References

