Special Issue High-Performance Eco-Efficient Concrete
1. Introduction
2. High-Frequency Fatigue Testing of Recycled Aggregate Concrete
3. Mechanical and Durability Properties of Concrete with Coarse Recycled Aggregate Produced with Electric Arc Furnace Slag Concrete
4. High Performance Self-Compacting Concrete with Electric Arc Furnace Slag Aggregate and Cupola Slag Powder
5. Economic and Technical Viability of Using Shotcrete with Coarse Recycled Concrete Aggregates in Deep Tunnels
6. Experimental Characterization of Prefabricated Bridge Deck Panels Prepared with Prestressed and Sustainable Ultra-High Performance Concrete
7. Alkali Activated Paste and Concrete Based on of Biomass Bottom Ash with Phosphogypsum
8. Mechanical Properties and Freeze–Thaw Durability of Basalt Fiber Reactive Powder Concrete
9. A Low-Autogenous-Shrinkage Alkali-Activated Slag and Fly Ash Concrete
10. Properties of Foamed Lightweight High-Performance Phosphogypsum-Based Ternary System Binder
11. Effect of Fly Ash as Cement Replacement on Chloride Diffusion, Chloride Binding Capacity, and Micro-Properties of Concrete in a Water Soaking Environment
12. Durability Assessment of Recycled Aggregate HVFA Concrete
13. Mechanical Properties and Flexural Behavior of Sustainable Bamboo Fiber-Reinforced Mortar
14. Industrial Low-Clinker Precast Elements Using Recycled Aggregates
15. Photocatalytic Recycled Mortars: Circular Economy as a Solution for Decontamination
16. Durability of High Volume Glass Powder Self-Compacting Concrete
17. High-Durability Concrete Using Eco-Friendly Slag-Pozzolanic Cements and Recycled Aggregate
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sainz-Aja, J.; Thomas, C.; Polanco, J.A.; Carrascal, I. High-Frequency Fatigue Testing of Recycled Aggregate Concrete. Appl. Sci. 2019, 10, 10. [Google Scholar] [CrossRef] [Green Version]
- Tamayo, P.; Pacheco, J.; Thomas, C.; De Brito, J.; Rico, J. Mechanical and Durability Properties of Concrete with Coarse Recycled Aggregate Produced with Electric Arc Furnace Slag Concrete. Appl. Sci. 2019, 10, 216. [Google Scholar] [CrossRef] [Green Version]
- Sosa, I.; Thomas, C.; Polanco, J.A.; Setién, J.; Tamayo, P. High Performance Self-Compacting Concrete with Electric Arc Furnace Slag Aggregate and Cupola Slag Powder. Appl. Sci. 2020, 10, 773. [Google Scholar] [CrossRef] [Green Version]
- Duarte, G.; Gomes, R.; De Brito, J.; Miguel, B.; Nobre, J. Economic and Technical Viability of Using Shotcrete with Coarse Recycled Concrete Aggregates in Deep Tunnels. Appl. Sci. 2020, 10, 2697. [Google Scholar] [CrossRef] [Green Version]
- Zafar, M.N.; Saleem, M.; Xia, J.; Saleem, M. Experimental Characterization of Prefabricated Bridge Deck Panels Prepared with Prestressed and Sustainable Ultra-High Performance Concrete. Appl. Sci. 2020, 10, 5132. [Google Scholar] [CrossRef]
- Vaičiukynienė, D.; Nizevičienė, D.; Kantautas, A.; Bocullo, V.; Kielė, A. Alkali Activated Paste and Concrete Based on of Biomass Bottom Ash with Phosphogypsum. Appl. Sci. 2020, 10, 5190. [Google Scholar] [CrossRef]
- Li, W.; Liu, H.; Zhu, B.; Lyu, X.; Gao, X.; Liang, C. Mechanical Properties and Freeze–Thaw Durability of Basalt Fiber Reactive Powder Concrete. Appl. Sci. 2020, 10, 5682. [Google Scholar] [CrossRef]
- Li, Z.; Yao, X.; Chen, Y.; Lu, T.; Ye, G. A Low-Autogenous Shrinkage Alkali-Activated Slag and Fly Ash Concrete. Appl. Sci. 2020, 10, 6092. [Google Scholar] [CrossRef]
- Bumanis, G.; Zorica, J.; Bajare, D. Properties of Foamed Lightweight High-Performance Phosphogypsum-Based Ternary System Binder. Appl. Sci. 2020, 10, 6222. [Google Scholar] [CrossRef]
- Liu, J.; Liu, J.; Huang, Z.-Y.; Zhu, J.-H.; Liu, W.; Zhang, W. Effect of Fly Ash as Cement Replacement on Chloride Diffusion, Chloride Binding Capacity, and Micro-Properties of Concrete in a Water Soaking Environment. Appl. Sci. 2020, 10, 6271. [Google Scholar] [CrossRef]
- Corinaldesi, V.; Donnini, J.; Giosuè, C.; Mobili, A.; Tittarelli, F. Durability Assessment of Recycled Aggregate HVFA Concrete. Appl. Sci. 2020, 10, 6454. [Google Scholar] [CrossRef]
- Maier, M.; Javadian, A.; Saeidi, N.; Unluer, C.; Taylor, H.; Ostertag, C.P. Mechanical Properties and Flexural Behavior of Sustainable Bamboo Fiber-Reinforced Mortar. Appl. Sci. 2020, 10, 6587. [Google Scholar] [CrossRef]
- Thomas, C.; Cimentada, A.I.; Cantero, B.; Medina, C.; Polanco, J.A. Industrial Low-Clinker Precast Elements Using Recycled Aggregates. Appl. Sci. 2020, 10, 6655. [Google Scholar] [CrossRef]
- Barbudo, A.; Lozano-Lunar, A.; López-Uceda, A.; Galvin, A.P.; Ayuso, J. Photocatalytic Recycled Mortars: Circular Economy as a Solution for Decontamination. Appl. Sci. 2020, 10, 7305. [Google Scholar] [CrossRef]
- Tariq, S.; Scott, A.N.; MacKechnie, J.R.; Shah, V. Durability of High Volume Glass Powder Self-Compacting Concrete. Appl. Sci. 2020, 10, 8058. [Google Scholar] [CrossRef]
- Voit, K.; Zeman, O.; Janotka, I.; Adamcova, R.; Bergmeister, K. High-Durability Concrete Using Eco-Friendly Slag-Pozzolanic Cements and Recycled Aggregate. Appl. Sci. 2020, 10, 8307. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thomas, C.; de Brito, J.; Corinaldesi, V. Special Issue High-Performance Eco-Efficient Concrete. Appl. Sci. 2021, 11, 1163. https://doi.org/10.3390/app11031163
Thomas C, de Brito J, Corinaldesi V. Special Issue High-Performance Eco-Efficient Concrete. Applied Sciences. 2021; 11(3):1163. https://doi.org/10.3390/app11031163
Chicago/Turabian StyleThomas, Carlos, Jorge de Brito, and Valeria Corinaldesi. 2021. "Special Issue High-Performance Eco-Efficient Concrete" Applied Sciences 11, no. 3: 1163. https://doi.org/10.3390/app11031163
APA StyleThomas, C., de Brito, J., & Corinaldesi, V. (2021). Special Issue High-Performance Eco-Efficient Concrete. Applied Sciences, 11(3), 1163. https://doi.org/10.3390/app11031163