Impact of Implant Design and Bone Properties on the Primary Stability of Orthodontic Mini-Implants
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
- -
- The design of a mini-implant affects its primary stability.
- -
- The design of a mini-implant affects the pulling force.
- -
- The bone quality at the implant insertion point is important for primary stability; thus, the increase in the cortical bone thickness increases the value of the pulling force significantly.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Petrey, J.S.; Saunders, M.M.; Kluemper, G.T.; Cunningham, L.L.; Beeman, C.S. Temporary anchorage device insertion variables: Effects on retention. Angle Orthod. 2010, 80, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Kyung, H.M.; Park, H.S.; Bae, S.M.; Sung, J.; Kim, I.B. Development of orthodontic miniscrew implants for intraoral anchorage. J. Clin. Orthod. 2003, 6, 321–329. [Google Scholar]
- Paik, C.H.; Park, I.K.; Woo, Y.; Kim, T.W. Orthodontic Miniscrew Implants; Mosby: New York, NY, USA, 2009. [Google Scholar]
- Hong, C.; Truong, P.; Song, H.N.; Wu, B.M.; Moon, W. Mechanical stability assessment of novel orthodontic mini-implant designs: Part 2. Angle Orthod. 2011, 81, 1001–1009. [Google Scholar] [CrossRef] [PubMed]
- Friberg, B.; Sennerby, L.; Roos, J.; Lekholm, U. Identification of bone quality in conjunction with insertion of titanium implants. A pilot study in jaw autopsy specimens. Clin. Oral Implant. Res. 1995, 6, 213–219. [Google Scholar] [CrossRef]
- Erverdi, N.; Acar, A. Zygomatic anchorage for en masse retraction in the treatment of severe Class II division 1. Angle Orthod. 2005, 75, 483–490. [Google Scholar]
- Motoyoshi, M.; Hirabayashi, M.; Uemura, M.; Shimizu, N. Recommended placement torque when tightening an orthodontic mini-implant. Clin. Oral Implant. Res. 2006, 17, 109–114. [Google Scholar] [CrossRef]
- Lim, S. Insertion torque of orthodontic miniscrews according to changes in shape, diameter and length. Angle Orthod. 2008, 78, 234–240. [Google Scholar] [CrossRef] [Green Version]
- Reynders, R.; Ronchi, L.; Bipat, S. Mini-Implants in orthodontics: A systematic review of the literature. Am. J. Orthod. Dentofac. Orthop. 2009, 135, 564.e1–564.e19. [Google Scholar] [CrossRef]
- Melsen, B. Mini-Implants: Where are we? J. Clin. Orthod. 2005, 39, 539–547. [Google Scholar]
- Chapman, J.R.; Harrington, R.M.; Lee, K.M.; Anderson, P.A.; Tencer, A.F.; Kowalski, D. Factors affecting the pullout strength of cancellous bone screws. J. Biomech. Eng. 1996, 118, 391–398. [Google Scholar] [CrossRef]
- Migliorati, M.; Signori, A.; Silvestrini-Biavati, A. Temporary anchorage device stability: An evaluation of thread shape factor. Eur. J. Orthod. 2012, 34, 582–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Kyung, H.M.; Gao, L.; Yu, W.-J.; Bae, E.-J.; Kim, S.-M. Mechanical properties of selfdrilling orthodontic micro-implants with different diameters. Angle Orthod. 2010, 80, 821–827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heidemann, W.; Gerlach, K.L.; Grőbel, K.H.; Koőllner, H.G. Drill free screws: A new form of osteosynthesis screw. J. Cranio Maxillofac. Surg. 1998, 26, 163–168. [Google Scholar] [CrossRef]
- Meredith, N.; Shagaldi, F.; Alleyne, D.; Sennerby, L.; Cawley, P. The application of resonance frequency measurements to study the stability of titanium implants during healing in the rabbit tibia. Clin. Oral Implant. Res. 1997, 8, 234–243. [Google Scholar] [CrossRef]
- Wilmes, B.; Ottenstreuer, S.; Su, Y.Y.; Drescher, D. Impact of implant design on primary stability of orthodontic mini-implants. J. Orofac. Orthop. 2008, 69, 42–50. [Google Scholar] [CrossRef]
- Mešić, E.; Avdić, V.; Pervan, N.; Repčić, N. Finite element analysis and experimental testing of stiffness of the Sarafix external fixator. Procedia Eng. 2015, 100, 1598–1607. [Google Scholar]
- Mešić, E.; Avdić, V.; Pervan, N. Numerical and experimental stress analysis of an external fixation system. Folia Med. Fac. Med. Univ. Saraev. 2015, 50, 74–80. [Google Scholar]
- Park, H.S.; Lee, Y.J.; Jeong, S.J.; Kwon, T.G. Density of alveolar and basal bones of the maxilla and the mandible. Am. J. Orthod. Dentofac. Orthop. 2008, 133, 30–37. [Google Scholar] [CrossRef]
- Song, H.N.; Hong, C.; Banh, R.; Ohebsion, T.; Asatrian, G.; Leung, H.Y.; Wu, B.M.; Moon, W. Mechanical stability and clinical applicability assessment of novel orthodontic miniimplant design. Angle Orthod. 2013, 83, 832–841. [Google Scholar] [CrossRef]
- Antoszewska, J.; Papadopoulos, M.A.; Park, H.-S.; Ludwig, B. Five-Year experience with orthodontic miniscrew implants: A retrospective investigation of factors influencing success rates. Am. J. Orthod. Dentofac. Orthop. 2009, 136, 158.e1–158.e10. [Google Scholar] [CrossRef]
- Papageorgiou, S.N.; Zogakis, I.P.; Papadopoulos, M.A. Failure rates and associated risk factors of orthodontic miniscrew implants: A meta-analysis. Am. J. Orthod. Dentofac. Orthop. 2012, 142, 577–595. [Google Scholar] [CrossRef] [PubMed]
- Yano, S.; Motoyoshi, M.; Uemura, M.; Ono, A.; Shimizu, N. Tapered orthodontic miniscrews induce bone-screw cohesion following immediate loading. Eur. J. Orthod. 2006, 28, 541–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Y.Y.; Cha, J.Y.; Hwang, C.J. Mechanical characteristics of various orthodontic miniscrews in relation to artificial cortical bone thickness. Angle Orthod. 2007, 77, 979–985. [Google Scholar] [CrossRef] [PubMed]
- Walter, A.; Winsauer, H.; Marcé-Nogué, J.; Mojal, S.; Puigdollers, A. Design characteristics, primary stability and risk of fracture of orthodontic mini-implants: Pilot scan electron microscope and mechanical studies. Med. Oral Patol. Oral Cir. Bucal 2013, 18, e804–e810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motoyoshi, M.; Uemura, M.; Ono, A.; Okazaki, K.; Shigeeda, T.; Shimizu, N. Factors affecting the long-term stability of orthodontic mini-implants. Am. J. Orthod. Dentofac. Orthop. 2010, 137, 588.e1–588.e5. [Google Scholar] [CrossRef]
- Noyama, Y.; Nakano, T.; Ishimoto, T.; Sakai, T.; Yoshikawa, H. Design and optimization of the oriented groove on the hip implant surface to promote bone microstructure integrity. Bone 2013, 52, 659–667. [Google Scholar] [CrossRef]
- Matsugaki, A.; Aramoto, G.; Ninomiya, T.; Sawada, H.; Hata, S.; Nakano, T. Abnormal arrangement of a collagen/apatite extracellular matrix orthogonal to osteoblast alignment is constructed by a nanoscale periodic surface structure. Biomaterials 2015, 37, 134–143. [Google Scholar] [CrossRef]
- Nakanishi, Y.; Matsugaki, A.; Kawahara, K.; Ninomiya, T.; Sawada, H.; Nakano, T. Unique arrangement of bone matrix orthogonal to osteoblast alignment controlled by Tspan11-mediated focal adhesion assembly. Biomaterials 2019, 209, 103–110. [Google Scholar] [CrossRef]
Type of Implant | d (mm) | h (mm) | d1min (mm) | d1max (mm) | P (mm) | D (mm) | Β (°) | α (°) | 1:k | TSF |
---|---|---|---|---|---|---|---|---|---|---|
Perfect Anchor 1.4 × 8 and 1.6 × 8 mm | 1.6 | 7.7 | 0.8 | 1 | 0.8 | 0.3 | 16 | 1.5 | 1:24 | 0.375 |
Tomas-pin 1.6 × 6 mm | 1.6 | 6 | 1.04 | 1.2 | 0.9 | 0.26 | 16 | 2 | 1:17 | 0.29 |
Type of Implant | Cortical Thickness | FMean, N | Std. Deviation | n |
---|---|---|---|---|
Perfect Anchor 1.4 × 8 mm | <0.62 mm | 113.50 | 36.46 | 4 |
0.62–0.67 mm | 211.25 | 27.69 | 4 | |
≥0.68 mm | 158.50 | 58.69 | 2 | |
Total | 161.60 | 56.63 | 10 | |
Perfect Anchor 1.6 × 8 mm | <0.62 mm | 166.50 | 28.85 | 4 |
0.62–0.67 mm | 183.00 | 43.71 | 3 | |
≥0.68 mm | 143.00 | 89.54 | 3 | |
Total | 164.40 | 52.47 | 10 | |
Tomas 1.6 × 6 mm | <0.62 mm | 174.14 | 36.83 | 7 |
0.62–0.67 mm | 220.40 | 52.15 | 5 | |
≥0.68 mm | 252.12 | 52.77 | 8 | |
Total | 216.90 | 56.80 | 20 |
(I) Type of Implant | (J) Type of Implant | Mean Difference (I−J) | p | 95% Confidence Interval | |
---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||
Perfect Anchor 1.4 × 8 mm | Perfect Anchor 1.6 × 8 mm | −2.800 | 0.991 | −57.668 | 52.068 |
Tomas 1.6 × 6 mm | −55.300 * | 0.020 | −102.817 | −7.783 | |
Perfect Anchor 1.6 × 8 mm | Perfect Anchor 1.4 × 8 mm | 2.800 | 0.991 | −52.068 | 57.668 |
Tomas 1.6 × 6 mm | −52.500 * | 0.028 | −100.017 | −4.983 | |
Tomas 1.6 × 6 mm | Perfect Anchor 1.4 × 8 mm | 55.300 * | 0.020 | 7.783 | 102.817 |
Perfect Anchor 1.6 × 8 mm | 52.500 * | 0.028 | 4.983 | 100.017 |
(I) Cortical Thickness | (J) Cortical Thickness | Mean Difference (I−J) | p | 95% Confidence Interval | |
---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||
<0.62 mm | 0.62–0.67 mm | −52.067 * | 0.029 | −99.584 | −4.550 |
≥0.68 mm | −56.605 * | 0.014 | −103.096 | −10.114 | |
0.62–0.67 mm | <0.62 mm | 52.067 * | 0.029 | 4.550 | 99.584 |
≥0.68 mm | −4.538 | 0.972 | −53.653 | 44.576 | |
≥0.68 mm | <0.62 mm | 56.605 * | 0.014 | 10.114 | 103.096 |
0.62–0.67 mm | 4.538 | 0.972 | −44.576 | 53.653 |
Mini-Implants | Depth (mm) | Pitch (mm) | TSF |
---|---|---|---|
Korean Hubit Perfect Anchor 1.6 × 8 mm | 0.272 (0.016) | 0.800 (0.004) | 0.340 (0.021) |
Korean Hubit Perfect Anchor 1.4 × 8 mm | 0.303 (0.005) | 0.799 (0.006) | 0.380 (0.006) |
Dentaurum Tomas 1.6 × 6 mm | 0.238 (0.017) | 0.890 (0.011) | 0.270 (0.025) |
Factors | (F) (p-Values) |
---|---|
Pitch | 0.015 |
Depth | 0.015 |
TSF | 0.015 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Redžepagić-Vražalica, L.; Mešić, E.; Pervan, N.; Hadžiabdić, V.; Delić, M.; Glušac, M. Impact of Implant Design and Bone Properties on the Primary Stability of Orthodontic Mini-Implants. Appl. Sci. 2021, 11, 1183. https://doi.org/10.3390/app11031183
Redžepagić-Vražalica L, Mešić E, Pervan N, Hadžiabdić V, Delić M, Glušac M. Impact of Implant Design and Bone Properties on the Primary Stability of Orthodontic Mini-Implants. Applied Sciences. 2021; 11(3):1183. https://doi.org/10.3390/app11031183
Chicago/Turabian StyleRedžepagić-Vražalica, Lejla, Elmedin Mešić, Nedim Pervan, Vahidin Hadžiabdić, Muamer Delić, and Mirza Glušac. 2021. "Impact of Implant Design and Bone Properties on the Primary Stability of Orthodontic Mini-Implants" Applied Sciences 11, no. 3: 1183. https://doi.org/10.3390/app11031183
APA StyleRedžepagić-Vražalica, L., Mešić, E., Pervan, N., Hadžiabdić, V., Delić, M., & Glušac, M. (2021). Impact of Implant Design and Bone Properties on the Primary Stability of Orthodontic Mini-Implants. Applied Sciences, 11(3), 1183. https://doi.org/10.3390/app11031183