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Abstract: In this publication, we describe the process of fabrication and the analysis of the properties
of nanocomposite filaments based on carbon nanotubes and acrylonitrile butadiene styrene (ABS)
polymer for fused deposition modeling (FDM) additive manufacturing. Polymer granulate was
mixed and extruded with a filling fraction of 0.99, 1.96, 4.76, 9.09 wt.% of CNTs (carbon nanotubes)
to fabricate composite filaments with a diameter of 1.75 mm. Detailed mechanical and electrical
investigations of printed test samples were performed. The results demonstrate that CNT content
has a significant influence on mechanical properties and electrical conductivity of printed samples.
Printed samples obtained from high CNT content composites exhibited an improvement in the tensile
strength by 12.6%. Measurements of nanocomposites’ electrical properties exhibited non-linear
relation between the supply voltage and measured sample resistivity. This effect can be attributed to
the semiconductor nature of the CNT functional phase and the occurrence of a tunnelling effect in
percolation network. Detailed I–V characteristics related to the amount of CNTs in the composite and
the supply voltage influence are also presented. At a constant voltage value, the average resistivity
of the printed elements is 2.5 Ωm for 4.76 wt.% CNT and 0.15 Ωm for 9.09 wt.% CNT, respectively.
These results demonstrate that ABS/CNT composites are a promising functional material for FDM
additive fabrication of structural elements, but also structural electronics and sensors.

Keywords: additive manufacturing; polymer matrix composite; structural electronic; fused deposi-
tion modeling; conductive composites; 3D printing

1. Introduction

Additive manufacturing (AM), also known as 3D printing, widespread in the 90s
and continuously improved [1], is one of the most promising areas in the fabrication of
elements from prototypes to final products with complex geometries. Nowadays, this
technique has been implemented in many industries such as biomedicine, construction,
fashion, space industries, automotive, aerospace, electronics, and many more [2–9]. Ad-
ditive manufacturing has a unique advantage over traditional manufacturing methods
due to the possibility of obtaining complex shapes with the flexibility to modify them
easily, without generating much waste [10,11], which has a positive impact on the environ-
ment [12]. Among many AM techniques, the FDM (fused deposition modeling) technique
using thermoplastic polymer material has gained the most significant attention due to its
availability, low cost of the material used, and relatively high quality of the manufactured
elements. FDM as a filament-based process consists of melting filament in a heated nozzle.
The printer nozzle moves and extrudes material onto a substrate or previously deposited
layer to directly fabricate the desired 3D components [13]. Obtaining spatial structures
consists of applying the material layer by layer, with subsequent thermal bonding of the
deposited layers. In the FDM technology, it is possible to use any thermoplastic material.
However, to ensure appropriate thermal and rheological properties of the extruded ma-
terial, the most frequently used materials are ABS (acrylonitrile butadiene styrene), PLA
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(polylactic acid), and PETG (polyethylene terephthalate glycol-modified). It is also possible
for specialized engineering applications to use polymers with increased mechanical and
thermal properties such as PEEK (polyether ether ketone), nylon, PEI (polyetherimide),
and many others [14]. Along with the development of FDM technology, researchers have
begun working on new materials to enable the production of elements with improved
mechanical, electrical, thermal, and other functional properties.

Despite their numerous advantages over traditional manufacturing methods, FDM
printed elements often have deteriorated mechanical properties, significantly reducing
their use in final load-bearing products. Deteriorated mechanical properties of objects
produced in FDM technology result from the very nature of the materials used. In the most
basic version of FDM technology, it is possible to make elements only from thermoplastic
polymers. Numerous studies have been performed to improve the mechanical properties
of printed parts by optimizing printing parameters, such as layer height, printing speed,
or orientation of the element [15–17]. However, regardless of the optimization of the
printing process itself, the printed parts have several limitations resulting from the adhesion
between subsequent paths and layers and internal porosity of the element, which makes it
impossible to obtain a printout with 100% filling.

One of the methods to improve the mechanical properties of FDM printouts is to use
composite material. To develop the composite material, it is necessary to determine the
suitable polymer matrix, which is primarily responsible for the mechanical and rheological
properties of the filament, and the functional phase that will improve the mechanical
properties while maintaining appropriate processing properties of the composite. In the
literature, there are examples of using functional phases in the form of continuous carbon,
glass and other fibers [18–22], short glass fibers [23], carbon fibers [24], and nanocomposite
materials [25–28] in order to improve the mechanical properties of FDM printed parts.
The application of the appropriate functional phase allows not only the enhancement of
mechanical properties but also the attainment of other unique properties, for example,
electrical conductivity [8,29–31]. Due to the development of new kinds of specialized com-
posite materials used in FDM technology, 3D conductive structures can also be obtained,
which opens an original path for the development of consumer electronics. One of the
functional phase materials that improves both the mechanical properties of the composite
and introduces electrical conductivity to the polymer composites is carbon nanotubes.

In this study, we present the manufacturing process of acrylonitrile butadiene styrene
(ABS) matrix composite filament filled with different amounts of carbon nanotubes (CNT).
The mechanical and electrical behavior of printed structures is analyzed and described.
The developed group of materials is expected to be used in the manufacture of structural
and printed electronics using the additive FDM technology. The main goals of developing
a composite filament with improved mechanical properties, as well as good electrical
conductivity combined with appropriate rheological and processing parameters that also
allow its use also with simple, non-industrial FDM printers, have been achieved.

2. Materials and Methods
2.1. Materials Characterizations

The materials used for the fabrication of composites filaments consist of multiwall car-
bon nanotubes NC7000 purchased from Nanocyl SA., Belgium, and acrylonitrile butadiene
styrene HF-0660I obtained from Starex. As a solvent for ABS during the process, acetone
purchased from Linegal Chemicals, Poland, was used. NC7000 CNTs are characterized by
an average diameter of 20 nm, an average length of 1–5 µm, and a specific surface area of
250–300 m2/g. Figure 1 shows a scanning electron microscopy (SEM) image of CNT.
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Figure 1. SEM (scanning electron microscope) micrograph of carbon nanotube functional filler.

ABS polymer was selected as the matrix material because of its widespread use in
3D printing due to its good mechanical properties, suitable processing temperature, and
suitable rheology for FDM technology. CNT was selected as the functional phase because
of its unique electrical and mechanical properties that allow it to develop electrically
conductive composites with improved mechanical properties as an alternative to other non-
carbon conducting phases, such as metal powders, that usually decrease the mechanical
properties of the composite [32–34].

2.2. Composite Preparation

The first stage of preparing the composite materials was to break-up the CNT ag-
glomerates. To achieve this, ultrasound mixing of CNT in acetone was performed using
a Vibra-Cell VCX130 sonicator with 80% maximum power. Ultrasound mixing was per-
formed for 20 min. After breaking up the nanotubes agglomerates, the polymer was
gradually added to the acetone/CNT suspension. The mixing of the ABS/CNT solution in
acetone was performed using an MS7-H550-Pro magnetic stirrer for 5 h. After the prepara-
tion of a highly homogeneous ABS/CNT mixture, it was poured into a large-area container
to obtain a layer of several millimetres in thickness. The container with the mixture was
left overnight at room temperature to evaporate the acetone. After that time, the material
was granulated. The composite granulate was then placed in a dryer at 100 ◦C for 1 h to
evaporate the remaining solvent.

The single screw extruder was used to prepare the filaments with a constant diameter.
The extrusion machine was equipped with two independent heating zones, as shown in
Figure 2. The rotation speed of the screw is constant (38 rpm), and temperatures may be
adjusted in the range of 25 ◦C to 300 ◦C in both heating zones. To control the extruded
filament diameter, the extrusion machine enabled the exchange of the nozzle with different
diameters.

In this paper, the ABS/CNT composites filaments with filler fractions of 0.99, 1.96,
4.76, and 9.09 wt.% were investigated. To obtain filaments with an appropriate diameter,
the nozzle of a 1.7 mm diameter was used. The extrusion machine’s heated zones were
set to 140 ◦C and 155 ◦C for the first and second zone, respectively. The lower extrusion
temperature caused an insufficient flow of the melted matrix material, which resulted in
clogging of the extruder nozzle and obtaining heterogeneous filament. On the other hand,
higher extrusion temperatures caused the material to flow too rapidly, making it impossible
to obtain a fixed diameter of the filament. Additionally, the increased temperature may
cause thermal degradation of the polymer. During the filament extrusion process, it
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was observed that acetone was not completely evaporated despite drying the composite
before the extrusion process. Excessive acetone evaporated in the high temperature of
the extrusion process and caused the formation of an irregular-shaped filament with high
internal porosity. The extrusion process had to be performed several times to obtain a
high-quality material. ABS copolymer decomposes at 368 ◦C [35]; therefore, multiple
thermal processing of ABS/CNT composite at max 240 ◦C does not have a significant
impact on the mechanical properties of the material. Additionally, in the literature we
found studies presenting the influence of multiple injection molding processes on the
properties of ABS, which also confirm no significant effect on the mechanical properties
of the polymer despite repeated thermal processing in the temperature range we used
for the processing of ABS/CNT composites [36]. All of the resulting composite filaments
had to be extruded four times to evaporate the remaining solvent completely. Finally,
optimization of the extrusion process allowed us to obtain a continuous filament with a
diameter ranging from 1.7 mm to 1.8 mm (Figure 3). The filaments were also characterized
by high homogeneity and a lack of porosity.
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Figure 2. Schematic diagram of a single screw extruder used for the composite filaments fabrication.

2.3. FDM Printer and Printing Parameters

For the sample preparation, we used a commercial, low-end FDM printer, CTC Bizer
2X PRO, using Flashprint control software. The structure and mechanics of the Bizer FDM
printer are typical for standard, unmodified direct drive printers. The diameter of the
printed nozzle was 800 µm. Filaments with different amounts of filler were used to print
samples for the mechanical and electrical tests. The shape and dimensions of test samples
according to ISO standards are shown in Figure 4.

All test samples were printed at a nozzle temperature of 240 ◦C and a platform
temperature of 110 ◦C. The layer height was set at 200 µm, printing speed at 30 mm/s, the
fill pattern as line at 45◦, and a 100% infill. The selected parameters allowed us to obtain
high-quality samples without clogging the nozzle (Figure 5).
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3. Results
3.1. Mechanical Properties

The mechanical properties of the printed samples from developed ABS/CNT com-
posites filaments were measured by preparing a standard tensile properties test using
the Cometech QC-506M2 machine. Since there are no standards for testing 3D printed
elements, available standards for injection moulding of thermoplastics were used during
the research. The methods and conditions for the tensile test were based directly on ISO
527-1:2012 and ISO 527-2:2012 standards. The speed of tensile testing was set to 1 mm/min.

Five specimens from each composite filament were printed and tested to reduce statis-
tical uncertainty and determine the degree of microstructure and mechanical properties
variability between samples. The mechanical properties of fabricated materials were also
compared with pure polymer (ABS).

As shown in Figure 6, the tensile results of the ABS/CNT composites 3D prints
demonstrate that tensile strength decreased for lower CNT content, below 5 wt.%. At the
same time, specimens with 9.09 wt.% of filler showed higher tensile strength compared
with pure ABS samples. Nano-filler was expected to increase the tensile strength of the
composite, according to the standard theory of composite materials [37]. However, despite
these expectations, the observed composite seemed to have, in some cases, a lower value
of tensile strength than in the case of pure material. With low functional phase content,
the strengthening effect can be overwhelmed by the printing defects resulting from non-
optimal print parameters and the heterogeneity of the composite film.

Based on the obtained results, we observed an improvement in the mechanical prop-
erties of the composites with the increasing content of the CNT functional phase as it is
described by the composite theory [38–40]. On the other hand, we observed the counterin-
tuitive effect of lower values of the tensile strength of samples with low CNT content than
for the pure ABS samples. It should be noted that the addition of nanoparticles may cause
difficulties in the printing process, which was unknown for the pure polymer samples.
Nanomaterials affected the rheological properties of the composite material, causing the
non-uniform extrusion of material from the nozzle, and therefore induced voids inside
the printed parts, caused the delamination of printed layers, and created problems with
the adhesion of individual paths, etc. As a rule of thumb, we have estimated the mechan-
ical percolation threshold for such composites at approximately 9% (a distinct increase
of tensile strength value compared to samples with lower CNT content). In high CNT
content composites, connected and tangled nanotubes occur, running along the whole
length of the printed element and resulting in improved tensile strength of the composite.
Below the threshold, too few nanotubes are tangled and connected together, reducing the
cross-sectional area of the polymer and therefore acting as inclusions decreasing the tensile
strength of the composite. The same effect of the reduced tensile strength of the composite
below the percolation threshold compared to a pure polymer was described previously in
the literature [41,42].

3.2. Electrical Properties

Direct currentresistivity measurements of 3D printed samples were carried out using
a four-probe method. Rohde & Schwarz HM8112 multimeters were used during mea-
surements. It should be noted that samples with electrical resistance above 200 MΩ were
considered as non-conductive. To calculate samples’ resistivity, Equation (1) was used,
where ρ is the volume resistivity, S is the cross-sections area, R is the resistance of the
measured sample, and l is a length of the measured sample.

ρ =
SR
l

(1)
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Our first attempts of resistance measurements was conducted at a constant voltage of
12 V. Tests showed that components printed from composites containing 0.99 and 1.96 wt.%
of CNT exhibited high resistance (above 200 MΩ) and therefore were treated as non-
conductive. When the CNT content increases to 4.76 wt.%, the electrical resistivity reduces
to 2.5 Ωm. With the addition of 9.09 wt.% CNT, average resistivity reduces to 0.15 Ωm,
which is a value that allows the material to be used in many practical applications. This
phenomenon indicates that an increase of CNT content in ABS/CNT can promote the
formation of multiple conductive paths on the surface and inside 3D printed elements
due to the excellent electrical conductivity of CNT. This is at least twice the improvement
in results than for the previously reported ABS/CNT filaments [43,44]. With the same
rule of thumb as previously, we have estimated the electrical percolation threshold at the
CNT content of 4.76 wt.%. It is worth mentioning that the electrical percolation threshold
is much lower than the mechanical percolation. Composite with a CNT content of 4.76
wt.% shows electrical conductivity even though the mechanical percolation threshold
is at much higher filler loading. The presence of a tunneling mechanism causes this
phenomenon. Electrical connections between two conductive particles arise from two
different mechanisms: mechanical contact between particles or electron tunneling effect.
According to quantum tunneling theory, electrons can pass through insulator material,
causing electrical current flow, under specific conditions. In other words, it is possible that
a pair of conductive inclusions (CNT) dispersed in an insulating polymer matrix (ABS) is
electrically connected, and electrons can pass from one inclusion to another, even if there is
no physical connection between them [45,46]. It follows that even a smaller amount of the
conductive functional phase of CNT can improve the conductive properties of a composite.
However, only a larger amount of CNT can improve the mechanical properties, because to
increase the tensile strength of a composite, it is necessary to form long carbon fibers from
single nanotubes, and that is why it is necessary to connect them physically (Figure 7).
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In order to confirm the occurrence of the tunneling effect in the developed composites,
current-voltage characteristics of the printed elements were determined. In the case where
the leading type of conductivity in the material is based on the tunnelling effect, the
current-voltage characteristics are not linear. The non-linearity is due to the fact that CNTs
are semiconductor materials, but also because the change in the electrical properties of
the percolation network depends on external factors such as temperature or electric field
manifesting as the decrease of junction resistance [47]. Figure 8 shows I–V characteristics
for specimens printed with ABS/CNT filaments containing 4.76 and 9.09 wt.% of CNT.

The characteristics show a decrease in resistance as the voltage increases. This phe-
nomenon is mainly caused by the increasing value of electrical current increasing the
temperature of the composites, causing a decrease in the resistance of samples for higher
voltages. Nanocomposites containing CNT are characterized by a negative temperature
coefficient of resistivity (NTC effect), which means that the electrical resistivity of composite
decreases during heating. The results obtained coincide with numerous literature reports
related to nanocomposites [48–50].

The current-voltage characteristics for increasing and decreasing voltage were also
prepared. It is noted that increasing and decreasing voltage measured current curves do
not follow the same path, and electrical hysteresis is visible. As shown in Figure 9, a
small increase in measured current is observed during the decreasing voltage cycle. In
the increasing voltage cycle, electrical conductivity is lower. This phenomenon is caused
by the occurrence of hysteresis in the I–V characteristic of electron tunneling [51–53].
The electrical potential required to start the electron tunneling process is higher than the
minimum potential needed to sustain the process. This results in improved conductivity
of the composite when a higher voltage is applied first, and the tunneling mechanism is
initiated in the higher number of connections between the CNTs. When a low voltage is
applied initially, the tunneling process cannot start in such a large number of connections. It
was also observed that the difference in conductivity is smaller for composites with higher
CNT content. This is related to the higher number of CNT connections and explains that
the tunneling distance is drastically reduced while the content of nanoparticles increases.
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4. Conclusions

In this study, filaments based on ABS/CNT matrices were prepared for the FDM
additive process. It was shown that with the FDM technique, we can fabricate complex
shapes with the use of these composites. The results demonstrate that CNT content has
a significant and nonlinear impact on mechanical and electrical properties. During the
extrusion and printing of the developed filaments, it is important to apply optimal process
parameters to obtain high-quality filaments and 3D printed elements. The key parameters
are extrusion/print speed and head temperature. The speed must not be too high, as the
appropriate amount of material is not applied. However, when it is very low, the print
time is much longer, which is significant for industrial applications. On the other hand, if
the temperature value is too low, the filament does not melt properly.

The tensile strength test showed that a small amount of CNT in the composite could
decrease the maximum tensile strength of printed elements compared to those printed with
pure ABS. Above the estimated mechanical percolation threshold, the addition of 9.09 wt.%
of CNTs results in a 12.6% increase in tensile strength. This counterintuitive phenomenon
of strength value decrease must be taken into consideration during the elaboration of new
composite materials. On the other hand, the high content of CNTs favored for greater
mechanical and electrical properties can be problematic for the processing of composite
materials.

Electrical conductivity measurements showed that elements printed with composites
containing 4.76 and 9.09 wt.% CNT are electrically conductive. For a fixed voltage value
equal to 12 V, samples average resistivity reduces to 2.5 Ωm for 4.76 wt.% CNT and
to 0.15 Ωm for 9.09 wt.% CNT. Current-voltage characteristics were determined for the
developed materials. A significant influence of the tunneling mechanism on the electrical
properties of ABS/CNT composites was observed. Non-linearity of the characteristics
proves that the electrical conductivity is based in such composites on quantum tunneling.
For materials with higher CNT content, the occurrence of physical contacts between
individual nanotubes forming conductive pathways inside the composite becomes more
and more critical, resulting in a decrease in resistance at higher values of measurement
voltages than for composites with lower CNT content. For material containing 4.76 wt.%
CNTs, the decrease in resistance value during a voltage change from 2 to 18V was 83%
and for material containing 9.09 wt.% CNTs it was 88%. The research also showed the



Appl. Sci. 2021, 11, 1272 11 of 13

occurrence of resistivity hysteresis, depending on the applied voltage. It was observed that
the resistivity of the composite is lower when the voltage value decreases compared to the
resistivity for an increasing voltage. This relation is directly related to the hysteresis of the
I-V relation occurring during the tunneling mechanism.

Additional work needs to be done to explore the influence of the other carbon and
metal fillers on mechanical and electrical properties of composites, printing parameters
(speed, temperature, infill, layer height etc.), and the porosity of the printed components.
Yet, at this moment the obtained and presented results demonstrate that ABS/CNT com-
posite filaments are promising materials for FDM additive manufacturing and may open
the possibilities for many new applications in advanced industrial fields such as structural
electronics, intelligent structures, and embedded sensors.
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