Comparative Studies on the Fatty Acid Profile and Volatile Compounds of Fallow Deer and Beef Fermented Sausages without Nitrite Produced with the Addition of Acid Whey
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Fermented Sausage Manufacturing
2.2. Proximate Chemical Composition, pH, and Water Activity (aw) Determination
2.3. Analysis of Lipid Oxidation by Thiobarbituric Acid Reactive Substance (TBARS) Measurement
2.4. Fatty Acid Profile Measurements
2.5. Volatile Compound Determination
2.6. Statistical Analysis
3. Results
3.1. Chemical Composition and Physicochemical Properties of Sausages
3.2. Fatty Acid Profile of Sausages
3.3. Volatile Compounds of Sausages
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lorenzo, J.M.; Munekata, P.E.S.; Pateiro, M.; Campagnol, P.C.B.; Domínguez, R. Healthy Spanish salchichón enriched with encapsulated n − 3 long chain fatty acids in konjac glucomannan matrix. Food Res. Int. 2016, 89, 289–295. [Google Scholar] [CrossRef]
- Fonseca, S.; Gómez, M.; Domínguez, R.; Lorenzo, J.M. Physicochemical and sensory properties of Celta dry-ripened “salchichón” as affected by fat content. Grasas y Aceites 2015, 66, e059. [Google Scholar] [CrossRef] [Green Version]
- Asioli, D.; Aschemann-Witzel, J.; Caputo, V.; Vecchio, R.; Annunziata, A.; Næs, T.; Varela, P. Making sense of the “clean label” trends: A review of consumer food choice behavior and discussion of industry implications. Food Res. Int. 2017, 99, 58–71. [Google Scholar] [CrossRef]
- Munekata, P.E.; Pateiro, M.; Domínguez, R.; Santos, E.M.; Lorenzo, J.M. Cruciferous vegetables as sources of nitrate in meat products. Curr. Opin. Biotechnol. 2021, 38, 1–7. [Google Scholar] [CrossRef]
- Nikmaram, N.; Budaraju, S.; Barba, F.J.; Lorenzo, J.M.; Cox, R.B.; Mallikarjunan, K.; Roohinejad, S. Application of plant extracts to improve the shelf-life, nutritional and health-related properties of ready-to-eat meat products. Meat Sci. 2018, 145, 245–255. [Google Scholar] [CrossRef]
- Fernandes, R.P.P.; Trindade, M.A.; Tonin, F.G.; Lima, C.G.; Pugine, S.M.P.; Munekata, P.E.S.; Lorenzo, J.M.; de Melo, M.P. Evaluation of antioxidant capacity of 13 plant extracts by three different methods: Cluster analyses applied for selection of the natural extracts with higher antioxidant capacity to replace synthetic antioxidant in lamb burgers. J. Food Sci. Technol. 2016, 53, 451–460. [Google Scholar] [CrossRef] [Green Version]
- Munekata, P.E.S.; Rocchetti, G.; Pateiro, M.; Lucini, L.; Domínguez, R.; Lorenzo, J.M. Addition of plant extracts to meat and meat products to extend shelf-life and health-promoting attributes: An overview. Curr. Opin. Food Sci. 2020, 31, 81–87. [Google Scholar] [CrossRef]
- Alirezalu, K.; Pateiro, M.; Yaghoubi, M.; Alirezalu, A.; Peighambardoust, S.H.; Lorenzo, J.M. Phytochemical constituents, advanced extraction technologies and techno-functional properties of selected Mediterranean plants for use in meat products. A comprehensive review. Trends Food Sci. Technol. 2020, 100, 292–306. [Google Scholar] [CrossRef]
- Ozaki, M.M.; Munekata, P.E.S.; Jacinto-Valderrama, R.A.; Efraim, P.; Pateiro, M.; Lorenzo, J.M.; Pollonio, M.A.R. Beetroot and radish powders as natural nitrite source for fermented dry sausages. Meat Sci. 2021, 171, 108275. [Google Scholar] [CrossRef]
- Alirezalu, K.; Hesari, J.; Nemati, Z.; Munekata, P.E.S.; Barba, F.J.; Lorenzo, J.M. Combined effect of natural antioxidants and antimicrobial compounds during refrigerated storage of nitrite-free frankfurter-type sausage. Food Res. Int. 2019, 120, 839–850. [Google Scholar] [CrossRef]
- Ozaki, M.M.; Munekata, P.E.S.; de Souza Lopes, A.; da Silva doNascimento, M.; Pateiro, M.; Lorenzo, J.M.; Pollonio, M.A.R. Using chitosan and radish powder to improve stability of fermented cooked sausages. Meat Sci. 2020, 167, 108165. [Google Scholar] [CrossRef] [PubMed]
- Kononiuk, A.D.; Karwowska, M. Comparison of selected parameters related to food safety of fallow deer and beef uncured fermented sausages with freeze-dried acid whey addition. Meat Sci. 2020, 161, 108015. [Google Scholar] [CrossRef] [PubMed]
- Kononiuk, A.D.; Karwowska, M. Influence of freeze-dried acid whey addition on biogenic amines formation in a beef and deer dry fermented sausages without added nitrite. Asian-Australasian J. Anim. Sci. 2020, 33, 332–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kononiuk, A.; Karwowska, M. Bioactive Compounds in Fermented Sausages Prepared from Beef and Fallow Deer Meat with Acid Whey Addition. Molecules 2020, 25, 2429. [Google Scholar] [CrossRef]
- Domingo, J.L.; Nadal, M. Carcinogenicity of consumption of red meat and processed meat: A review of scientific news since the IARC decision. Food Chem. Toxicol. 2017, 105, 256–261. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Aveyard, P.; Garnett, T.; Hall, J.W.; Key, T.J.; Lorimer, J.; Pierrehumbert, R.T.; Scarborough, P.; Springmann, M.; Jebb, S.A. Meat consumption, health, and the environment. Science 2018, 361, eaam5324. [Google Scholar] [CrossRef] [Green Version]
- Domínguez, R.; Agregán, R.; Lorenzo, J.M. Role of commercial starter cultures on microbiological, physicochemical characteristics, volatile compounds and sensory properties of dry-cured foal sausage. Asian Pacific J. Trop. Dis. 2016, 6, 396–403. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Gómez, M.; Purriños, L.; Fonseca, S. Effect of commercial starter cultures on volatile compound profile and sensory characteristics of dry-cured foal sausage. J. Sci. Food Agric. 2016, 96, 1194–1201. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Franco, D. Fat effect on physico-chemical, microbial and textural changes through the manufactured of dry-cured foal sausage Lipolysis, proteolysis and sensory properties. Meat Sci. 2012, 92. [Google Scholar] [CrossRef]
- Gómez, M.; Lorenzo, J.M. Effect of fat level on physicochemical, volatile compounds and sensory characteristics of dry-ripened “chorizo” from Celta pig breed. Meat Sci. 2013, 95, 658–666. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Temperán, S.; Bermúdez, R.; Cobas, N.; Purriños, L. Changes in physico-chemical, microbiological, textural and sensory attributes during ripening of dry-cured foal salchichón. Meat Sci. 2012, 90, 194–198. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Bedia, M.; Bañón, S. Relationship between flavour deterioration and the volatile compound profile of semi-ripened sausage. Meat Sci. 2013, 93, 614–620. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Carballo, J. Changes in physico-chemical properties and volatile compounds throughout the manufacturing process of dry-cured foal loin. Meat Sci. 2015, 99, 44–51. [Google Scholar] [CrossRef]
- Lorenzo, J.M. Changes on physico-chemical, textural, lipolysis and volatile compounds during the manufacture of dry-cured foal “cecina”. Meat Sci. 2014, 96, 256–263. [Google Scholar] [CrossRef]
- Bermúdez, R.; Franco, D.; Carballo, J.; Lorenzo, J.M. Influence of type of muscle on volatile compounds throughout the manufacture of Celta dry-cured ham. Food Sci. Technol. Int. 2015, 21, 581–592. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Montes, R.; Purriños, L.; Franco, D. Effect of pork fat addition on the volatile compounds of foal dry-cured sausage. Meat Sci. 2012, 91, 506–512. [Google Scholar] [CrossRef]
- Hospital, X.F.; Carballo, J.; Fernández, M.; Arnau, J.; Gratacós, M.; Hierro, E. Technological implications of reducing nitrate and nitrite levels in dry-fermented sausages: Typical microbiota, residual nitrate and nitrite and volatile profile. Food Control 2015, 57, 275–281. [Google Scholar] [CrossRef]
- Pikul, J.; Leszczynski, D.E.; Kummerow, F.A. Evaluation of Three Modified TBA Methods for Measuring Lipid Oxidation in Chicken Meat. J. Agric. Food Chem. 1989, 37, 1309–1313. [Google Scholar] [CrossRef]
- Barros, J.C.; Munekata, P.E.S.; de Carvalho, F.A.L.; Pateiro, M.; Barba, F.J.; Domínguez, R.; Trindade, M.A.; Lorenzo, J.M. Use of tiger nut (Cyperus esculentus L.) oil emulsion as animal fat replacement in beef burgers. Foods 2020, 9, 44. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Santaescolástica, C.; Carballo, J.; Fulladosa, E.; Garcia-Perez, J.V.; Benedito, J.; Lorenzo, J.M. Effect of proteolysis index level on instrumental adhesiveness, free amino acids content and volatile compounds profile of dry-cured ham. Food Res. Int. 2018, 107, 559–566. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A comprehensive review on lipid oxidation in meat and meat products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Rio, D.; Stewart, A.J.; Pellegrini, N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr. Metab. Cardiovasc. Dis. 2005, 15, 316–328. [Google Scholar] [CrossRef] [PubMed]
- Gianazza, E.; Brioschi, M.; Fernandez, A.M.; Banfi, C. Lipoxidation in cardiovascular diseases. Redox Biol. 2019, 23, 101119. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Holman, B.W.B.; Ponnampalam, E.N.; Kerr, M.G.; Bailes, K.L.; Kilgannon, A.K.; Collins, D.; Hopkins, D.L. Understanding beef flavour and overall liking traits using two different methods for determination of thiobarbituric acid reactive substance (TBARS). Meat Sci. 2019, 149, 114–119. [Google Scholar] [CrossRef]
- Kononiuk, A.D.; Karwowska, M. Comparison of the effect of freeze-dried acid whey on physicochemical properties of organic fermented sausages made from beef and fallow deer meat. J. Food Sci. Technol. 2020, 57, 1753–1762. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Evolutionary aspects of the dietary Omega-6:Omega-3 fatty acid ratio: Medical implications. World Rev. Nutr. Diet. 2009, 100, 1–21. [Google Scholar]
- Corral, S.; Salvador, A.; Flores, M. Salt reduction in slow fermented sausages affects the generation of aroma active compounds. Meat Sci. 2013, 93, 776–785. [Google Scholar] [CrossRef] [Green Version]
- Soncin, S.; Chiesa, L.M.; Cantoni, C.; Biondi, P.A. Preliminary study of the volatile fraction in the raw meat of pork, duck and goose. J. Food Compos. Anal. 2007, 20, 436–439. [Google Scholar] [CrossRef]
- Arshad, M.S.; Sohaib, M.; Ahmad, R.S.; Nadeem, M.T.; Imran, A.; Arshad, M.U.; Kwon, J.H.; Amjad, Z. Ruminant meat flavor influenced by different factors with special reference to fatty acids. Lipids Health Dis. 2018, 17, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Vargas-Ramella, M.; Munekata, P.E.S.; Gagaoua, M.; Franco, D.; Campagnol, P.C.B.; Pateiro, M.; da Silva Barretto, A.C.; Domínguez, R.; Lorenzo, J.M. Inclusion of healthy oils for improving the nutritional characteristics of dry-fermented deer sausage. Foods 2020, 9, 1487. [Google Scholar] [CrossRef]
- Marco, A.; Navarro, J.L.; Flores, M. The sensory quality of dry fermented sausages as affected by fermentation stage and curing agents. Eur. Food Res. Technol. 2008, 226, 449–458. [Google Scholar] [CrossRef]
- Domínguez, R.; Purriños, L.; Pérez-Santaescolástica, C.; Pateiro, M.; Barba, F.J.; Tomasevic, I.; Campagnol, P.C.B.; Lorenzo, J.M. Characterization of Volatile Compounds of Dry-Cured Meat Products Using HS-SPME-GC/MS Technique. Food Anal. Methods 2019, 12, 1263–1284. [Google Scholar] [CrossRef]
- Perea-Sanz, L.; Montero, R.; Belloch, C.; Flores, M. Microbial changes and aroma profile of nitrate reduced dry sausages during vacuum storage. Meat Sci. 2019, 147, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Rivas-Cañedo, A.; Nuñez, M.; Fernández-García, E. Volatile compounds in Spanish dry-fermented sausage ‘salchichón’ subjected to high pressure processing. Effect of the packaging material. Meat Sci. 2009, 83, 620–626. [Google Scholar] [CrossRef] [PubMed]
- Bis-Souza, C.V.; Pateiro, M.; Domínguez, R.; Lorenzo, J.M.; Penna, A.L.B.; da Silva Barretto, A.C. Volatile profile of fermented sausages with commercial probiotic strains and fructooligosaccharides. J. Food Sci. Technol. 2019, 56, 5465–5473. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Zhao, L.; Xu, J.; Su, L.; Jin, Z.; Su, R.; Jin, Y. Effect of fermentation and postcooking procedure on quality parameters and volatile compounds of beef jerky. Food Sci. Nutr. 2020, 8, 2316–2326. [Google Scholar] [CrossRef]
- Rzepkowska, A.; Zielińska, D.; Ołdak, A.; Kołożyn-Krajewska, D. Organic whey as a source of Lactobacillus strains with selected technological and antimicrobial properties. Int. J. Food Sci. Technol. 2017, 52, 1983–1994. [Google Scholar] [CrossRef]
- Perea-Sanz, L.; Montero, R.; Belloch, C.; Flores, M. Nitrate reduction in the fermentation process of salt reduced dry sausages: Impact on microbial and physicochemical parameters and aroma profile. Int. J. Food Microbiol. 2018, 282, 84–91. [Google Scholar] [CrossRef] [Green Version]
Ingredients (%) | C | S | SAW |
---|---|---|---|
Glucose | 0.6 | 0.6 | 0.6 |
Sea salt | 2.786 | 2.8 | 2.8 |
Sodium nitrite | 0.014 | - | - |
Acid whey powder | - | - | 0.70 |
Water/Saline | 5 | 5 | 5 |
Parameter | C | S | SAW |
---|---|---|---|
pH | |||
Beef | 5.23 d ± 0.16 | 5.32 cd ± 0.03 | 5.37 c ± 0.01 |
Fallow deer | 5.74 ab ± 0.01 | 5.79 a ± 0.04 | 5.66 b ± 0.01 |
TBARS (mg MDA/kg) | |||
Beef | 3.38 a ± 0.09 | 3.23 a ± 0.12 | 3.01 b ± 0.19 |
Fallow deer | 1.85 c ± 0.12 | 1.93 c ± 0.07 | 1.99 c ± 0.06 |
Water Activity (aw) | |||
Beef | 0.915 ab ± 0.008 | 0.910 b ± 0.003 | 0.914 ab ± 0.003 |
Fallow deer | 0.918 a ± 0.002 | 0.918 a ± 0.002 | 0.915 ab ± 0.002 |
Parameter | Type of Meat | Variant | ||
---|---|---|---|---|
C | S | SAW | ||
SFA (% fatty acid) | Beef | 51.72 a ± 0.80 | 52.64 b ± 0.13 | 52.65 b ± 0.26 |
Fallow deer | 65.27 a ± 0.58 | 65.38 a ± 0.54 | 65.84 a ± 0.39 | |
MUFA (% fatty acid) | Beef | 44.04 a ± 0.92 | 42.75 b ± 0.14 | 42.75 b ± 0.24 |
Fallow deer | 26.46 c ± 0.93 | 26.32 c ± 0.49 | 25.78 c ± 0.38 | |
PUFA (% fatty acid) | Beef | 4.24 c ± 0.14 | 4.61 b ± 0.08 | 4.60 b ± 0.12 |
Fallow deer | 8.26 a ± 0.35 | 8.30 a ± 0.07 | 8.38 a ± 0.12 | |
n-3 | Beef | 0.71 c ± 0.03 | 0.86 b ± 0.02 | 0.89 b ± 0.04 |
Fallow deer | 2.91 a ± 0.14 | 2.92 a ± 0.02 | 2.98 a ± 0.04 | |
n-6 | Beef | 3.54 b ± 0.13 | 3.75 b ± 0.06 | 3.71 b ± 0.09 |
Fallow deer | 5.36 a ± 0.22 | 5.38 a ± 0.07 | 5.40 a ± 0.08 | |
n-6/n-3 | Beef | 5.02 a ± 0.24 | 4.34 b ± 0.03 | 4.15 b ± 0.08 |
Fallow deer | 1.84 c ± 0.02 | 1.84 c ± 0.03 | 1.81 c ± 0.01 |
Fatty Acid | Type of Meat | Variant | ||
---|---|---|---|---|
C | S | SAW | ||
C10:0 | Beef | 0.04 c ± 0.00 | 0.04 c ± 0.00 | 0.05 b ± 0.00 |
Fallow deer | 0.04 d ± 0.00 | 0.04 d ± 0.00 | 0.06 a ± 0.00 | |
C12:0 | Beef | 0.04 e ± 0.00 | 0.06 d ± 0.00 | 0.08 c ± 0.00 |
Fallow deer | 0.13 b ± 0.00 | 0.13 b ± 0.00 | 0.16 a ± 0.00 | |
C13:0 | Beef | nd | nd | nd |
Fallow deer | 0.07 b ± 0.00 | 0.07 ab ± 0.00 | 0.07 a ± 0.00 | |
C14:0 | Beef | 2.39 d ± 0.06 | 2.69 c ± 0.02 | 2.76 c ± 0.05 |
Fallow deer | 3.98 b ± 0.05 | 4.01 b ± 0.07 | 4.17 a ± 0.06 | |
C14:1 n-5 | Beef | 0.35 b ± 0.01 | 0.45 a ± 0.01 | 0.45 a ± 0.01 |
Fallow deer | 0.17 b ± 0.00 | 0.16 b ± 0.00 | 0.17 b ± 0.01 | |
C15:0 | Beef | 0.32 b ± 0.01 | 0.35 b ± 0.00 | 0.30 b ± 0.13 |
Fallow deer | 2.53 a ± 0.11 | 2.51 a ± 0.03 | 2.53 a ± 0.04 | |
C15:1 n-5 | Beef | 0.34 b ± 0.01 | 0.38 a ± 0.01 | 0.38 a ± 0.02 |
Fallow deer | 0.15 c ± 0.01 | 0.14 c ± 0.00 | 0.14 c ± 0.00 | |
C16:0 | Beef | 24.94 ab ± 0.42 | 25.11 ab ± 0.07 | 24.78 b ± 0.17 |
Fallow deer | 24.95 ab ± 0.09 | 25.04 ab ± 0.09 | 25.24 a ± 0.14 | |
C16:1 n-7 | Beef | 2.08 b ± 0.04 | 2.25 a ± 0.03 | 2.21 a ± 0.04 |
Fallow deer | 1.17 c ± 0.04 | 1.18 c ± 0.02 | 1.14 c ± 0.02 | |
C17:0 | Beef | 1.31 c ± 0.02 | 1.35 bc ± 0.01 | 1.35 b ± 0.01 |
Fallow deer | 1.96 a ± 0.02 | 1.97 a ± 0.03 | 1.98 a ± 0.01 | |
C17:1 n-7 | Beef | 0.62 b ± 0.02 | 0.64 a ± 0.01 | 0.62 ab ± 0.01 |
Fallow deer | 0.36 d ± 0.01 | 0.39 c ± 0.01 | 0.38 cd ± 0.01 | |
C18:0 | Beef | 22.42 c ±0.34 | 22.79 bc ± 0.13 | 23.07 b ± 0.19 |
Fallow deer | 30.73 a ± 0.40 | 30.73 a ± 0.32 | 30.73 a ± 0.17 | |
C18:1 trans11 | Beef | 0.50 b ± 0.55 | nd | nd |
Fallow deer | 2.00 a ± 0.07 | 2.00 a ± 0.04 | 2.07 a ± 0.03 | |
C18:1 n-9 | Beef | 38.81 a ± 0.49 | 37.71 b ± 0.17 | 37.78 b ± 0.26 |
Fallow deer | 21.69 c ± 0.89 | 21.49 c ± 0.45 | 20.93 c ± 0.35 | |
C18:1 n-7 | Beef | 1.10 a ± 0.03 | 1.07 a ± 0.03 | 1.05 a ± 0.03 |
Fallow deer | 0.76 b ± 0.06 | 0.81 b ± 0.01 | 0.79 b ± 0.01 | |
C18:2 trans9-trans11 | Beef | 0.16 c ± 0.02 | 0.18 b ± 0.00 | 0.18 b ± 0.00 |
Fallow deer | 0.26 a ± 0.01 | 0.26 a ± 0.00 | 0.27 a ± 0.01 | |
C18:2 cis9-trans11 | Beef | 0.32 b ±0.02 | 0.39 a ± 0.01 | 0.39 a ± 0.01 |
Fallow deer | 0.24 c ±0.01 | 0.24 c± 0.00 | 0.24 c ± 0.00 | |
C18:2 n-6 | Beef | 2.57 b ± 0.09 | 2.62 b ± 0.03 | 2.56 b ± 0.04 |
Fallow deer | 3.45 a ± 0.13 | 3.48 a ± 0.05 | 3.48 a ± 0.05 | |
C18:3 n-3 (ALA) | Beef | 0.49 d ± 0.04 | 0.55 c ± 0.01 | 0.55 c ± 0.02 |
Fallow deer | 1.20 b ± 0.04 | 1.22 ab ± 0.01 | 1.25 a ± 0.01 | |
C20:0 | Beef | 0.17 b ± 0.00 | 0.17 b ± 0.00 | 0.17 b ± 0.00 |
Fallow deer | 0.47 a ± 0.02 | 0.48 a ± 0.02 | 0.48 a ± 0.01 | |
C20:1 n-9 | Beef | 0.23 a ± 0.00 | 0.23 ab ± 0.00 | 0.23 b ± 0.00 |
Fallow deer | 0.17 c ± 0.01 | 0.16 d ± 0.00 | 0.16 cd ± 0.00 | |
C20:2 n-6 | Beef | 0.05 cd ± 0.01 | 0.04 d ± 0.00 | 0.04 d ± 0.00 |
Fallow deer | 0.09 a ± 0.00 | 0.08 ab ± 0.01 | 0.06 bc ± 0.00 | |
C20:3 n-6 | Beef | 0.11 a ± 0.01 | 0.12 a ± 0.00 | 0.12 a ± 0.00 |
Fallow deer | 0.05 c ± 0.00 | 0.06 b ± 0.00 | 0.06 bc ± 0.01 | |
C20:3 n-3 | Beef | 0.03 b ± 0.00 | 0.03 b ± 0.00 | 0.03 b ± 0.00 |
Fallow deer | 0.05 a ± 0.00 | 0.05 a ± 0.00 | 0.05 a ± 0.00 | |
C20:4 n-6 | Beef | 0.32 c ± 0.02 | 0.40 b ± 0.01 | 0.42 b ± 0.02 |
Fallow deer | 1.27 a ± 0.09 | 1.26 a ± 0.01 | 1.29 a ± 0.03 | |
C20:5 n-3 | Beef | 0.05 c ± 0.00 | 0.10 b ± 0.00 | 0.12 b ± 0.01 |
Fallow deer | 0.38 a ± 0.02 | 0.37 a ± 0.00 | 0.38 a ± 0.01 | |
C21:0 | Beef | 0.05 b ± 0.01 | 0.05 b ± 0.00 | 0.05 b ± 0.00 |
Fallow deer | 0.11 a ± 0.01 | 0.11 a ± 0.01 | 0.11 a ± 0.01 | |
C22:0 | Beef | 0.02 b ± 0.00 | 0.02 b ± 0.00 | 0.02 b ± 0.00 |
Fallow deer | 0.15 a ± 0.01 | 0.14 a ± 0.01 | 0.14 a ± 0.01 | |
C22:1 n-9 | Beef | 0.02 a ± 0.02 | 0.03 a ± 0.00 | 0.03 a ± 0.00 |
Fallow deer | nd | nd | nd | |
C22:5 n-3 | Beef | 0.12 b ± 0.01 | 0.16 b ± 0.01 | 0.16 b ± 0.01 |
Fallow deer | 1.17 a ± 0.07 | 1.18 a ± 0.02 | 1.20 a ± 0.02 | |
C22:6 n-3 (DHA) | Beef | 0.02 b ± 0.01 | 0.03 b ± 0.00 | 0.03 b ± 0.00 |
Fallow deer | 0.11 a ± 0.01 | 0.11 a ± 0.01 | 0.11 a ± 0.00 | |
C23:0 | Beef | 0.01 b ± 0.01 | 0.01 b ± 0.00 | 0.02 b ± 0.00 |
Fallow deer | 0.09 a ± 0.01 | 0.09 a ± 0.00 | 0.09 a ± 0.00 | |
C24:0 | Beef | nd | nd | nd |
Fallow deer | 0.07 a ± 0.01 | 0.07 a ± 0.00 | 0.07 a ± 0.00 |
Type of Meat | Variant | |||
---|---|---|---|---|
C | S | SAW | ||
1-Propanol | Beef | 23.46 ab ± 15.03 | 39.04 a ± 32.62 | 23.50 ab ± 17.63 |
Fallow deer | 3.20 b ± 0.72 | 4.41 b ± 0.69 | 6.19 b ± 2.15 | |
Heptane | Beef | 280.84 a ± 106.39 | 331.95 a ± 85.74 | 208.95 a ± 101.89 |
Fallow deer | 21.48 b ± 9.75 | 42.87 b ± 18.53 | 32.08 b ± 11.14 | |
Pentanal | Beef | 78.65 a ± 65.12 | 49.57 ab ± 19.90 | 9.53 b ± 4.44 |
Fallow deer | 2.69 b ± 1.42 | 6.19 b ± 2.36 | 1.70 b ± 0.72 | |
1-Pentanol | Beef | 447.75 ab ± 272.87 | 622.25 a ± 483.45 | 394.17 ab ± 240.36 |
Fallow deer | 14.56 b ± 1.98 | 64.59 b ± 11.76 | 124.37 b ± 25.24 | |
Hexanal | Beef | 1561.07 a ± 1333.82 | 1032.11 ab ± 435.34 | 102.26 b ± 52.75 |
Fallow deer | 30.92 b ± 7.82 | 90.97 b ± 36.51 | 22.66 b ± 6.92 | |
n-Hexane | Beef | 361.01 ab ± 277.77 | 276.30 b ± 224.66 | 679.92 ab ± 303.73 |
Fallow deer | 981.14 a ± 585.05 | 827.80 ab ± 774.92 | 750.46 ab ± 391.11 | |
Heptanal | Beef | 797.69a ± 624.45 | 794.27 a ± 584.61 | 76.19 b ± 42.52 |
Fallow deer | 6.55 b ± 2.35 | 11.41 b ± 1.59 | 6.31 b ± 1.84 | |
Octanal | Beef | 153.78 ab ± 139.17 | 170.25 a ± 160.88 | 19.44 ab ± 7.04 |
Fallow deer | 5.50 b ± 2.64 | 4.98 ab ± 1.15 | 4.26 b ± 1.86 | |
Hexanoic acid | Beef | 58.98 b ± 44.94 | 61.85 b ± 39.83 | 4.30 b ± 2.53 |
Fallow deer | 16.77 b ± 5.48 | 24.23 b ± 4.95 | 378.13 a ± 54.56 | |
Nonanal | Beef | 106.43 ab ± 82.35 | 129.88 a ± 104.09 | 33.43 abc ± 16.35 |
Fallow deer | 5.84 c ± 2.88 | 6.29 bc ± 0.70 | 2.59 c ± 0.72 | |
2-Nonenal, (E)- | Beef | 14.06 ab ± 12.81 | 16.28 a ± 13.32 | 5.60 ab ± 3.02 |
Fallow deer | 0.85 b ± 0.47 | 1.18 ab ± 1.48 | 4.29 ab ± 3.05 | |
1-Butanol | Beef | 38.22 a ± 11.00 | 42.16 a ± 13.42 | 33.51 ab ± 11.58 |
Fallow deer | 14.99 c ± 4.11 | 12.82 c ± 2.03 | 21.07 bc ± 3.73 | |
1-Hexanol | Beef | 1830.27 ab± 1370.87 | 3170.59 a ± 2544.72 | 1680.55 ab ± 851.03 |
Fallow deer | 25.13 b ± 3.66 | 56.95 b ± 9.43 | 313.18 b ± 28.45 | |
Furan, 2-pentyl- | Beef | 17.28 ab ± 11.23 | 32.28 a ± 24.00 | 14.71 ab ± 6.58 |
Fallow deer | 2.68 b ± 0.70 | 4.00 b ± 0.73 | 6.63 b ± 0.86 | |
Furan, 2-ethyl- | Beef | 48.98 abc ± 26.15 | 98.68 a ± 64.00 | 72.70 ab ± 45.62 |
Fallow deer | 3.53 c ± 0.78 | 9.06 c ± 1.64 | 27.19 bc ± 8.60 | |
Pentane | Beef | 3.60 a ± 1.44 | 5.07 a ± 1.48 | 3.23 a ± 1.30 |
Fallow deer | 0.38 b ± 0.20 | 1.15 b ± 0.40 | 1.34 b ± 0.58 |
Type of Meat | Variant | |||
---|---|---|---|---|
C | S | SAW | ||
Carbohydrate fermentation | ||||
2-Butanone | Beef | 3.47 b ± 0.79 | 6.67 b ± 2.78 | 11.05 b ± 5.06 |
Fallow deer | 94.76 ab ± 28.60 | 270.39 a ± 231.98 | 31.85 ab ± 4.49 | |
2-Butanol | Beef | 4.26 c ± 2.43 | 4.82 c ± 1.10 | 9.21 c ± 1.47 |
Fallow deer | 91.61 a ± 10.44 | 76.29 ab ± 54.09 | 39.46 b ± 8.54 | |
Acetic acid | Beef | 1609.96 a ± 376.13 | 1843.73 a ± 160.02 | 831.99 b ± 467.98 |
Fallow deer | 964.29 b ± 176.10 | 1013.81 b ± 349.62 | 905.72 b ± 191.66 | |
Acetoin | Beef | 302.51 c ± 138.27 | 267.57 cd ± 31.74 | 321.09 c ± 60.61 |
Fallow deer | 706.53 b ± 137.28 | 1080.88 a ± 237.54 | 74.73 d ± 27.70 | |
2,3-Butanediol, [R (R*,R*)]- | Beef | 1994.05 ab ± 39.8 | 2504.90 a ± 1115.46 | 1191.95 bc ± 618.97 |
Fallow deer | 1319.46 bc ± 119.36 | 1378.20 bc ± 289.11 | 829.16 c ± 249.57 | |
Butanoic acid | Beef | 206.93 c ± 30.99 | 238.65 c ± 20.38 | 287.36 bc ± 77.80 |
Fallow deer | 316.70 bc ± 46.33 | 450.25 b ± 72.28 | 1097.02 a ± 130.67 | |
Staphylococci esterase activity | ||||
Ethyl acetate | Beef | 111.04 cd ± 25.72 | 108.81 d ± 25.82 | 170.63 bc ± 37.40 |
Fallow deer | 254.08 ab ± 56.89 | 143.80 b ± 76.66 | 194.02 ab ± 15.59 | |
Ethyl (S)-(-)-lactate | Beef | 224.06 ab ± 22.50 | 255.54 a ± 3.71 | 263.39 a ± 80.54 |
Fallow deer | 147.67 bc ± 86.44 | 88.10 c ± 74.83 | 219.52 ab ± 18.31 | |
Ethyl 3-methyl-butanoate | Beef | 403.80 a ± 54.41 | 294.83 ab ± 21.56 | 287.5 ab ± 31.98 |
Fallow deer | 228.12 b ± 104.91 | 225.45 ab ± 168.38 | 212.85 b ± 10.79 | |
Ethyl butanoate | Beef | 205.54 d ± 19.02 | 194.32 d ± 41.11 | 277.24 cd ± 59.28 |
Fallow deer | 610.59 b ± 324.16 | 414.52 bc ± 336.97 | 1087.47 a ± 103.32 | |
Ethyl octanoate | Beef | 4.20 b ± 1.88 | 3.88 b ± 1.03 | 6.03 b ± 1.66 |
Fallow deer | 9.43 b ± 4.56 | 7.33 b ± 5.96 | 59.78 a ± 9.20 | |
Ethyl hexanoate | Beef | 269.60 b ± 184.75 | 303.25 b ± 188.08 | 128.34 b ± 22.93 |
Fallow deer | 95.52 b ± 49.14 | 94.67 b ± 60.91 | 529.20 a ± 92.04 | |
Ethyl 4-methylpentanoate | Beef | 1.91 b ± 0.37 | 1.90 b ± 0.17 | 1.39 b ± 0.34 |
Fallow deer | 45.85 a ± 25.09 | 33.20 a ± 26.61 | 54.64 a ± 8.03 | |
Amino acid degradation | ||||
3-Methyl-butanal | Beef | 95.23 a ± 72.26 | 92.84 a ± 71.78 | 5.78 b ± 2.61 |
Fallow deer | 33.71 ab ± 10.48 | 111.94 a ± 26.44 | 20.01 ab ± 5.80 | |
1-Butanol, 3-methyl- | Beef | 701.89 b ± 150.92 | 700.98 b ± 102.83 | 1184.91 a ± 191.61 |
Fallow deer | 72.02 c ± 10.08 | 116.03 c ± 61.54 | 51.12 c ± 7.68 | |
Phenyl acetaldehyde | Beef | 330.96 d ± 233.16 | 225.21 de ± 123.31 | 16.18 e ± 5.55 |
Fallow deer | 900.85 c ± 57.39 | 1288.59 b ± 215.24 | 1780.05 a ± 133.42 | |
Phenyl ethyl alcohol | Beef | 416.73 bc ± 186.70 | 560.51 b ± 241.41 | 1322.63 a ± 209.22 |
Fallow deer | 97.22 d ± 29.28 | 188.30 cd ± 113.36 | 432.77 bc ± 177.22 | |
Benzaldehyde | Beef | 169.4 ab ± 115.03 | 209.63 a ± 82.83 | 70.25 b ± 15.37 |
Fallow deer | 61.10 a ± 19.07 | 173.29 ab ± 80.07 | 204.69 a ± 61.18 | |
Dimethyl trisulfide | Beef | 13.30 ab ± 11.11 | 16.26a ± 6.54 | 4.58 bc ± 3.78 |
Fallow deer | 0.11 c ± 0.00 | 1.20 c ± 1.11 | 0.45 c ± 0.31 | |
Lipid β-oxidation | ||||
2-Pentanone | Beef | 3.74 b ± 1.52 | 5.38 b ± 1.55 | 25.57 a ± 8.71 |
Fallow deer | 1.75 b ± 0.49 | 2.31 b ± 0.90 | 3.16 b ± 0.84 | |
2,3-Pentanedione | Beef | 39.36 ab ± 33.89 | 41.96 a ± 37.07 | 5.90 b ± 3.50 |
Fallow deer | 2.44 b ± 1.09 | 3.65 b ± 0.76 | 3.30 b ± 1.70 |
Type of Meat | Variant | |||
---|---|---|---|---|
C | S | SAW | ||
1,3-Benzenediol, monobenzoate | Beef | 49.61 bc ± 8.18 | 56.14 bc ± 11.00 | 43.52 c ± 6.10 |
Fallow deer | 48.16 bc ± 3.33 | 61.71 ab ± 9.45 | 71.74 a ± 7.93 | |
1-Butanol, 3-methyl-, acetate | Beef | 22.11 ab ± 7.38 | 20.73 b ± 7.52 | 31.11 a ± 8.02 |
Fallow deer | 3.91 c ± 0.69 | 7.65 c ± 4.43 | 3.54 c ± 0.38 | |
2-Butanol, (R)- | Beef | 2.76 d ± 0.83 | 3.04 d ± 0.85 | 4.05 cd ± 0.36 |
Fallow deer | 34.77 a ± 5.89 | 29.28 ab ± 19.40 | 15.96 bc ± 2.42 | |
2-Propen-1-amine | Beef | 24.86 b ± 9.97 | 26.24 b ± 15.59 | 55.52 a ± 15.22 |
Fallow deer | 5.68 c ± 0.80 | 6.64 bc ± 2.17 | 5.69 c ± 1.09 | |
4-Pentenoic acid, 2,2-diethyl-3-oxo-5-phenyl-, ethyl ester | Beef | 31.20 ab ± 11.45 | 38.55 b ± 17.33 | 14.20 bc ± 9.26 |
Fallow deer | 17.95 bc ± 6.49 | 29.95 abc ± 7.53 | 10.38 c ± 5.08 | |
6-Fluoro-2-trifluoromethylbenzoic acid, 2,3-dichlorophenyl ester | Beef | 90.63 a ± 27.86 | 79.41 a ± 30.71 | 83.62 a ± 17.40 |
Fallow deer | 71.98 a ± 33.78 | 73.67 a ± 22.02 | 85.40 a ± 25.23 | |
Acetic acid ethenyl ester | Beef | 9.85 c ± 4.85 | 7.67 c ± 3.05 | 8.89 c ± 4.25 |
Fallow deer | 36.76 b ± 11.98 | 75.71 a ± 31.86 | 2.07 c ± 1.13 | |
Benzene, 1,3-dimethyl- | Beef | 25.31 ab ± 6.84 | 29.82 a ± 2.54 | 29.67 a ± 4.56 |
Fallow deer | 18.76 bc ± 5.46 | 16.19 c ± 5.95 | 17.59 bc ± 3.80 | |
Benzyl alcohol | Beef | 241.08 c ± 67.46 | 348.67 ab ± 56.32 | 360.14 a ± 48.95 |
Fallow deer | 134.22 d ± 16.49 | 187.36 cd ± 18.14 | 274.72 bc ± 34.18 | |
Carbon disulphide | Beef | 314.17 abc ± 258.96 | 597.50 a ± 209.74 | 475.77 ab ± 223.76 |
Fallow deer | 118.48 c ± 40.17 | 369.16 abc ± 144.92 | 276.52 bc ± 95.46 | |
Cyclobutanol | Beef | 12.70 ab ± 10.78 | 21.72 a ± 17.36 | 20.72 ab ± 11.92 |
Fallow deer | 6.72 ab ± 2.54 | 8.68 ab ± 1.62 | 3.19 b ± 4.62 | |
Cyclopentanol | Beef | 102.05 ab ± 67.20 | 131.71 a ± 62.18 | 52.09 bc ± 15.78 |
Fallow deer | 7.21 c ± 1.07 | 20.95 c ± 4.59 | 38.26 bc ± 6.03 | |
Dimethyl sulfone | Beef | 38.72 b ± 7.84 | 72.89 a ± 33.88 | 37.70 b ± 17.43 |
Fallow deer | 59.40 ab ± 5.34 | 67.95 ab ± 14.98 | 40.89 b ± 10.59 | |
Ethanedioic acid, dibutyl ester | Beef | 189.73 ab ± 47.86 | 239.55 a ± 62.01 | 150.86 b ± 29.66 |
Fallow deer | 21.42 c ± 8.77 | 46.25 c ± 14.09 | 25.82 c ± 11.97 | |
Ethanol, 2-methoxy-, acetate | Beef | 14.41 ab ± 7.44 | 20.51 a ± 12.64 | 12.78 ab ± 5.81 |
Fallow deer | 0.59 c ± 0.19 | 3.15 bc ± 0.68 | 4.38 bc ± 1.32 | |
Formic acid, heptyl ester | Beef | 295.98 ab ± 239.27 | 647.20 a ± 582.33 | 336.18 ab ± 278.27 |
Fallow deer | 4.26 b ± 1.04 | 6.01 b ± 0.95 | 22.23 b ± 7.84 | |
Formic acid, octyl ester | Beef | 42.80 ab ± 30.64 | 74.47 a ± 61.04 | 32.07 ab ± 17.35 |
Fallow deer | 2.55 c ± 0.94 | 2.22 c ± 1.05 | 5.21 c ± 0.99 | |
Glycidol | Beef | 37.24 ab ± 22.84 | 37.41 ab ± 29.62 | 2.11 c ± 0.97 |
Fallow deer | 13.68 abc ± 4.83 | 45.76 a ± 8.40 | 9.04 c ± 3.40 | |
Heptane, 2,2,4,6,6-pentamethyl- | Beef | 63.59 a ± 45.60 | 61.02 a ± 40.76 | 68.04 a ± 41.59 |
Fallow deer | 82.31 a ± 36.54 | 56.40 a ± 33.07 | 96.73 a ± 49.77 | |
Heptane, 2,4-dimethyl- | Beef | 699.66 b ± 106.94 | 1021.40 a ± 152.05 | 626.03 b ± 47.67 |
Fallow deer | 76.21 c ± 18.77 | 136.40 c ± 35.72 | 143.81 c ± 29.99 | |
Methane, dichloronitro- | Beef | 20.87 a ± 6.55 | 18.80 a ± 6.83 | 25.48 a ± 6.49 |
Fallow deer | 30.93 a ± 13.13 | 33.57 a ± 27.14 | 30.70 a ± 15.09 | |
Methane, trimethoxy- | Beef | 138.00 ab ± 28.89 | 177.13 a ± 78.27 | 86.29 b ± 46.38 |
Fallow deer | 97.05 b ± 10.35 | 105.98 ab ± 21.92 | 67.01 b ± 18.92 | |
Octane, 2,2,6-trimethyl- | Beef | 36.36 a ± 35.76 | 2.22 b ± 0.91 | 14.27 ab ± 11.82 |
Fallow deer | 0.79 b ± 0.49 | 1.00 b ± 0.15 | 14.94 ab ± 2.89 | |
Oxirane, (methoxymethyl)- | Beef | 3.81 a ± 3.69 | 9.56 a ± 9.65 | 8.94 a ± 10.84 |
Fallow deer | 0.86 a ± 0.68 | 1.07 a ± 0.37 | 2.33 a ± 1.64 | |
Pentanoic acid, 2-methyl-, anhydride | Beef | 9.89 bc ± 11.44 | 16.23 a ± 17.17 | 2.90 bc ± 1.94 |
Fallow deer | 0.30 c ± 0.28 | 0.27 bc ± 0.16 | 0.94 bc ± 0.33 | |
Pyrolo [3,2-d] pyrimidin-2,4(1H,3H)-dione | Beef | 643.83 a ± 60.84 | 580.02 a ± 82.22 | 345.80 bc ± 92.02 |
Fallow deer | 415.06 b ± 58.62 | 308.45 c ± 46.30 | 309.95 bc ± 34.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karwowska, M.; Kononiuk, A.D.; Borrajo, P.; Lorenzo, J.M. Comparative Studies on the Fatty Acid Profile and Volatile Compounds of Fallow Deer and Beef Fermented Sausages without Nitrite Produced with the Addition of Acid Whey. Appl. Sci. 2021, 11, 1320. https://doi.org/10.3390/app11031320
Karwowska M, Kononiuk AD, Borrajo P, Lorenzo JM. Comparative Studies on the Fatty Acid Profile and Volatile Compounds of Fallow Deer and Beef Fermented Sausages without Nitrite Produced with the Addition of Acid Whey. Applied Sciences. 2021; 11(3):1320. https://doi.org/10.3390/app11031320
Chicago/Turabian StyleKarwowska, Małgorzata, Anna D. Kononiuk, Paula Borrajo, and José M. Lorenzo. 2021. "Comparative Studies on the Fatty Acid Profile and Volatile Compounds of Fallow Deer and Beef Fermented Sausages without Nitrite Produced with the Addition of Acid Whey" Applied Sciences 11, no. 3: 1320. https://doi.org/10.3390/app11031320
APA StyleKarwowska, M., Kononiuk, A. D., Borrajo, P., & Lorenzo, J. M. (2021). Comparative Studies on the Fatty Acid Profile and Volatile Compounds of Fallow Deer and Beef Fermented Sausages without Nitrite Produced with the Addition of Acid Whey. Applied Sciences, 11(3), 1320. https://doi.org/10.3390/app11031320