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Featured Application: Thin-walled rectangular composite pipes, because of their light weight,
high stiffness, and strength, can be applied to ultra-lightweight airplanes, satellites, spacecraft,
automobiles, and civil structures.

Abstract: The numerical buckling load of rectangular composite pipes under torsional load was
derived by using the energy method. The authors found no available simple design method or chart
for the buckling loads of rectangular composite pipes, which are often used airplanes, spacecraft, and
other lightweight structures, through their involvement in a Mars exploration airplane project. Thus,
numerical results were obtained for length-to-width ratios (l/b) from 1 to 20, width-to-height ratios
(h/b) from 1 to 6, and [0/90] layer ratios (r) from 0 to 1, which means [(0/90)r,(±45)1-r]s. The layups
were assumed to be symmetric, and tension-bending, torsion-bending, and tension-shear coupling
stiffnesses were ignored. To establish a simple design method, a closed-form polynomial equation for
the buckling load factor was derived by minimizing the weighted residuals of the safe and non-safe
side errors, which were obtained by comparing the derived numerical results with the polynomial
equations. As a result, the errors of the polynomial equation for the buckling load factor were 4.95%
for the non-safe side and 12.4% for the safe side. The errors are sufficiently good for preliminary
design use and for parametric design studies and optimization.

Keywords: buckling; composite pipes; aircraft design

1. Introduction

The Mars exploration airplane project [1,2] is a joint project of JAXA (Japan Aerospace
Exploration Agency) and Japanese universities. It is intended to be the first extraterrestrial
atmospheric flight exploration. Aerial exploration can avoid complex terrain where a rover
cannot explore and can also explore where a satellite cannot observe, like the sides of a
valley. An image of the Mars exploration airplane in flight is shown in Figure 1. To build
the airplane, the authors designed a wing to be tested at high altitude, where the density of
the air is close to the density of the Martian atmosphere. A rectangular pipe, which can
easily align the attack angle of the wing, was used. In addition, because the density of
Martian atmosphere is 1/100th that of the Earth, the airplane must be ultra-lightweight;
thus, the rectangular pipe was designed using thin carbon fiber reinforced plastics (CFRP).
Thin structures usually fail not for lack of material strength or delamination but through
buckling load because the buckling load of thin structure lower than material failure load.
The buckling load can be increased by careful design of the layup sequence of the composite
layers; however, no available simple design equation or chart were found in spite of there
being many studies on composite structures [3–10]. The buckling load under shear force
has been studied; however, those studies were not for composite rectangular tubes, but
rather for long anisotropic plates [11,12]. An approximate expression for the torsional
buckling load was derived by Omidvari and Hematiyan [13]; however, the solution is for
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an isotropic tube. Banks and Rhodes investigated postbuckling behavior of composite
box sections [14]. Loughlan analyzed buckling of composite stiffened box sections under
compression and bending by finite strip method [15]. Vo and Lee conducted numerical
analysis for flexural–torsional buckling of thin-walled composite box beams by finite ele-
ment method [16]. Moreover, while a comprehensive design handbook for the buckling of
composite structures [17] has been published, it does not contain a method for the torsional
buckling load of composite rectangular tubes. Given this state of affairs, it was decided that
a numerical analysis of the torsional buckling load of cantilever rectangular orthotropic
pipes should be conducted by using the energy method including a consideration of layup
anisotropy. In addition, to easily use this analysis for design, a simple closed-form poly-
nomial equation for the buckling load factor was derived by minimizing the weighted
residuals of the safe and non-safe side errors of the derived numerical results. Although a
numerical analysis like a finite element analysis (FEA) can determine the buckling load
of anisotropic structures, a simple closed-form design equation is especially useful for
the initial design and optimum design of the whole system that require a huge number
of iterations for analysis of not only the structure but also its aerodynamics, guidance,
and control.
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2. Numerical Calculation
2.1. Energy Method

To use a rectangular thin-walled pipe as a wing spar, a buckling analysis using the
energy method was conducted on the cantilevered rectangular pipe under torque T shown
in Figure 2. The rectangular pipe consisted of two vertical plates and two horizontal plates.
The vertical and horizontal plates were assumed to be simply supported. The out-plane
displacements v and w are described as follows:

w =
∞

∑
m=1

∞

∑
n=1

Bmn sin
mπx

l
sin

nπy
b

(1)

v =
∞

∑
m=1

∞

∑
n=1

Hmn sin
mπx

l
sin

nπz
h

(2)

Note that the study discusses about local wall buckling of rectangular pipe, not global
buckling of long column. Thus, warping is not included. As in reference [18], the plates’
edge angles were assumed to be constant, as shown in Figure 3.



Appl. Sci. 2021, 11, 1342 3 of 12

Appl. Sci. 2021, 11, x FOR PEER REVIEW 3 of 14 
 

 

 
Figure 2. A cantilevered rectangular pipe under torsion. 

 
Figure 3. Assumption of constant plate edge angles. 

In this case, the out-plane displacements v and w are described using mn as follows: 

1 1
sin sinmn

m n

b m x n yw
h l b

 

 

  
  (3)

1 1
sin sinmn

m n

h m x n zv
b l h

 

 

  
  (4)

where n = 1, 2, …; m = 1, 2, …; and 

mn mn mnB H
b h bh

 


 (5)

mn is a common coefficient to determine amplitudes of w and v and Equation (5) is 
the condition of constant the plates’ edge angles. This assumption will be validated later. 
The total potential energy  can be expressed in terms of the strain energy U and work of 
the external force W as 

U W    (6)

The contributions of a single horizontal plate (in x-y plane) to U and W are written as 

1 ( )
2p x x y y xy xyV

U dV          (7)

Figure 2. A cantilevered rectangular pipe under torsion.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 3 of 14 
 

 

 
Figure 2. A cantilevered rectangular pipe under torsion. 

 
Figure 3. Assumption of constant plate edge angles. 

In this case, the out-plane displacements v and w are described using mn as follows: 

1 1
sin sinmn

m n

b m x n yw
h l b

 

 

  
  (3)

1 1
sin sinmn

m n

h m x n zv
b l h

 

 

  
  (4)

where n = 1, 2, …; m = 1, 2, …; and 

mn mn mnB H
b h bh

 


 (5)

mn is a common coefficient to determine amplitudes of w and v and Equation (5) is 
the condition of constant the plates’ edge angles. This assumption will be validated later. 
The total potential energy  can be expressed in terms of the strain energy U and work of 
the external force W as 

U W    (6)

The contributions of a single horizontal plate (in x-y plane) to U and W are written as 

1 ( )
2p x x y y xy xyV

U dV          (7)

Figure 3. Assumption of constant plate edge angles.

In this case, the out-plane displacements v and w are described using Φmn as follows:

w =
∞

∑
m=1

∞

∑
n=1

√
b
h

Φmn sin
mπx

l
sin

nπy
b

(3)

v =
∞

∑
m=1

∞

∑
n=1

√
h
b

Φmn sin
mπx

l
sin

nπz
h

(4)

where n = 1, 2, . . . ; m = 1, 2, . . . ; and

Bmn

b
=

Hmn

h
=

Φmn√
bh

(5)

Φmn is a common coefficient to determine amplitudes of w and v and Equation (5) is
the condition of constant the plates’ edge angles. This assumption will be validated later.
The total potential energy Π can be expressed in terms of the strain energy U and work of
the external force W as

Π = U −W (6)

The contributions of a single horizontal plate (in x-y plane) to U and W are written as

Up =
∫

V

1
2
(σxεx + σyεy + τxyγxy)dV (7)

Wp = t
∫

τcr
∂w
∂x

∂w
∂y

dxdy (8)
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For vertical plates, y replaced z in Equations (7) and (8) and related equations appear-
ing hereafter. For horizontal plates (in x-y plane), by considering the bending strain due to
the out-plane displacement w, the strains can be described as follows:

εx = −z
∂2w
∂x2 , εy = −z

∂2w
∂y2 , γxy = −2z

∂2w
∂x∂y

(9)

Considering Hooke’s Law for anisotropic layers σx
σy
τxy

 =

 Exx Exy Exs
Exy Eyy Eys
Exs Eys Ess

 εx
εy

γxy

 (10)

and substituting Equation (10) into Equation (7), using Equation (9), and integrating
Equation (7), Up becomes

Up =
1
2

∫{
Dxx

(
∂2w
∂x2

)2

+ 2(2Dss + Dxy)

(
∂2w
∂x2

)(
∂2w
∂y2

)
+ 4Dxs

(
∂3w
∂x3

)(
∂w
∂y

)
+ 4Dxs

(
∂3w
∂y3

)(
∂w
∂x

)
+ Dyy

(
∂2w
∂y2

)2}
dxdy (11)

For a symmetric layup, Dxx, Dxy, Dyy, and Dss are

Dxx =
Ext3

12(1− νxνy)
, Dyy =

Eyt3

12(1− νxνy)
, Dxy = νxDyy, Dss =

Gxyt3

12
, Dxs = Dys = 0 (12)

Generally, Dxs and Dss are non-zero even in a symmetric layup; when the number of
layups is large enough, the following assumption can be used.

Dxs = Dys = 0 (13)

For vertical plates, “y” is changed to “z” in Equations (7)–(13). The total strain energy
U and the work W of the four plates is written as

U = 2× 1
2
∫ b

0

∫ l
0

{
Dxx

(
∂2w
∂x2

)2
+ 2(2Dss + Dxy)

(
∂2w
∂x2

)(
∂2w
∂y2

)
+ 4Dxs

(
∂3w
∂x3

)(
∂w
∂y

)
+ 4Dys

(
∂3w
∂y3

)(
∂w
∂x

)
+ Dyy

(
∂2w
∂y2

)2
}

dxdy

+2× 1
2
∫ h

0

∫ l
0

{
Dxx

(
∂2v
∂x2

)2
+ 2(2Dss + Dxz)

(
∂2v
∂x2

)(
∂2v
∂z2

)
+ 4Dxs

(
∂3v
∂x3

)(
∂v
∂z

)
+ 4Dzs

(
∂3v
∂z3

)(
∂v
∂x

)
+ Dzz

(
∂2v
∂z2

)2
}

dxdz

W = 2t
∫ b

0

∫ l
0 τcr

∂w
∂x

∂w
∂y dxdy + 2t

∫ h
0

∫ l
0 τcr

∂w
∂x

∂w
∂y dxdz

(14)

Substituting Equations (3) and (4) into Equation (14) yields the total strain energy U
and the work W of the external torsional stress τcr:

U = π4

4b2hl3

∞
∑

m=1

∞
∑

n=1
Φmn

2{b4Dxxm4 + 2b2(2Dss + Dxy)m2n2 + Dyyn4}

+ π4

4bh2l3

∞
∑

m=1

∞
∑

n=1
Φmn

2{h4Dxxm4 + 2h2(2Dss + Dxz)m2n2 + Dzzn4}
(15)

W = 8tτcr
b
h

∞
∑

m=1

∞
∑

n=1

∞
∑

i=1

∞
∑

j=1

mnijΦmnΦij
(i2−m2)(j2−n2)

+8tτcr
h
b

∞
∑

m=1

∞
∑

n=1

∞
∑
i

∞
∑
j

mnijΦmnΦij
(i2−m2)(j2−n2)

(16)

where τcr = T/(2bht), i = 1, 2, . . . ; and j = 1, 2, . . . . The buckling torsional stress is obtained
by minimizing the total potential energy.

∂

∂Φmn
(U −W) = 0 (17)
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The following equation is obtained from Equation (17).

π4

32τcrtbh

[(
b
l

)3
{

Dxxm4 + 2(2Dss + Dxy)
(

l
b

)2
m2n2 + Dyy

(
l
b

)4
n4
}

+
(

h
l

)3
{

Dxxm4 + 2(2Dss + Dxz)
(

l
h

)2
m2n2 + Dzz

(
l
h

)4
n4
}]

Φmn

−mn l
b

l
h

{(
l
b

)2
+
(

l
h

)2
}

∞
∑
i

∞
∑
j

ijΦij
(i2−m2)(j2−n2)

= 0

(18)

where summation indicates only those values of i and j for which m + i and n + j are odd.
Equation (18) can be rewritten as following matrix form for m + n is even is

K11
τ 0 4

9 β1 0 0 · · ·
0 K13

τ − 4
5 β1 0 0 · · ·

4
9 β1 − 4

5 β1
K22
τ − 4

5 β1 − 20
63 β1 · · ·

0 0 − 4
5 β1

K31
τ 0 · · ·

0 0 − 20
63 β1 0 K15

τ · · ·
...

...
...

...
...

. . .





Φ11
Φ13
Φ22
Φ31
Φ15

...


= 0,

Kmn = π4

32tbh

[(
b
l

)3
{

Dxxm4 + 2(2Dss + Dxy)
(

l
b

)2
m2n2 + Dyy

(
l
b

)4
n4
}

+
(

h
l

)3
{

Dxxm4 + 2(2Dss + Dxz)
(

l
h

)2
m2n2 + Dzz

(
l
h

)4
n4
}]

β1 = b
l

h
l

{(
l
b

)2
+
(

l
h

)2
}

(19)

and for m + n is odd is

K12
τ − 4

9 β1 0 4
5 β1 0 · · ·

− 4
9 β1

K21
τ − 8

45 β1 0 4
5 β · · ·

0 − 8
45 β1

K14
τ − 8

7 β1 0 · · ·
4
5 β1 0 − 8

7 β1
K23
τ − 36

25 β1 · · ·
0 4

5 β1 0 − 36
25 β1

K32
τ · · ·

...
...

...
...

...
. . .





Φ12
Φ21
Φ14
Φ23
Φ32

...


= 0,

Kmn = π4

32tbh

[(
b
l

)3
{

Dxxm4 + 2(2Dss + Dxy)
(

l
b

)2
m2n2 + Dyy

(
l
b

)4
n4
}

+
(

h
l

)3
{

Dxxm4 + 2(2Dss + Dxz)
(

l
h

)2
m2n2 + Dzz

(
l
h

)4
n4
}]

β1 = b
l

h
l

{(
l
b

)2
+
(

l
h

)2
}

(20)

To obtain a non-zero solution of Φmn, the determinant of the coefficient matrix for Φmn
should be zero. The coefficient matrix separates into one for which m + n is odd and one
for which m + n is even. It is well known that the thin isotropic plate under shear load, in
which m + n is even has a lower buckling load than the one in which m + n is odd except
for long plate. Numerical calculations, however, both the case that m + n is even and m + n
is odd, were conducted because orthotropic stiffness may lead to lower buckling load for
the case that m + n is odd.

The normalized torsional buckling load factor ks is defined as

τcr = ks
π2De

tl2

= ks
π2

tl2

√
Dxx×Dyy+Dxy+2Dss

2

(21)
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2.2. Case of a Constant Edge Angle

To solve Equations (19) and (20), the terms of m and n should be limited to a finite
number, mmax and nmax. To check the accuracy relative to the number of terms, a numerical
calculation was conducted on a quasi-isotropic layup of T300 CFRP. The material properties
of the quasi-isotropic layup are listed in Table 1. mmax and nmax = 10, 20, . . . , 100, and
b = h = 100 mm. The results are shown in Figure 4.

Table 1. Material properties of quasi-isotropic layup of T300 CFRP.

Item Value

Young’s modulus Ex = Ey [MPa] 56,400
Shear modulus Gxy [MPa] 21,500
Poisson’s ratio vx = vy [-] 0.313Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 14 
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The error of mmax = nmax = 20 is within 1% of mmax = nmax = 100 for l/b ≤ 6, and the
buckling stress τcr is constant for l/b > 6 because of effect of boundary constraints at x = 0
and x = l vanishing; thus, mmax = nmax = 20 for l/b ≤ 6 and buckling stress τcr (l/b = 6) for
l/b > 6 were used in the subsequent numerical calculations.

To check the assumption of a constant edge angle, an FE analysis was conducted using
NASTRAN (version2018.1). The dimensions of the pipe were b = h = 100 mm, t = 1 mm,
and l = 400 mm. A square mesh with a size of 10 was used. A rigid body element (RBE2)
connected the end of the plates to the center of the section and torsional load (torque) was
applied to the center of the section. Figure 5 shows the buckling mode and the changes in
the angles of the pipe from 90◦.
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2.3. Case of a Variable Edge Angle

Supposing that the edge angle is variable, substituting Equations (1) and (2) into
Equation (14) yields the total strain energy U and the work W of the external torsional
stress τcr as follows:

U = π4b2

4hl3

∞
∑

m=1

∞
∑

n=1
Bmn

2
{

Dxxm4 + 2
(

l
b

)2
(2Dss + Dxy)m2n2 +

(
l
b

)4
Dyyn4

}
+π4h2

4bl3

∞
∑

m=1

∞
∑

n=1
Hmn

2
{

h4Dxxm4 + 2
(

l
h

)2
(2Dss + Dxz)m2n2 +

(
l
h

)4
Dzzn4

} (22)

W = 8tτcr

(
h
b

)2 ∞
∑

m=1

∞
∑

n=1

∞
∑
i

∞
∑
j

mnijBmnBij
(i2−m2)(j2−n2)

+8tτcr

(
b
h

)2 ∞
∑

m=1

∞
∑

n=1

∞
∑

i=1

∞
∑

j=1

mnijHmn Hij
(i2−m2)(j2−n2)

(23)

The buckling torsional stress is obtained by minimizing the total potential energy.

∂

∂Bmn
(U −W) = 0,

∂

∂Hmn
(U −W) = 0 (24)

The following equation is obtained from Equation (17).

π4

32τcrtb2

{(
b
l

)3
[

Dxxm4 + 2(2Dss + Dxy)
(

l
b

)2
m2n2 + Dyy

(
l
b

)4
n4
]}

Hmn

−mn
(

b
h

)2 ∞
∑

i=1

∞
∑

j=1

ijHij
(i2−m2)(j2−n2)

= 0
(25)

π4

32τcrth2

{(
h
l

)3
[

Dxxm4 + 2(2Dss + Dxz)
(

l
h

)2
m2n2 + Dzz

(
l
h

)4
n4
]}

Bmn

−mn
(

h
b

)2 ∞
∑

i=1

∞
∑

j=1

ijBij
(i2−m2)(j2−n2)

= 0
(26)

The normalized torsional buckling load factor ks was obtained by setting the determi-
nant of the coefficient matrix for Bmn and Hmn to zero. To check the accuracy relative to
the number of terms of n and m, a similar numerical calculation as shown in Figure 4 was
conducted, and the same conclusion was obtained for the terms of n and m.

The numerical results for Equations (18) and (26), and FEM for h/b = 0.7 are shown
in Figure 6. The results for Equations (18) and (26) for h/b = 1.0 are also plotted for
comparison. In the case of l/b = 1, the FEM result of h/b = 0.7 is close to the constant-angle
case; however, in the region l/b≥ 2, the FEM result of h/b = 0.7 is close to the variable-angle
case. There are no apparent differences between the results of Equation (18) for h/b = 1.0
and those of Equation (26) for h/b = 1.0 because of the section is rectangular and thus the
edge angle is constant. These results show that the assumption of a constant edge angle is
a stiff constraint for the region h/b < 1.0. Thus, the assumption of a variable edge angle,
Equation (26), was employed in the subsequent analysis because of its more accurate and
safe-side estimation. Note that both FE analysis and the method of minimizing the total
potential energy are essentially the same because they are based on energy principle. If
the difference appears, the reason is convergence due to mesh size of FE model or number
of terms of displacement function of Equations (1) and (2). The convergence is discussed
in Section 2.2 and Figures 4 and 6 shows the present results gives conservative result
comparing with FE results, thus the accuracy of the solution is reliable.
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3. Closed-Form Polynomial Equation

To make quick and convenient estimates for torsional buckling of a composite tube,
a simple closed form polynomial equation was derived by fitting the numerical solution
of the orthotropic [(0/90)r,(±45)1-r]s layups. Here, r is the ratio of the 0/90 layer number
to the total layer number. Because the [(0/90)r,(±45)1-r]s layup is often used, it is thus
chosen. The numerical analysis described above is hard to use for design purposes and
would entail a huge calculation cost if it were to be used for optimum design of the whole
system. Thus, it is considered that a simple approximate design equation would still be
useful. Table 2 shows the material properties of unidirectional pre-preg tape, and Table 3
shows the layup sequence used in the numerical analysis. The total ply number was 32,
and the binding stiffness was systematically controlled by varying r.

Table 2. Material properties of unidirectional pre-preg tape.

Item Value

EL [MPa] 147,000
ET [MPa] 9800
GLT [MPa] 5096

vL [-] 0.32

Table 3. Layup sequence.

Number of Layers Ratio of 0/90 Layer Bending Stiffness [N-mm2]

0/90 ±45 r Dxx Dxy Dyy Dss
0 32 0 3845 2996 3845 3158
4 28 0.125 4187 2654 4187 2816
8 24 0.25 4529 2313 4529 2474

12 20 0.375 4870 1971 4870 2133
16 16 0.5 5212 1630 5212 1791
20 12 0.625 5553 1288 5553 1450
24 8 0.75 5895 946.4 5895 1108
28 4 0.875 6237 604.7 6237 766.3
32 0 1 6578 263.1 6578 424.7

Assuming that the number of layups was large enough, the bending stiffness was
calculated as Eij t3/12 = Dij (i, j = x, y, s). Advanced stiffness properties like through
thickness properties discussed in Refs. [19–21] are not used because of to make quick and
convenient estimates. Figures 7–9 show the buckling load factor ks for l/b, h/b, and r. The
ranges of l/b, h/b, and r are 1 ≤ l/b ≤ 6, 0.7 ≤ h/b ≤ 1, and 0 ≤ r ≤ 1.
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Figures 7 and 8 can be fitted by a second-order polynomial, while Figure 9 can be
fitted by a first-order polynomial; thus, the following polynomial was employed.

ks
′ =

(
H0

(
h
b

)
+ H1

(
h
b

)(
l
b

)
+ H2

(
h
b

)(
l
b

)2
)
(R1 + R2r)

H0 = H00 + H01

(
h
b

)
, H1 = H10 + H11

(
h
b

)
, H2 = H20 + H21

(
h
b

) (27)

The coefficients H00, H01, . . . , H21, R1 and R2 were determined by minimizing the
following weighted residual and adjusting the weight w to make the non-safe side residual
ks+er less than 5%.

ks+er =
ks
′−ks
ks

(
f or ks

′−ks
ks
≥ 0

)
,

ks−er =
∣∣∣ ks
′−ks
ks

∣∣∣ ( f or ks
′−ks
ks

< 0
)

max{ks+er, wks−er} < 0.05

(28)

The minimization was conducted on a Microsoft Excel solver with the GRG Nonlinear
option. The following coefficients shown in Table 4 were obtained with w = 0.4; ks+er was
4.77%, and ks-er was 11.9%.

Table 4. Coefficients.

H00 1.1137 H01 0.22213
H10 −3.3798 H11 6.0957
H20 11.382 H21 −7.4961
R1 1.0348 R2 0.26278

As shown in Figure 4, the buckling stress τcr does not change in the region l/b > 6.
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Thus, the buckling load factor for the torsional buckling load of the orthotropic rectangular
pipe can be described as follows:

τcr =

 ks
′ π2De

tl2 , for l/b ≤ 6

ks
′(l/b = 6) π2De

(6b)2t
, for l/b > 6

(29)

Figure 10 compares the buckling stress determined by the polynomial equation and
the numerical result for mmax = nmax = 100 for the maximum ks-er error case (r = 0.5,
b = l = 100 mm, t = 1 mm). The error is also plotted. The error in the region l/b > 6 is
around −11%, which gives a safe and conservative side for the design. It is natural that
constant gap appears in the region l/b > 6 because ks does not change in the region l/b > 6
and the constant ks’ at l/b = 6 is used. Note that the polynomial equation can be used
within the ranges of 1 ≤ l/b ≤ 6, 0.7 ≤ h/b ≤ 1, and 0 ≤ r ≤ 1.
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4. Conclusions

Numerical solutions for torsional buckling of an orthotropic rectangular tube were
derived. Solutions for different constraint conditions on the edge angle, i.e., with a constant
or variable edge angle, were compared with FE analytical results. It was found that a
solution under the condition of a variable edge angle is safe and conservative. A simple
closed-form polynomial equation of the buckling load factor was also derived for this
condition. The equation gives a 4.77% error for the non-safe side and 11.9% error for the
safe side in spite of its simple form. In addition, it is well-known that good agreement
exists between the theoretical buckling load and experimental buckling load of plates and
rectangular pipes, thus the equation can be easily applied to the initial design and optimum
design of the whole system.
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