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Abstract: Given the scarcity of annotated datasets, learning the context-dependency of anomalous
events as well as mitigating false alarms represent challenges in the task of anomalous activity
detection. We propose a framework, Deep-network with Multiple Ranking Measures (DMRMs),
which addresses context-dependency using a joint learning technique for motion and appearance
features. In DMRMs, the spatial-time-dependent features are extracted from a video using a 3D
residual network (ResNet), and deep motion features are extracted by integrating the motion
flow maps’ information with the 3D ResNet. Afterward, the extracted features are fused for joint
learning. This data fusion is then passed through a deep neural network for deep multiple instance
learning (DMIL) to learn the context-dependency in a weakly-supervised manner using the proposed
multiple ranking measures (MRMs). These MRMs consider multiple measures of false alarms, and
the network is trained with both normal and anomalous events, thus lowering the false alarm rate.
Meanwhile, in the inference phase, the network predicts each frame’s abnormality score along with
the localization of moving objects using motion flow maps. A higher abnormality score indicates
the presence of an anomalous event. Experimental results on two recent and challenging datasets
demonstrate that our proposed framework improves the area under the curve (AUC) score by 6.5%
compared to the state-of-the-art method on the UCF-Crime dataset and shows AUC of 68.5% on the
ShanghaiTech dataset.

Keywords: anomalous event; deep multiple instance learning; deep motion flow; multiple ranking
measures; data fusion

1. Introduction

Anomalous (abnormal) event detection for video surveillance is an influential area of
computer vision research. Surveillance cameras monitored by humans have been installed
to inhibit much of the crime happening around us. In the era of artificial intelligence,
our fundamental objective is to efficiently and accurately automate most of the existing
technologies, especially those that require extensive human effort and time. Anomalous
event detection is one such form of automation that is especially worthwhile in light of the
rising use of surveillance cameras due to camera technologies’ advancement. Monitoring
a large number of cameras currently requires the tedious application of human time
and effort. Therefore, a system that could automatically detect anomalous events in live
surveillance footage, such as robberies, road accidents, etc., is indisputably advantageous
and cost-effective.

In the past several years, substantial efforts have been devoted to accomplishing the
task of anomalous event detection [1–15]. Nevertheless, several challenges remain, which
require consideration while proposing a technical method as follows. First, anomalous
events occur rarely in real life, resulting in a scarcity of large datasets. Second, defining
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all possible types of anomalous events is unfeasible due to their subjectivity, complexity,
and ambiguity. Third, anomalous events are context-dependent; for example, jumping
while playing basketball is a normal event, though jumping into someone’s house through
a window is not. Fourth, the temporal annotation of all data is unfeasible. Finally, proper
feature extraction is key to an effective anomalous event detection method.

Recent studies have exploited the latest advancements in deep learning
techniques [1,3,4,10,12,13,16–18]. However, one shortcoming of these methods is the
lack of relation between appearance and motion features, which affects these methods’
performance and outcomes. One study on deep representations of appearance and
motion [12] achieved the goal of learning the relationship between these features, but
it was done by training three separate networks. Motivated by this work [12], we accom-
plished the goal of learning the relationship between appearance and motion features by
training only a single network. Moreover, our framework has the advantage of preserving
the individuality of the motion flow maps and spatial-time-dependent features until they
are passed together for joint learning after a fusion technique. This method allows for the
deep feature extraction of vital information related to motion and visual data individually,
which helps our framework to maximize the utilization of both features, while the fusion
technique allows for learning the relationship between the features.

In another recent study, Sultani et al. [14] has proposed a new approach to detect
anomalous events. The authors used video-level annotations to train their model in a
weakly supervised manner using multiple instance learning (MIL) [19,20]. Their work
motivates our method. However, our method is quite different from their work in several as-
pects. First, our method exploits the motion flow maps along with spatial-time-dependent
features. Second, we use a different feature extraction technique. Third, we propose a new
objective function for DMIL using MRMs. Fourth, we include anomalous event recognition
as well as localization of all moving objects. Our feature extraction technique uses a 3D
ResNet [21] inspired by related studies [21,22] and the recent advancements in the action
recognition task [21–23]. Additionally, the training of our proposed framework, DMRMs,
is simpler than other previously introduced deep learning methods [3,4,9,11–13], since it
utilizes a pre-trained network along with a simple joint learning technique.

In our proposed method, motion flow maps are integrated with a 3D deep neural
network in order to capture deep motion flow information such as relative motion informa-
tion of objects (spatial and time-dependent features of motion flow) and local variation
of motion flow, which is further fused with spatial-time-dependent features for the joint
learning of all features. In a recent study [10], the author has extracted the motion flow
using the convolutional kernel method. The difference between our method and this
study [10] is that we have utilized a 3D deep neural network to extract the relative motion
and variational motion flow features from the dense motion flow maps, which helps our
framework maximize the utilization of motion flow. In contrast, in the study [10], the
author has extracted only motion flows using a convolutional kernel, and no relative
motion information is extracted. Usually, motion flow maps are passed separately in the
network, as in studies [9,11], showing a relationship gap between appearance and motion
features. Our proposed framework, DMRMs, seeks to address this gap without neglecting
the context-dependency that is critical to anomalous event detection due to the subjective
definition of anomalous events. Therefore, our work addresses multiple challenges of the
task and helps mitigate the false alarm rate.

The primary contributions of this study are summarized as follows:

1. A pre-trained 3D ResNet is used, not only to extract global, context-based features
of moving objects but also to extract the deep local motion-related information from
their motion flow maps. The network is trained to learn the context-dependency or
the relationship between spatial-time-dependent features and deep motion features
using joint learning.
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2. A new objective function is proposed for DMIL using MRMs. Anomalous events are
detected with their class (type) and with the localization of moving objects using
motion flow maps.

3. The proposed framework has been tested on the two most recent and challenging
datasets–UCF-Crime [14] and ShanghaiTech [5]. The results show that our method
improves by 6.5% AUC on the UCF-Crime dataset compared with the state-of-the-
method [14] and gives 68.5% AUC on the ShanghaiTech. The ablation study demon-
strates the effectiveness of our proposed framework.

The remainder of this paper is structured as follows. Section 2 presents a brief analysis
of existing anomalous event detection algorithms. Section 3 presents the details of our
proposed anomalous event detection algorithm. Experimentation and ablation studies
are mentioned in Section 4. At last, Section 5 concludes the paper and provides future
research directions.

2. Related Works

In this section, we present a brief review of some recent anomalous event detection
algorithms. Previously, some particular task-specific anomalous event detectors, including
an abandoned object detector [24], traffic monitoring systems [25–27], and crowd violence
detector [28], have been proposed. The generalization of these detectors is challenging.
Several studies [5–9,29] have used traditional approaches to solve these challenges, such
as the sparse coding technique [5,8], or the dictionary learning technique [6,7]. These
techniques considered the anomalous event detection task as an outlier-detection task. They
train these models only with normal event videos, and these models detect abnormality if
they detect outliers from the learned pattern of the model, leading these models vulnerable
to false alarms.

As previously mentioned, proper feature extraction is key to an effective anoma-
lous event detection method. Previously, hand-crafted feature extraction methods [30,31]
have been proposed in this task, which utilizes trajectory features at a low-level. Low-
level trajectory features represent the regular pattern as a sequence of image coordinates.
Since trajectory features are mainly conditioned on the object tracking concept, these fea-
tures are not robust in case of crowded and complex videos with multiple shadows and
occlusions. Thus, these methods [30,31] quickly fail in such cases. To overcome these
shortcomings, low-level spatial-temporal feature extraction methods, such as histogram
of oriented flows (HOF) [32] and histogram of oriented gradients (HOG) [33], have been
proposed. Later, Zhang et al. [34] modeled normal patterns with spatial-temporal features
by exploiting the Markov random field (MRF). In the study [35], the local optical flow
pattern is modeled using a mixture of probabilistic PCA (MPPCA). However, in another
study [5], local histograms of optical flow are modeled using an exponential distribution.
Mahadevan et al. [7] proposed the Mixture of Dynamic Textures (MDT). However, to
extract useful features from the videos, a 3D ResNet [21] is utilized in our study, as inspired
by related studies [21,22].

A breakthrough of deep learning techniques in the field of computer vision tasks, such
as in image processing [22], action recognition [15,18,21–23,36,37], object detection [38],
object tracking [39,40], and re-identification [41,42] tasks, inspired the researchers to ex-
plore these techniques in the anomalous event detection task. Consequently, some recent
studies [1–4,10,12,13,43–45] were proposed mostly using auto-encoder methods [1,3,12,13]
and recurrent neural networks (RNNs) [3,4].

Author Xu et al. [12] demonstrated the efficacy of deep learning methods by designing
a multi-layer auto-encoder. To model normal activities, a 3D convolutional auto-encoder
(Conv-AE) is proposed by Hasan et al. [13]. Furthermore, convolutional neural networks
(CNNs) extract useful spatial features, whereas (RNNs) are generally used for modeling
sequential or time-dependent data using its variants of long short-term memory (LSTM).
Consequently, in some studies [3,17], a convolutional LSTMs auto-encoder (ConvLSTM-
AE) is proposed in which appearance and motion features are extracted simultaneously
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by leveraging both CNNs and RNNs, which further advances the performance of the
Conv-AE based method [13]. In the study of Luo et al. [5], a stacked RNN framework
is proposed by utilizing a temporally coherent sparse coding based technique. Further-
more, in another study [16], the authors proposed the combined study of detection and
recounting of anomalous events. Moreover, in the task of anomalous event detection, an
increase in several event patterns results in a hike of complexity and uncertainty of feature
distributions. Therefore, it is challenging to construct a well-generalized model that can be
strictly-discriminative for normal events and anomalous events simultaneously.

Additionally, all of these methods utilize the concept of reconstructing the normal
video events and consider the large reconstruction errors associated with the anomalous
event–a possible disadvantage in the anomalous event detection task, because this tech-
nique contains a possible risk of producing smaller reconstruction errors for the anomalous
event [2,46] than for the expectation. This statement implies that a model designed using a
reconstruction technique can yield a smaller reconstruction error for an anomalous event,
resulting in limited discrimination between normal and anomalous events.

Although these models performed better than other traditional methods, [5–8], they
failed to efficiently learn the correlation between motion features and appearance features.
Moreover, these models [1–4,10,12,13] are complex and have a heavy network to train the
anomalous event detection task. These networks are not suitable to train on small datasets
efficiently, which also affected these methods’ performance. In the study [11], the author
has utilized the concept of dynamic skeleton features to detect the abnormality in the
video using the message-passing encoder-decoder recurrent network (MPED-RNN). Their
network can separate the abnormal sequence from the normal sequence after training it
with the help of normal videos.

Moreover, Xu et al. [12] have exploited unsupervised learning. The relation between
motion features and appearance features has been learned by training three auto-encoders
using both early and late fusion techniques. In our proposed framework, DMRMs, we
have made the network learn these kinds of dependency using a single network and
intermediate fusion technique. In the state-of-the-art framework [14] on the UCF-Crime
dataset, the authors have exploited both normal and anomalous videos for training the
anomalous event detection network in a weakly-supervised manner using C3D [47] and
MIL. Our proposed framework is motivated by [12,14]. Compared to them, we include
context-dependency learning, an important point to consider to detect an anomalous event.
Details are given in the following sections.

3. The Proposed Framework for Anomalous Event Recognition

The proposed framework for anomalous event recognition, Deep-network with Multi-
ple Ranking Measures (DMRMs) shown in Figure 1, consists of two modules or phases:
training and inference. In the training phase, our network is able to detect the presence
of an abnormality acquired through the joint learning of deep motion and appearance
features. These features undergo a data fusion technique [12,48] after being extracted from
a 3D residual network (3D ResNet) [21]. This training takes place with the help of deep
multiple instance learning (DMIL) [14,19,20] in a weakly-supervised manner, using the
proposed multiple ranking measures (MRMs). In the inference phase, DMRMs predicts
the abnormality score along with the location of moving objects and an event type (road
accident, robbery, etc.). The following sections provide details about the training phase
along with feature extraction in Sections 3.1 and 3.2. The joint learning model & MRMs are
explained in Section 3.3, and finally, the inference phase is explained.
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Figure 1. The proposed framework for the anomalous event recognition framework, DMRMs. Training phase: All videos,
along with their respective motion flow maps, are classified into two groups of samples: positive (anomalous) or negative
(normal). Contextual/global features, as well as local deep motion features, are extracted using their respective techniques.
These two types of features are then fused in order to be passed through the DMIL block for joint learning. The proposed
MRMs aid this learning in a weakly supervised manner. Inference phase: The testing video is passed through the network,
which predicts the abnormality score of each frame along with the position of its moving objects and recognizes the type of
anomalous events (road accident, robbery, etc.).

Training Phase

3.1. Extraction of Motion Flow Maps

The proposed framework, DMRMs, begins by extracting each frame’s motion flow
map from both normal and anomalous videos. This work uses a simpler technique than
other previously published studies [9,12,13] have been used, which is Gunner Farneback’s
dense optical flow algorithm [49]. This algorithm gives us motion-related information,
such as the direction and velocity of moving (foreground) objects. It tracks every pixel’s
movement information from two consecutive frames. To extract deep features from motion
flow maps, a dense set of motion features is required. Therefore, in this work, we opted
not to use Lucas–Kanade’s optical flow algorithm [50], which extracts motion flow with
a sparse set of features. Here, the term “dense” indicates that optical or motion flow is
measured for each pixel of the frame. The example of extracted motion flow maps is shown
in Figure 2. These features give us the local motion information of moving objects, which
can be further combined with the global information in order to teach the network about
the correlation among moving objects, as explained in the following sections.
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Figure 2. An example of motion flow maps extraction from the ShanghaiTech dataset [5]: the upper row represents eight
consecutive frames, and the lower row shows their corresponding motion flow maps.

3.2. Extraction of Deep Motion and Appearance Features

Prior to extracting the deep motion and appearance features in Figure 1, we divide
all training videos (both normal and anomalous, along with their motion flow maps)
into a matching number of non-overlapping temporal segments. These video segments
(N segments) and their respective motion flow segments (N segments) are classified as
either positive (anomalous) or negative (normal) samples. In this work, we exploited
the information from video-level annotations as follows. We group all segments from
anomalous event videos as the positive samples group, Ga, and all segments from normal
event videos are grouped as the negative samples group, Gn.

After dividing them into groups, each video sample, along with its motion flow
sample, is individually sent through the pre-trained 3D ResNet [21]. It extracts spatial-
time-dependent features (from the video sample) and deep motion flow features (from the
motion flow samples), such as relative motion information of objects and local variation of
motion flow. Though 3D ResNet captures spatial-time-dependent features from visual data,
we still separately extract deep motion flow using 3D ResNet. The reason for extracting
deep motion flow is to extract and utilize the video’s maximum motion information,
like relative motion and local flow information, which can not be extracted only using
3D ResNet for visual data. Consequently, it further helps our framework, DMRMs, in
learning context-dependency more accurately (shown in Section 4.4.2). Previous work [12]
has required training three separate networks in order to extract all of these features
(appearance, motion, and their correlation features). However, in our framework, DMRMs,
we use only a single pre-trained network to extract them all. We use 3D ResNet-34, which
was pre-trained on the Kinetics dataset [51], a vast and challenging action-recognition
dataset. As demonstrated by authors S. Tiago et al. [52], pre-trained convolutional neural
networks (CNNs) are considered effective in extracting features for the task of anomalous
event detection. Additionally, K. Hara et al. [21,22] demonstrates that a 3D ResNet
outperforms any other 3D CNNs in the action recognition task. Motivated by these
studies [21,22,52], our work utilizes a pre-trained 3D ResNet for its efficacy as a spatial-
time-dependent feature extractor for an anomalous event detection task. Its effectiveness is
shown in Section 4.4.3.

Moreover, we trained the 3D ResNet-34 on the UCF-Crime dataset [14] to recognize
the type of anomalous events such as road accidents, robbery, etc. The results of activity
recognition appear in Section 4.4.4. Simultaneously, Section 4.4.4 also shows the network’s
effectiveness in this task on the UCF-Crime dataset.

3.3. Proposed Joint Learning Model and Multiple Ranking Measures (MRMs)

The spatial-time-dependent features extracted (explained in Section 3.2) from the
video segments or samples provide the network with contextual and global features of
those segments or samples. In contrast, deep motion flow features such as relative motion
information of objects and local variation of motion flow, provide the network with local
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motion features of moving objects. Hence, we propose joint learning of these features to
learn the correlations among all these features and detect the extent of abnormality, as
shown in Figure 1. Details are given below:

3.3.1. Data Fusion

Both deep motion flow and spatial-time-dependent features are fused before pass-
ing them on to further processing. The extracted features from 3D ResNet-34 [21] of
both motion flow maps as {m1, m2, ..., mD} (represents features of single instance) and
video samples as { f1, f2, ..., fD} (represents features of single instance) are concatenated
together at the last fully-connected layer of 3D ResNet-34 using the feature-level fusion
technique [53], where mi ∈ R, fi ∈ R and D equals to 512. Resulting in a large feature
vector as {m1, m2, ..., mD, f1, f2, ..., fD}. The feature-level fusion helps the model learn a
joint representation of each of the extracted features from different or similar models. Then,
we pass the result to the DMIL block for joint learning, as shown in Figure 1.

3.3.2. Deep Multiple Instance Learning Block

The joint learning of both concatenated features is conducted in the DMIL block with
the help of the proposed MRMs in a weakly-supervised manner, as shown in Figure 1.
Anomalous events are infrequent in the real-world, and annotating all videos at the
temporal-level is laborious and time-consuming; therefore, utilizing video-level anno-
tations is an essential advantage of using DMIL. Moreover, training a deep neural network
with any available information is advantageous. Therefore, a DMIL approach [19,20] is
used similar to Sultani et al. [14] work in the absence of temporal annotations.

As introduced in Section 3.2, the group with positive (anomalous) samples is repre-
sented as Ga, while the group with negative (normal) samples is Gn. Both of them are then
updated with their concatenated extracted features. Each group has N number of samples.
Exploiting video-level annotations, and with the help of the proposed MRMs, the DMIL
block trains the network to predict the abnormality score of each sample, given that at
least one of the positively annotated samples contains an abnormality in it. Since normal
video samples have no abnormalities, this result also indicates the accurate annotations of
negative samples.

Therefore, in the absence of accurate annotations of positive samples, an optimization
function, shown in Equation (1), can be used with the highest scored instance from each
group or video. Note that we use an optimization function that is different from the
optimization function of the standard supervised binary classification (where instance-
level annotations are available) [20].

min
w

1
v

v

∑
l=1

ĥ︷ ︸︸ ︷
max

(
0, 1−YGl

(
max
s∈Gl

(w.φ(xs))− b
))

+
1
2
‖ w ‖2 (1)

where v is the total number of training videos, YGl represents the video-level or group-level
annotation (groups Gn and Ga), φ(xs) stands for feature representation of a sample (an
instance), ĥ denotes the hinge loss function, b stands for a bias term, and w denotes model
weights. The following section describes the proposed objective function for DMIL.

3.3.3. Proposed Multiple Ranking Measures

Similar to Sultani et al. [14] work, we also considered the anomalous event detection
problem as a regression problem, where we want the sample with an anomalous event to
have a greater abnormality score than the normal event instance. To achieve this, one of
the possible solutions could be the ranking loss to train our network. Ranking loss with
instance-level or sample-level annotations can be mentioned as follows:

R(Sa) > R(Sn) (2)
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where anomalous videos’ samples and normal videos’ samples are represented as Sa
and Sn, respectively. Functions R(Sa) and R(Sn) stand for the corresponding predicted
abnormality scores. The range for the abnormality score function R(x) is between 0 and 1.

Because of the unavailability of instance-level or sample-level annotations, Equation (2)
cannot be used. Consequently, we propose a new objective function using MRMs to
train our model using DMIL. Moreover, the idea of proposing a new objective function is
motivated by another critical goal of reducing the false alarm rates, which may be produced
by our proposed anomalous event detection framework, DMRMs.

The following are two cases of false alarms:
(Case 1) False positive: The detector predicts a normal event as an anomalous event.
(Case 2) False negative: The detector predicts an anomalous event as a normal event.
To alleviate the aforementioned false alarms and develop a more suitable ranking loss

function than the one described in Equation (2), as well as to train our model using DMIL,
the following ranking measure conditions are proposed in Equations (3) and (4).

max
i∈Sa

R
(

Si
a

)
> max

i∈Sn
R
(

Si
n

)
(3)

max
i∈Sa

R
(

Si
a

)
> min

i∈Sa
R
(

Si
a

)
(4)

Equations (3) and (4) are proposed to avoid the false alarm in case 1. In Equations (3)
and (4), the highest-ranked instance or sample of the positive group (Sa)–most likely a true
positive–is compared with the highest-ranked instance or sample of the negative group
(Sn) and the lowest-ranked sample of the positive group (Sa), respectively–most likely
false positives.

We still need to alleviate the second type of false alarms of case 2. To this end, we
proposed additional ranking measure conditions in Equations (6) and (7). The abnormality
scores of each instance of the positive group are arranged in descending order of scores as
described below:

[J1, J2, J3, ..., JN ] = orderdesc
i∈Sa

R
(

Si
a

)
(5)

where each group has a total N number of instances.

J2 > max
i∈Sn

R
(

Si
n

)
(6)

J3 > max
i∈Sn

R
(

Si
n

)
(7)

...

Equations (6) and (7) are proposed to avoid both cases (case 1 and case 2) of false
alarms. In Equations (6) and (7), the second-highest and third-highest ranked samples of
the positive group (Sa), respectively, are compared with the highest-ranked sample of the
negative group (Sn)–most likely a false positive.

Since the training videos are large in size and lengthy, there is a possibility of the
presence of anomalous events in multiple instances (as shown in Section 4.4.2). Therefore,
we propose the aforementioned ranking conditions, Equations (6) and (7), to reduce the
incidence of false alarm cases, 1 and 2. The proposed conditions also maximize the
abnormality scores of instances or samples of the positive group (Sa) and minimize those
of the negative group (Sn). However, a comparison between a less highly ranked positive
instance (as in Equation (7) and so on) and the highest-ranked instance of negative groups
starts affecting the framework’s accuracy (as shown in Section 4.4.3). Therefore, based
on the conducted experiments, we have excluded all the ranking conditions with less
highly ranked instances, including Equation (7) ranking condition, and so on. Moreover,
segment-level or instance-level annotations are not required in these ranking conditions.
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In addition to these ranking conditions, there is one more ranking measure condition,
Similarity Measure (SM), which needs to be considered, as follows:

SM(Sn) =
n−1

∑
i

(
R
(

Si
n

)
− R

(
Si+1

n

))2
(8)

Equation (8) refers to the fact that consecutive instances of a negative group should
have similar features. Therefore, the model should predict approximately the same abnor-
mality score (close to zero) for all such instances. This condition forces the network to learn
the similarity of features among the instances of a negative group, leading the network to
understand the similarity among the instances of positive groups.

To define MRMs, all predicted abnormality scores of negative group instances should
be kept far apart from all the positive group instances. Consequently, MRMs (MRM) is a
combination of all the aforementioned ranking condition measures. Therefore, the MRMs
is defined as the following hinge loss formulation and satisfy all the ranking measure
conditions as mentioned earlier from Equations (3)–(8) except Equation (7):

MRM(Sa, Sn) = rm1(Sa, Sn) + rm2(Sa, Sa) + rm3(Sa, Sn) + γ1SM(Sn) (9)

where γ1 is the model’s hyper-parameters, and ranking measures rm1(Sa, Sn), rm2(Sa, Sa),
rm3(Sa, Sn), and rm4(Sa, Sn) are described in Equations (10)–(13), respectively, as follows:

rm1(Sa, Sn) = max
(

0, 1−max
i∈Sa

R
(

Si
a

)
+ max

i∈Sn
R
(

Si
n

))
(10)

rm2(Sa, Sa) = max
(

0, 1−max
i∈Sa

R
(

Si
a

)
+ min

i∈Sa
R
(

Si
a

))
(11)

rm3(Sa, Sn) = max
(

0, 1− J2 + max
i∈Sn

R
(

Si
n

))
(12)

rm4(Sa, Sn) = max
(

0, 1− J3 + max
i∈Sn

R
(

Si
n

))
(13)

The ranking loss mentioned by Sultani et al. [14] does not consider both cases of
false alarms. Considering both cases result in a reduced false alarm rate for our network
in comparison to [14]. Yet similarly to [14], the two following constraints (ε1 and ε2) are
utilized in order to preserve the sparsity ε1 in Equation (14) and temporal smoothness ε2 in
Equation (15) of the abnormality score:

ε1 = γ2

n

∑
i

R
(

Si
n

)
(14)

ε2 = γ3

n−1

∑
i

(
R
(

Si
a

)
− R

(
Si+1

a

))2
(15)

where γ2, and γ3 are the model’s hyper-parameters. Therefore the new proposed objective
function using MRMs for the DMIL can be defined as follows:

=(Sa, Sn) = MRM(Sa, Sn) + ε1 + ε2 (16)

Finally, our proposed objective function, along with a regularization term, is men-
tioned as follows:

m(W) = =(Sa, Sn) + γ4 ‖W ‖2 (17)

where W represents model weights and γ4 is the model’s hyper-parameters.
Consequently, the network learns to predict the abnormality scores for all instances or

samples of both groups using the aforementioned objective function for DMIL and using
a large number of positive and negative instances from the training dataset. With our
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proposed framework, DMRMs, the network learns the context-dependency of the normal
and anomalous videos (shown in Section 4.4.2). The framework also addresses the problem
of the unavailability of a large annotated dataset by exploiting the video-level annotations.

Inference Phase
During the inference phase, the video is given to the proposed framework (DMRMs),

and its motion flow maps are then extracted. These maps, along with the video, are divided
into temporal segments. Subsequently, these segments are passed through the feature
extraction process. Data fusion occurs, and each segment’s abnormality score is predicted
using the trained deep neural network. Finally, the type of anomalous event is predicted
using the trained 3D ResNet on the UCF-Crime dataset [14], along with the position of
moving objects in the video.

4. Experimentation
4.1. Datasets

There are numerous standard datasets [5,8,14,24,54,55] available for the anomalous
event detection task. Despite that, we chose to perform our experimentation using the
proposed framework, DMRMs, on two very recent and challenging datasets for the anoma-
lous event detection task: UCF-Crime [14] and ShanghaiTech [5] datasets. These datasets
have videos that are long in duration, large in size, and consist of real-world scenarios of
anomalous events. Moreover, to train our network efficiently and accurately, we needed a
large number of anomalous and normal videos.

The UCF-Crime dataset consists of a total of 1900 long, untrimmed real-world videos,
including 950 normal videos and 950 anomalous event videos. It has 13 classes of real-
world anomalous events such as robberies, car accidents, fighting, and more. We also
trained our activity recognition network, 3D ResNet-34 [21], using this dataset.

The ShanghaiTech dataset consists of a total of 437 videos (with 13 different scenes
and 316, 154 frames)–that is, 330 training videos (normal videos) and 107 test videos
(anomalous videos like cycling and skating on the pedestrian-only path). This dataset
contains videos with different camera angles and lighting conditions.

Training and Testing Datasets: In DMRMs, the network was trained individually
on both datasets. First, the UCF-Crime dataset was divided into a training dataset and
a testing dataset. Whereas the training group contains 800 normal and 810 anomalous
event videos, the testing group contains 150 normal and 140 anomalous event videos. It is
worth mentioning that the dataset was divided in such a way that both the training and
testing datasets each contained all 13 classes of anomalous events. Second, our network
was also trained on the ShanghaiTech dataset, which was already divided into training
and testing datasets. However, we needed both normal and anomalous videos to train our
network; therefore, we used a portion of the given testing dataset (randomly chosen 40
testing videos) as an anomalous video group for the training phase. Moreover, we used
only 30% of the given training dataset (normal event videos). Moreover, both the training
and testing datasets contain all 13 scenes. Using less part of the training dataset was an
advantageous part of our proposed framework, DMRMs.

4.2. Implementation Details

As mentioned in Section 3.2, all videos from the training and testing datasets and their
associated motion flow maps were divided into a specific number (N) of non-overlapping
temporal segments, though the AUC of the proposed detector, DMRMs, is unaffected
by utilizing multi-scaled overlapped temporal segments. In our experiments, we chose
to divide them into 16 segments (N = 16). However, the ablation study (Section 4.4)
demonstrated the effect of choosing a different number of segments N. The input size for
the 3D ResNet-34 was 112 × 112 pixels; the results were similar for size 160 × 160 (AUC
= 68.54 on the ShanghaiTech Testing dataset). For training on the UCF-Crime dataset, 30
frames per second (fps) was chosen. Then, 60 randomly chosen videos (30 normal and 30
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anomalous) were passed through the proposed framework to train it for the anomalous
event detection task. However, for training on the ShanghaiTech dataset, 24 fps was chosen,
and only 8 randomly chosen videos (four normal and 4 anomalous) were passed through
the framework, DMRMs.

Afterward, a 3D ResNet-34 [21] extracted 512 features from every 16 frames of the
video segments/samples as well as 512 features from their respective motion flow maps,
as shown in Figure 1. Here, 3−channels of motion flow maps are constructed by repeating
1−channel information to all 3−channels. These extracted features were fused in the
data fusion block. Next, these integrated features were passed through a three-layer fully
connected (FC) deep neural network, as shown in Figure 1 for the joint learning of these
features. We have also used a 60% dropout among all 3 FC layers, similar to previous
work [14].

The proposed objective function described in Equation (17) using MRMs was used to
train DMIL along with an Adagrad optimizer with an initial learning rate of 0.001 and 0.0001
for UCF-Crime and ShanghaiTech datasets, respectively. In the case of the ShanghaiTech
dataset–all of the hyper-parameters γ1, γ2, γ3, and γ4 described in the proposed objective
function in Equation (17) have values of 8× 10−5, 8× 10−5, 8× 10−5, and 0.01, respectively.
Similarly in the case of UCF-Crime dataset, all of the hyper-parameters, γ1, γ2, γ3, and γ4
have values of 8× 10−5, 8× 10−4, 8× 10−4, and 0.01, respectively. These values achieved the
best performance from DMRMs, as shown in Table 1. The proposed network was trained
for 15, 000 epochs for the UCF-Crime dataset and 5000 epochs for the ShanghaiTech dataset.

For the anomalous event recognition task, we trained a 3D ResNet-34 on the UCF-
Crime dataset using a 4-fold cross-validation strategy and using 50 videos from each
category (normal and anomalous), dividing them into the ratio of 75 : 25 (see results in
Section 4.4.4).

4.3. Evaluation Metrics

In this study, the effectiveness of our proposed framework, DMRMs, was evaluated
using a receiver operating characteristics curve (ROC-Curve), which is a trade-off plot
between False Positive Rate (FPR) and True Positive Rate (TPR), and the area under the
curve (AUC) metric. This metric is a quantitative measure for the ROC-Curve, which
has been used in similar previous studies [8,13,14] for evaluating the anomalous event
detection task. Moreover, FPR and TPR can be calculated as follows:

TPR or Recall = ∑ TP
∑(TP + FN)

FPR =
∑ FP

∑(TP + FN)
(18)

where TP, FN, and FP stand for True Positive, False Negative, and False Positive, respec-
tively. Additionally, the performance of the anomalous event recognition task is evaluated
using an accuracy metric.

4.4. Experiment Results and Ablation Study
4.4.1. Comparison among State-of-the-Art Methods

The UCF-Crime and ShanghaiTech datasets are the newest datasets; therefore, only
recent algorithms [5,8,9,11,13,14,44,45,56] have reported their results on these datasets.
In the above-mentioned algorithms, the training phase is different from our framework,
DMRMs. Unlike ours, most of them have used only normal videos to train their deep
neural networks. However, we have used the same UCF-Crime and ShanghaiTech testing
datasets for fair comparison among all algorithms.
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Table 1. Effect of different values of Hyper-parameters on the AUC of UCF-Crime and ShanghaiTech datasets.

Hyper-Parameters γ1 γ2 γ3 γ4 lr UCF-Crime ShanghaiTech

1 8× 10−5 8× 10−5 8× 10−5 0.01 0.001 81.21 65.47
2 8× 10−5 8× 10−5 8× 10−5 0.01 0.01 77.23 -
3 8× 10−5 8× 10−5 8× 10−5 0.01 0.0001 78.53 68.50
4 8× 10−5 8× 10−5 8× 10−5 0.01 0.00001 - 65.83
5 1× 10−5 1× 10−5 1× 10−5 0.01 0.001 78.44 -
6 1× 10−5 1× 10−5 1× 10−5 0.01 0.0001 - 67.32
7 8× 10−5 8× 10−5 8× 10−5 0.1 0.001 77.80 -
8 8× 10−5 8× 10−5 8× 10−5 0.1 0.0001 - 65.70
9 8× 10−5 8× 10−5 8× 10−5 0.001 0.001 79.51 -
10 8× 10−5 8× 10−5 8× 10−5 0.001 0.0001 - 65.83
11 8× 10−4 8× 10−4 8× 10−4 0.01 0.001 81.40 -
12 8× 10−4 8× 10−4 8× 10−4 0.01 0.0001 - 67.72
13 8× 10−6 8× 10−6 8× 10−6 0.01 0.001 78.56 -
14 8× 10−6 8× 10−6 8× 10−6 0.01 0.0001 - 67.86
15 8× 10−5 8× 10−5 8× 10−4 0.01 0.001 81.62 -
16 8× 10−5 8× 10−5 8× 10−4 0.01 0.0001 - 67.75
17 8× 10−5 8× 10−4 8× 10−5 0.01 0.001 78.12 -
18 8× 10−5 8× 10−4 8× 10−5 0.01 0.0001 - 67.68
19 8× 10−4 8× 10−5 8× 10−5 0.01 0.001 78.52 -
20 8× 10−4 8× 10−5 8× 10−5 0.01 0.0001 - 67.84
21 8× 10−5 8× 10−4 8× 10−4 0.01 0.0001 - 67.71
22 8× 10−4 8× 10−5 8× 10−4 0.01 0.0001 - 67.82
23 8× 10−4 8× 10−4 8× 10−5 0.01 0.0001 - 67.85
24 8× 10−4 8× 10−4 8× 10−5 0.01 0.001 78.98 -
25 8× 10−4 8× 10−5 8× 10−4 0.01 0.001 78.62 -
26 8× 10−5 8× 10−3 8× 10−3 0.01 0.001 80.64 -
27 8× 10−5 8× 10−6 8× 10−6 0.01 0.001 81.48 -

28 (ours) 8× 10−5 8× 10−4 8× 10−4 0.01 0.001 81.91 -
8× 10−5 8× 10−5 8× 10−5 0.01 0.0001 - 68.50

This study compares our proposed anomalous event detection framework, DMRMs,
with other state-of-the-art methods, Hasan et al. [13], Sohrab et al. [44], Lu et al. [8],
GODS [56], Sultani et al. [14], and an SVM binary classifier using ROC-Curve and
AUC metric on the UCF-Crime dataset. As shown in Figure 3, our proposed frame-
work, DMRMs, outperforms all state-of-the-art methods, including the recent algorithm
by Sultani et al. [14], which was the primary motivation for the present work, and gives
the best FPR-TPR trade-off curve among them. Similarly, from Table 2, the highest AUC
score reflects the effectiveness of our proposed framework. Moreover, AUC mentioned by
authors Sohrab et al. [44] in Table 2 was reported in the paper GODS [56].

Similarly, the performance of our proposed framework, DMRMs, achieves competi-
tive results on the ShanghaiTech dataset using the AUC metric evaluation method when
compared with the state-of-the-art methods, as shown in Table 2. Here, we have evaluated
the AUC of each previously proposed algorithms [5,9,11,13,45] using the same experi-
mental setup on the testing dataset as ours. The AUC metric is calculated on the overall
ShanghaiTech testing dataset (107 testing videos) in the Hasan et al. [13]* algorithm.
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M. Hassan et al.
C. Lu et al.
W. Sultani et al.
DMRMs(ResNet+rm1)
DMRMs(ResNet+rm1+MF)
DMRMs(ResNet+MF+MRMs)

Figure 3. ROC-Curves comparison on UCF-Crime dataset on state-of-the-art methods, M. Hasan et al. [13], C. Lu et al. [8],
Sultani et al. [14]. Our proposed framework’s variations curves are shown in associated ROC-curves. The ROC-Curve of
our proposed framework, DMRMs (3D ResNet+MF+MRMs), including the variation of it, shows the best FPR-TPRtrade-off
ROC-Curve, where MF stands for Motion Flow maps.

Table 2. Frame-level AUC-Comparison (in %) with other state-of-the-art methods on UCF-Crime [14]
and ShanghaiTech [5] datasets. Bold figures stand for the best performance in all.

Algorithm UCF-Crime ShanghaiTech

SVM Binary Classifier 50.00 -
M. Hasan et al. [13] 50.60 60.90 *
F. Sohrab et al. [44] 58.50 -
C. Lu et al. [8] 65.51 -
Luo et al. [5] - 60.73
GODS [56] 70.46 -
Autoreg-ConvAE (LLK) [45] - 70.30
Liu et al. [9] - 73.04
Autoreg-ConvAE (NS) [45] - 73.85
MPED-RNN [11] - 76.24
W. Sultani et al. [14] 75.41 -

Ours DMRMs 81.91 68.50

Table 2 shows that our framework, DMRMs, performs quite well on the UCF-Crime
dataset compared to the ShanghaiTech dataset. There are mainly two reasons that our
framework, DMRMs, does not function well on the ShanghaiTech dataset. First, our
model requires a large amount of dataset to train the proposed architecture as it utilizes
3D ResNet-34 to extract deep features from the video. As 3D ResNet is not explored
adequately in the anomalous activity detection task, consequently, according to the action
recognition task’s studies [22,23], similar to our task, 3D ResNet overfits on the smaller
dataset. Moreover, compared to the ShanghaiTech dataset UCF-Crime dataset is vast.
Second, the ShanghaiTech dataset has much noisier annotations compare to the UCF-Crime
dataset, and this dataset includes videos with a lot of illumination and camera angle
variations. Recently, the authors [18] have utilized the graphical noise cleaner approach
resulting in better performance than our method. However, our study does not include
noise cleaner. Therefore, there is an enormous variation in our algorithm’s performance
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between these two datasets, and we can conclude that the proposed framework does not
perform well for smaller and noisier datasets like the ShanghaiTech dataset.

4.4.2. Qualitative Results and Demonstration of Context-Dependency Learning of DMRMs

The qualitative results of our proposed framework are shown in Figures 4 and 5, after
testing our framework on videos from the testing datasets of UCF-Crime and ShanghaiTech.

Figure 4 demonstrates how well our network learned the anomalous event detection
task because of our framework’s context-dependency learning. However, it failed in some
cases like (e), (f) and (g), where (e) demonstrates the failure case in which DMRMs was
unsuccessful due to extreme variation in lighting conditions, though success is achieved
in (d) in the presence of less lighting variation. Figure 4f demonstrates the case where
DMRMs failed to differentiate between normal “car washing” and “vehicle theft” cases,
while (g) shows continuous anomalous event detection along with a low abnormality score
because of random movements. On the other hand, (a), (b), (c), and (d) demonstrate
the accurate detection of different anomalous events with different backgrounds and
lighting conditions along with the location of moving objects. These show effectiveness
of the proposed framework, DMRMs: (a), (b), (c) and (d) depict the accurate detection
of a “road accident,” “arson,” “cycling in a pedestrian walkway,” and a “normal event,”
respectively.

(a) Road Accident (b) Arson

(c) Cycling in a Pedestrian Walkway

(g) Running

(d) Normal Video

(e) Burglary

(f) Normal Video

Figure 4. Qualitative analysis of the proposed framework, DMRMs, on UCF-Crime and ShanghaiTech testing datasets.
The red curve shows the abnormality score of the corresponding frame (ranging between 0 and 1). The light blue box
shows the ground truth of the temporal region of anomalous events, while the arrow indicates the corresponding visual
frame of the recognized anomalous event along with the localization of moving objects. (a,b,d–f) are testing results from
UCF-Crime dataset and (c,g) are from ShanghaiTech dataset, where (e–g) are failure cases of our proposed framework,
DMRMs. Meanwhile, all successful results of anomalous event recognition are shown in (a,b,d,e).

Figure 5 demonstrates how well our network learned the anomalous event detection
task when there are multiple anomalous events in a single video of proposed DMRMs
(effect of proposed MRMs). However, it failed in some cases like (d), which demonstrates
the failure case in which a “shooting” is detected only a single time, although it is present
two times in the same video, a mistake occurring due to occlusion by trees, which hid
some extent of information. Besides, (a), (b), and (c) demonstrate the accurate detection
of multiple instances of anomalous events in a single video with different backgrounds
and lighting conditions (illumination variations) along with the location of moving objects.
These illustrate the effectiveness of DMRMs (especially proposed MRMs) in the presence of
multiple instances of anomalous events: (a), (b) and (c) depict the detection of “shoplifting,”
“stealing,” and “driving a car in a pedestrian walkway,” respectively. These multiple
anomalous events were detected with a significant abnormality score in a single video.
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(a) Shoplifting (b) Stealing (c) Driving in a Pedestrian Walkway (d) Shooting

Figure 5. Qualitative analysis of the proposed framework, DMRMs, for multiple instances of anomalous events in a single
video. The red curve shows the abnormality score of the corresponding frame (ranging between 0 and 1). The light blue
box shows the ground truth of the temporal region of anomalous events, while the arrow indicates the corresponding
visual frame of the recognized anomalous event along with the localization of moving objects. (a,b,d) are testing results
from UCF-Crime testing dataset and (c) is from ShanghaiTech testing dataset, where (d) is a failure case of our proposed
framework, DMRMs. Meanwhile, all successful results in recognizing multiple-instance anomalous events are shown
in (a–c).

Demonstration of context-dependency learning appears in Figures 6 and 7. Figure 6
demonstrates the qualitative comparison between the framework without joint learning
and our framework (DMRMs) with joint learning. The upper-left image in (a) reflects the
result of an anomalous event without any joint learning of motion and appearance features
that failed to recognize “shoplifting”—an anomalous event. In contrast, the upper-right
image demonstrates the result of our proposed DMRMs after the joint learning technique,
showing the successful recognition of “shoplifting”–an event that is very similar to the
“normal event of shopping”—through context-dependency learning. Similarly, in (b), the
left-hand image gives a false alarm for an anomalous event given that many cars are
passing by. In contrast, in the right-hand image, our framework learned the context of this
video as well as the difference between “car accident” cases and those of a “normal road
with many cars passing by.”

The qualitative analysis of context-dependency learning of DMRMs is demonstrated in
Figure 7. For better visualization, the localization of moving objects is avoided in Figure 7.
(a)–(h) reflect the result of an anomalous event detection task and context-dependency
learning of DMRMs. Events (a), (c), and (e) have background similarities with the events
(b), (d), and (f)–(h), respectively. (a) and (b) both are events from shopping marts—(a) is
an anomalous event of “shoplifting,” while (b) is a “normal event of shopping.” Similarly,
events (c) and (d) take place near the reception area—(c) is an anomalous event of “shoplift-
ing at reception,” while (d) is a “normal event of some query at reception.” Furthermore,
events (e) and (f) are cases of driving on crossroads—(e) is an anomalous event of “car
accident at crossroads,” while (f) is a “normal event of driving at crossroads.” Additionally,
similar to the event (e), events (g) and (h) are also cases of driving on crossroads with
different scenarios (much rush on bigger crossroads) and with substantial illumination
differences, respectively. Despite all these background similarities, our proposed frame-
work, DMRMs, successfully recognized all the events from (a)–(h), demonstrating the
context-dependency learning of DMRMs.
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(a) Shoplifting

(b) Normal Video

Figure 6. Qualitative comparison between the framework without joint learning and our proposed framework, DMRMs,
with joint learning (or context-dependency learning) on UCF-Crime testing dataset. The red curve shows the abnormality
score of the corresponding frame (ranging between 0 and 1). The light blue box shows the ground truth of the temporal
region of anomalous events, while the arrow indicates the corresponding visual frame of the recognized anomalous event
along with the localization of moving objects. The left-side images in (a,b) show the cases of the framework without joint
learning, whereas the right-side images show the effect of joint learning in the same cases.

(f) Normal Video (Driving on Crossroads)

(a) Shoplifting

(h) Normal Video (Driving on Crossroads)(g) Normal Video (Driving on Crossroads)

(c) Shoplifting(b) Normal Video (Shopping Mart) (d) Normal Video (At Reception)

(e) Road Accident

Figure 7. Qualitative analysis of context-dependency learning of our proposed framework, DMRMs, on UCF-Crime testing
dataset. The red curve shows the abnormality score of the corresponding frame (ranging between 0 and 1). The light blue
box shows the ground truth of the temporal region of anomalous events, while the arrow indicates the corresponding visual
frame of the recognized anomalous event. (a,c,e) depict cases of anomalous events, whereas (b,d,f–h) demonstrate normal
events cases. Additionally, events (a,c,e) have background similarities with the events (b,d,f,h), respectively. Our proposed
framework successfully recognizes all the events from (a–h) though having background similarities, demonstrating the
context-dependency learning of DMRMs.

4.4.3. Ablation Study

First, we demonstrate the results of dividing the videos into different numbers of
segments, 8, 16, 32, 48, and 64—an essential step of our framework (Figure 1)–by studying
their effect of the frame-level AUC metric on the UCF-Crime and ShanghaiTech datasets
(given in Table 3). We concluded that the effect of the number of segments was more
significant on the ShanghaiTech dataset than on the UCF-Crime dataset, and that dividing
the videos into 16 segments provided an optimal performance on both datasets. The pre-
trained 3D ResNet-34 [21] extracts features from each video clip of 16-frames. Therefore, in
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this work, a lower limit of the number of segments is considered 16, although the effect of 8
segments on AUC of ShanghaiTech testing dataset is shown in Table 3. Moreover, dividing
the video into 16 segments speeds up our framework (as shown in Table 7), DMRMs.
Therefore, we chose N = 16 in our study for both datasets.

Second, we demonstrate in Tables 4 and 5 the effectiveness of using our proposed
MRMs along with 3D ResNet-34 and motion flow maps, a framework that outperforms
the state-of-the-art methods on the UCF-Crime and ShanghaiTech datasets and mitigates
the FAR as well. In Table 4, we show the effect of each ranking measure of our framework,
DMRMs, on the AUC of both datasets. From Table 4, we can conclude that introducing
higher-order ranking measures degrade the performance of the anomalous event detector,
while a combination of ranking measures rm1, rm2, and rm3 increases the AUC of our
detector. Table 5 shows the lowest FAR value on the UCF-Crime testing dataset, and these
FAR values were calculated on the normal videos of the dataset at 50% of the threshold.
The smallest FAR value demonstrates that our framework, DMRMs, mitigates false alarms.

Table 3. Comparison of choosing a different number of segments on UCF-Crime and Shang-
haiTech datasets.

Segments 8 16 32 48 64

UCF-Crime (AUC) - 81.91 81.17 80.71 80.98

ShanghaiTech (AUC) 68.20 68.50 65.60 66.20 66.00

Table 4. Effectiveness of proposed ranking measures rm1, rm2, rm3, rm4, MRMs and constraints
(sparsity and temporal smoothness) as described in Equations (9)–(15), using 3D ResNet-34 [21] and
using motion flow maps (MFM) is shown with frame-level AUC-Comparison (in %) on UCF-Crime
and ShanghaiTech datasets. It shows that collectively using 3D ResNet, motion flow and MRMs in
our proposed framework contributes to outperforming state-of-the-art methods. Bold figures stand
for the best performance in all.

Ranking Measures UCF-Crime ShanghaiTech

3D ResNet-34 + rm1 76.20 61.20
3D ResNet-34 + rm1 + MF 78.68 65.30
3D ResNet-34 + rm1 + MF + rm2 78.60 64.90
3D ResNet-34 + rm1 + MF + rm3 80.08 66.10
3D ResNet-34 + rm1 + MF + rm4 80.01 65.60
3D ResNet-34 + rm1 + MF + rm2 +rm3 80.92 67.70
3D ResNet-34 + rm1 + MF + rm2 +rm4 79.80 65.40
3D ResNet-34 + rm1 + MF + rm2 + rm3 + rm4 80.10 67.00
3D ResNet-34 + MF + MRM 81.12 67.91

DMRMs 3D ResNet-34 + MF + MRM + ε1 + ε2 81.91 68.50

Table 5. Comparison of false alarm rate (FAR) on UCF-Crime [14] test dataset in normal event videos.
Bold figure stands for the best performance in all.

Algorithm M. Hasan et al. [13] C. Lu et al. [8] W. Sultani et al. [14] Ours DMRMs

FAR 27.20 3.10 1.90 0.85

4.4.4. Anomalous Event Recognition and Localization of Moving Objects

Figure 8 demonstrates the anomalous event recognition task along with the localiza-
tion of moving objects. Tables 4 and 6 show the effectiveness of the 3D ResNet [21] used
in our study. Table 6 specifically shows its near-similar accuracy on the activity recogni-
tion task compared to the work of [57], which uses a heavier network than 3D ResNet.
Therefore, we have utilized 3D ResNet for extracting useful features from videos, and its
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effectiveness is shown in Table 4. Table 6 also demonstrates that the UCF-Crime dataset is
a challenging dataset not only in the anomalous event detection task but also in the activity
recognition task. Figure 8 shows the success and failure of both cases of the anomalous
event recognition task.

4.4.5. Analysis of Computational Cost of The Proposed DMRMs

All the experiments are performed on the Ubuntu 16.04 LTS system with an Intel
Core i7 processor along with the NVIDIA GeForce GTX1080 Ti GPU. In Table 7, we have
demonstrated the computational cost of the proposed anomalous event detector. We
achieve 26 frames per second (FPS) and 18 FPS on UCF-Crime and ShanghaiTech datasets,
respectively. As the size of each frame is 856 × 480 and 320 × 240 in ShanghaiTech and
UCF-Crime datasets, respectively, therefore, the computational cost of extracting motion
flow maps is higher in ShanghaiTech dataset than that of the UCF-Crime dataset, which
affects the overall FPS of the anomalous event detector’s computational cost.

Figure 8. Demonstration of the anomalous event recognition task along with localization of moving objects of our proposed
framework, DMRMs: the first and second rows represent five frames from different anomalous events with a gap of
30 frames, where our framework, DMRMs, recognizes the anomalous event of “shoplifting” accurately in the first row.
In contrast, it failed in the second case. The second row shows the failure case of our recognition task, where DMRMs
recognized it as an “abuse" event though it is a “car accident” case.

Table 6. Evaluation of Anomalous Activity Recognition on UCF-Crime dataset.

Algorithm C3D [47] TCNN [57] 3D ResNet-34 [21]

Accuracy 23.0 28.4 27.2

Table 7. Analysis of Computational Cost during Inference Phase (in seconds per frame).

Computational Process UCF-Crime ShanghaiTech

Extraction of Motion Flow Maps 0.016 0.03
16 Temporal Segments and Pre-process. 0.0012 0.0016
32 Temporal Segments and Pre-process. - 0.0019
Feature Extraction from Visual Data 0.011 0.012
Feature Extraction from Motion Maps 0.011 0.012
Detection 0.0004 0.0005

Total 0.0396 0.0561

FPS ≈ 26 ≈ 18

5. Conclusions

We introduced new ranking measures for learning the DMIL in the absence of tempo-
ral annotations. Moreover, with the help of joint learning of deep motion and appearance
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features, our framework, DMRMs, competitively learned the context-dependency com-
pared to other deep learning algorithms [1,3,12,13]. We achieved promising performance
on challenging datasets. The experimental results demonstrated noticeable improvement
in context-learning, mitigating the false alarm rate, and overall accuracy in the anomalous
event detection task. However, there are several drawbacks to our method, which should
be handled in the future. First, a large-scale and well-annotated dataset for both normal
events and abnormal events is necessary to train the proposed framework since it performs
in a semi-supervised manner. A large-scale dataset requirement is an inherent problem in
almost all existing visual recognition methods using deep learning. Second, our framework
is not robust to the noises (occlusion, camera jitters, and illumination variations). Therefore,
our future work will focus on training our network in an unsupervised manner using
a smaller amount of training data; consequently, this will address the problem of the
requirement of a large-scale and well-annotated dataset. Moreover, our future work will
also focus on overcoming the shortcomings of noise due to illumination variations, camera
jitters, and occlusion. Finally, we note that in the ShanghiTech dataset, some algorithms
outperform our proposed model on the given experimental setting. However, performance
improvement is still possible by adopting different models (e.g., 3D ResNet-50) and their
optimization by retraining (with practically many training samples), fine-grained transfer
learning, and knowledge distillation, and this is our ongoing work.
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