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Abstract: In this paper, the Caputo-Fabrizio fractional derivative is introduced to investigate the one-
dimensional consolidation behavior of viscoelastic soils. Using the Caputo-Fabrizio operator, a novel
four-element fractional-derivative model is proposed to capture the viscoelastic properties of the
soils, and further the one-dimensional consolidation equation is derived to simulate the consolidation
behavior of the soils. Using the techniques of eigenfunction expansion and Laplace transform,
a series of analytical solutions are derived to calculate the excess pore-water pressure and the
average degree of consolidation of the soils. The total vertical stress in the soil is assumed to change
linearly with depth, and its distribution patterns are classified to rectangular pattern, trapezoidal
pattern and inverse trapezoidal pattern. Four loading types including instantaneous loading, ramp
loading, sinusoidal loading and general cyclic loading are considered. Then, a comparison for several
special cases is presented to verify the correctness of the proposed solutions through comparing
with existing theories. Moreover, two examples considering ramp and sinusoidal loadings are
given to study the consolidation behavior of the viscoelastic soils incorporating the Caputo-Fabrizio
fractional derivative.

Keywords: viscoelastic soils; one-dimensional consolidation; Caputo-Fabrizio fractional derivative;
viscoelasticity

1. Introduction

As a branch of mathematics, the fractional calculus deals with the generalization of
integrals and derivatives to all real (and even complex) orders [1,2]. People have discovered
that the fractional calculus can provide more accurate models than the integer calculus
to describe the hereditary and memory characteristics of various complex processes and
natural phenomena [3]. During the last two decades, the fractional calculus has been
widely applied to model the complex processes in the fields of science, engineering and
mathematics [1,4–7], and so on. In particular, since the fractional calculus was firstly
used to describe the viscoelasticity and rheology in 1980s, the fractional-derivative model
has achieved great success in simulating the viscoelastic behavior of real materials [1,8].
However, the application of the fractional-derivative to the one-dimensional consolidation
of the viscoelastic soils is scarce.

In the geotechnical community, the soil consolidation is one of the most common
issues [9–12]. After the seminal work of Terzaghi [9], a considerable number of one-
dimensional consolidation models have been proposed to simulate the consolidation
process of the soil [13–17]. For obtaining a simplified solution, the one-dimensional consol-
idation models put forward in the early days treated the soil as a linear elastic material.
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In reality, the soil generally shows obvious rheological properties during the consoli-
dation process. Afterwards, in order to capture the rheological properties of the soil,
some viscoelastic models including Maxwell model, Kelvin-Voigt model, Merchant model,
four-element model and generalized Kelvin-Voigt model have been introduced to extend
the one-dimensional consolidation model of the soil [13,18–21]. These consolidation models
simulated the rheological properties of the soil using the viscoelastic models with integer
derivatives (namely standard viscoelastic model). Recently, the concept of fractional calcu-
lus has been introduced to develop the viscoelastic model for describing the rheological
phenomena of materials. Gemant [22] put forward a series of fractional-derivative models
to study the rheological phenomena. Koeller [2] derived the creep and relaxation func-
tions of the fractional-derivative models. In the geotechnical community, Yin et al. [23,24]
proposed a fractional-derivative model to describe the viscoelasticity of the soil samples
under triaxial conditions. Zhu et al. [8] adopted a fractional-derivative model to predict
the compression properties of the soft clay. Inspired by the above work, Wang et al. [25]
introduced a fractional-derivative model to extend the one-dimensional consolidation
theory of viscoelastic soil. However, the available fractional-derivative models are usually
defined by the Caputo or Riemann-Liouville fractional derivatives with a kernel of power
function [26–28]. The kernel of power function is investigated to be singular at the end
point of the interval [26].

To solve the singularity of the kernel of power function, Caputo and Fabrizio recently
put forward a new fractional derivative using the kernel of exponential function [27,28].
This fractional derivative (namely Caputo-Fabrizio fractional derivative) has no singularity
and it has been proved to be suitable for some classical physical problems. Using the
Caputo-Fabrizio fractional derivative, this paper attempts to establish one-dimensional
consolidation model of viscoelastic soils. In order to capture the rheological properties
of the soils, the Caputo-Fabrizio operator is adopted to develop a novel four-element
fractional-derivative model, and one-dimensional consolidation model is establish to
simulate the complex consolidation process of the viscoelastic soils. Using the techniques
of eigenfunction expansion and Laplace transform, a series of analytical solutions are
derived to calculate the excess pore-water pressure and the average degree of consolidation
of the viscoelastic soils. Then, a comparison for several special cases is presented to verify
the correctness of the proposed solutions, and two examples are given to investigate the
consolidation behavior of the viscoelastic soils.

2. Fundamental Concept

The Riemann-Liouville and Caputo fractional derivatives, respectively, are defined
as [1]

dα f (t)
dtα = 1

Γ(1−α)
· d

dt

∫ t
0 f (τ) · (t− τ)−αdτ, (0 ≤ α ≤ 1) (1)

dα f (t)
dtα = 1

Γ(1−α)

∫ t
0

d f (τ)
dτ (t− τ)−αdτ, (0 ≤ α ≤ 1) (2)

where f (t) is a given function; Γ(t) is the Gamma function; α is the fractional order; t is the
time; and τ is a integral variable. The main problem of these two derivatives is that the
kernel of power function is singular at the end point (i.e., τ = t) of the interval. To avoid
this problem, Caputo and Fabrizio recently proposed a new fractional derivative using
a kernel of exponential function [27]. This derivative (namely Caputo-Fabrizio fractional
derivative) is defined as [27,28]

dα f (t)
dtα = ω(α)

1−α

∫ t
0

d f (τ)
dτ e−

α
1−α (t−τ)dτ, (0 ≤ α ≤ 1) (3)
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where ω(α) is a normalized function and it can be reasonably given as ω(α) = 1, for detail
see [28]. According to this definition, it is obvious that the new kernel has no singularity.
For the case of α→ 0 , Caputo and Fabrizio [27] state that Equation (3) reduces to

lim
α→0

dα f (t)
dtα

= lim
α→0

ω(α)

1− α

∫ t

0

d f (τ)
dτ

e−
α

1−α (t−τ)dτ = f (t)− f (0) (4)

On the other hand, for the case of α→ 1 , Equation (3) degenerates into

lim
α→1

dα f (t)
dtα

= lim
α→1

ω(α)

1− α

∫ t

0

d f (τ)
dτ

e−
α

1−α (t−τ)dτ =
d f (t)

dt
(5)

in addition
lim
α→1

1
1− α

e−
1

1−α (t−τ) = δ(t− τ) (6)

where δ(t) is the Dirac delta function.
Using the Caputo-Fabrizio operator, a fractional-derivative element can be defined as

σ(t) = η
dαε(t)

dtα = E
1−α

∫ t
0

dε(τ)
dτ e−

α
1−α (

t−τ
λ )dτ, (0 ≤ α ≤ 1) (7)

where σ(t), ε(t), E and η stand for the applied stress, corresponding strain, elastic modulus
and viscosity coefficient of the fractional-derivative element, respectively; and λ = η/E is
a creep time. It is clearly observed that this element will reduce to a linear elastic spring as
α = 0, whereas becomes an ideal Newtonian dashpot as α = 1.

3. Model Formulation

A schematic of the consolidation system consisting of one soil layer is drawn in
Figure 1. The thickness of the soil layer is H, and the coefficient of vertical permeability
of the soil is kv. The coordinate origin is at the top of the soil layer, and the z-axis is
perpendicular to the surface of the soil layer. The time-dependent loading q(t) is applied
within a limited area of the surface or uniformly distributed on the whole surface. At any
time, total vertical stress in soil layer is assumed to change linearly with depth, and its
expression is supposed as [15,17]:

σ(z, t) =
(

1 + ζ
z
H

)
q(t) (8)

where σ(z, t) is total vertical stress in soil layer; ζ is a dimensionless parameter controlling
the gradient of total vertical stress in soil layer.
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Figure 1. One-dimensional consolidation model of the viscoelastic soils. 

As shown in Figure 1, a novel four-element fractional-derivative model is developed 
to describe the rheological characteristics of the viscoelastic soils by employing the frac-
tional-derivative element given by Equation (7). This model consists of an independent 
spring, an independent fractional-derivative element and a fractional-derivative Kel-
vin-Voigt body, which is made of a fractional-derivative element in parallel connection 
with a spring. Herein, the fractional-derivative element is represented by a diamond, 
which has been adopted by many researchers [8,23,24]. 

The relationship between the stress and strain of independent spring is 
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where eσ , eε  and 0E  are the stress, strain and modulus of the independent spring, re-
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Figure 1. One-dimensional consolidation model of the viscoelastic soils.



Appl. Sci. 2021, 11, 927 4 of 16

On the basis of the hypothesis of 1D consolidation theory [9], the differential equation
governing the consolidation process of saturated soils is given by

kv

γw

∂2u(z, t)
∂z2 = −∂ε(z, t)

∂t
(9)

where ε(z, t) and u(z, t) are, respectively, the vertical strain and excess pore-water pressure
in the soil layer; and γw is the unit weight of water.

It is assumed that the top surface of the soil layer is fully permeable, while its bottom
base is impermeable. Thus the boundary conditions of Equation (9) can be obtained as

u(z, t)|z=0 = 0, ∂u(z,t)
∂z

∣∣∣
z=H

= 0 (10)

At the initial time, excess pore-water pressure is equal to total vertical stress, thus the
initial condition of Equation (9) is given by

u(z, 0) = σ(z, 0) =
(

1 + ζ
z
H

)
q(0) (11)

According to the principle of effective stress [9], the vertical effective stress σ′(z, t) in
soil layer is given by

σ′(z, t) = σ(z, t)− u(z, t) (12)

By substituting Equation (11) into Equation (12) results in

σ′(z, 0) = 0 (13)

As shown in Figure 1, a novel four-element fractional-derivative model is developed to
describe the rheological characteristics of the viscoelastic soils by employing the fractional-
derivative element given by Equation (7). This model consists of an independent spring,
an independent fractional-derivative element and a fractional-derivative Kelvin-Voigt
body, which is made of a fractional-derivative element in parallel connection with a spring.
Herein, the fractional-derivative element is represented by a diamond, which has been
adopted by many researchers [8,23,24].

The relationship between the stress and strain of independent spring is

σe = E0εe (14)

where σe, εe and E0 are the stress, strain and modulus of the independent spring, respectively.
The relationship between the stress and strain of independent fractional-derivative

element is
σv = η0

dα0 εv
dtα0 = E0

1−α0

∫ t
0

dεv
dτ e−

α0
1−α0

( t−τ
λ0

)dτ, (0 ≤ α0 ≤ 1) (15)

where σv, εv and η0 stand for the stress, strain and viscosity coefficient of the independent
fractional-derivative element, respectively; and λ0 = η0/E0 is its creep time.

The relationship between the stress and strain of fractional-derivative Kelvin-Voigt
body is

σev = E1εev + η1
dα1 εev
dtα1 = E1εev +

E1
1−α1

∫ t
0

dεev
dτ e−

α1
1−α1

( t−τ
λ1

)dτ, (0 ≤ α1 ≤ 1) (16)

where σev, εev, E1 and η1 are the stress, strain, modulus and viscosity coefficient of the
fractional-derivative Kelvin-Voigt body, respectively; and λ1 = η1/E1 is its creep time.

The vertical strain εz of the soil mass is the sum of the strain components of the
four-element fractional-derivative model; that is,

εz = εe + εv + εev (17)
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The vertical effective stress σ′z of the soil mass is equal to the stress components of the
four-element fractional-derivative model; that is,

σ′z = σe = σv = σev (18)

Based on Equations (13)–(18), the initial values of all the strain components in the four-
element fractional-derivative model are zero. The Laplace transforms of Equations (14)–(18)
produce

L[εz] = L[εe + εv + εev] =

[
1

E0

(2− α0)λ0s + α0

λ0s
+

1
E1

(1− α1)λ1s + α1

(2− α1)λ1s + α1

]
L
[
σ′z
]

(19)

where L is a Laplace transform operator. The inverse Laplace transform of Equation (19)
leads to

εz = (2− α0)
σ′z
E0

+ α0

∫ t

0

σ′z
λ0E0

dτ +
1− α1

2− α1

σ′z
E1

+
α1

(2− α1)
2

∫ t

0

σ′z
λ1E1

e−
α1

2−α1
· t−τ

λ1 dτ (20)

Equation (20) gives the stress-strain relationship of the four-element fractional-
derivative model. It can be seen that the expression form of Equation (20) is mainly
governed by the fractional orders α0 and α1. For the conditions that the fractional orders
are equal to zero or one, as shown in Table 1, the four-element fractional-derivative model
will degenerate into several standard models.

Table 1. Simplifications of the four-element fractional-derivative model.

Fractional Order Model Types Stress-Strain Relationships

α0 = α1 = 1

Standard four-element model
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, sinm
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H=
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2
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( ) ( )
( )

( ) ( )
1

1 1

2
2v 0 1 1

0 22 0
0 1 1 1

1 12 0
2 2

t
tm m

m m q

dT t dTc M T t e d C f t
H dt d

α τ
α λτα α αα τ

λ α κ τα κλ

−− ⋅
−   −+ + − + + + =   − −  
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Equation (24) yields 
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( ) ( ) ( ) ( )

( ) ( )
2

1 1 1 1 1 1v 0 0
0 02
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1 1
2 2 0

2 2m m

s sc M s ss T s s C Q s
H s s

α λ α α λ αα αα α
λ α λ α κ λ α λ α κ

   − + − +
+ + − + − + − + =   − + − +   

 (26)

εz = σ′z
E0

+
∫ t

0
σ′z
η0

dτ +
∫ t

0
σ′z
η1

e−
t−τ
λ1 dτ

α0 = 0, α1 = 1

Standard Merchant model
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1

, sinm
m

Mu z t T t z
H=

∞  =  
 

  (23)

where ( )1
2

2 1 ,   1, 2,3M m mπ= − =  , and ( )mT t  is the generalized Fourier coefficient 

that varies with time t . Equation (23) satisfies the boundary conditions given in Equa-
tion (10). 

By substituting Equation (23) into Equation (21), a family of ordinary in-
tegro-differential equations can be obtained as 

( ) ( )
( )

( ) ( )
1

1 1

2
2v 0 1 1

0 22 0
0 1 1 1

1 12 0
2 2

t
tm m

m m q

dT t dTc M T t e d C f t
H dt d

α τ
α λτα α αα τ

λ α κ τα κλ

−− ⋅
−   −+ + − + + + =   − −  

 (24)

where 

( ) 12 1 1 m
mC M M

ζ+ = + −  
 (25)

Considering the initial condition given in Equation (11), the Laplace transform of 
Equation (24) yields 

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
2

1 1 1 1 1 1v 0 0
0 02

0 1 1 1 0 1 1 1

1 1
2 2 0

2 2m m

s sc M s ss T s s C Q s
H s s

α λ α α λ αα αα α
λ α λ α κ λ α λ α κ

   − + − +
+ + − + − + − + =   − + − +   

 (26)

εz = σ′z
Eeff

where Eeff = 2E0E1/(E0 + 4E1).

By substituting Equations (8), (12) and (20) into Equation (9) leads to the governing
equation

cv
∂2u(z, t)

∂z2 =

(
2− α0 +

1− α1

2− α1

1
κ

)
∂u(z, t)

∂t
+

α0

λ0
u(z, t) +

α1

(2− α1)
2κλ1

∫ t

0

∂u(z, τ)

∂τ
e−

α1
2−α1

· t−τ
λ1 dτ +

(
1 + ζ

z
H

)
fq(t) (21)

where cv = kvE0/γw is the vertical coefficient of consolidation; κ = E1/E0 is a modulus
ratio; and fq(t) is given by
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fq(t) = −
(

2− α0 +
1− α1

2− α1

1
κ

)
∂q(z, t)

∂t
− α0

λ0
q(z, t)− α1

(2− α1)
2κλ1

∫ t

0

∂q(z, τ)

∂τ
e−

α1
2−α1

· t−τ
λ1 dτ (22)

4. Solution Derivation

The solution to Equation (21), based on eigenfunction expansion, can be expressed as

u(z, t) =
∞

∑
m=1

Tm(t) sin
(

M
H

z
)

(23)

where M = 1
2 (2m− 1)π, m = 1, 2, 3 · · · , and Tm(t) is the generalized Fourier coefficient that

varies with time t. Equation (23) satisfies the boundary conditions given in Equation (10).
By substituting Equation (23) into Equation (21), a family of ordinary integro-differential

equations can be obtained as(
cvM2

H2 +
α0

λ0

)
Tm(t) +

(
2− α0 +

1− α1

2− α1

1
κ

)
dTm(t)

dt
+

α1

(2− α1)
2κλ1

∫ t

0

dTm(τ)

dτ
e−

α1
2−α1

· t−τ
λ1 dτ + Cm fq(t) = 0 (24)

where

Cm =
2
M

[
1 + (−1)m+1 ζ

M

]
(25)

Considering the initial condition given in Equation (11), the Laplace transform of
Equation (24) yields[

cvM2

H2 +
α0

λ0
+ (2− α0)s +

(1− α1)λ1s + α1

(2− α1)λ1s + α1

s
κ

]
Tm(s)−

[
α0

λ0
+ (2− α0)s +

(1− α1)λ1s + α1

(2− α1)λ1s + α1

s
κ

]
CmQ(s) = 0 (26)

where Tm(s) = L[Tm(t)] and Q(s) = L[q(t)]. Solving for Tm(s) in Equation (26) results in

Tm(s) =

{
1− cvM2

H2

[
cvM2

H2 +
α0

λ0
+ (2− α0)s +

(1− α1)λ1s + α1

(2− α1)λ1s + α1

s
κ

]−1}
· CmQ(s) (27)

The inverse Laplace transform into Equation (27) leads to the general solution of
Equation (24). The result is

Tm(t) = Cm

[
q(Tv)−

∫ Tv

0
q(Tτ)

2

∑
j=1

Aje
xj(Tv−Tτ)dTτ

]
(28)

where

x1,2 = − (κM2Tλ1
+α0ϑ)(2−α1)+[(2−α0)κ+1]α1

2[(2−α0)(2−α1)κ+(1−α1)]Tλ1
±
√
{(κM2Tλ1

+α0ϑ)(2−α1)−[(2−α0)κ+1]α1}2
+4α1(κM2Tλ1

+α0ϑ)
2[(2−α0)(2−α1)κ+(1−α1)]Tλ1

(29)


A1 = κM2

(x1−x2)Tλ1

(2−α1)x1Tλ1
+α1

(2−α0)(2−α1)κ+(1−α1)

A2 = κM2

(x2−x1)Tλ1

(2−α1)x2Tλ1
+α1

(2−α0)(2−α1)κ+(1−α1)

(30)


Tv = cvt/H2

Tτ = cvτ/H2

Tλ1 = cvλ1/H2
(31)

ϑ = η1/η0 (32)



Appl. Sci. 2021, 11, 927 7 of 16

Substituting Equation (28) into Equation (23) produces the general solution of excess
pore-water pressure in convolution form. The result is

u(z, t) = q0

∞

∑
m=1

[
φ(Tv)−

∫ Tv

0
φ(Tτ)

2

∑
j=1

Aje
xj(Tv−Tτ)dTτ

]
Cm sin

(
M
H

z
)

(33)

where φ(t) is a dimensionless loading function given by

0 ≤ φ(t) =
q(t)
q0
≤ 1 (34)

and q0 = max[q(t)] is the maximum of time-dependent loading q(t).
The average degree of consolidation Up(t), which is defined by excess pore-water

pressure, can be calculated from the following formula:

Up(t) =

∫ H
0 [σ(z, t)− u(z, t)]dz

max
[∫ H

0 σ(z, t)dz
] (35)

Substituting Equations (8) and (33) into Equation (35) yields

Up(t) = φ(t)− 1
1 + ζ/2

∞

∑
m=1

Cm

M

[
φ(Tv)−

∫ Tv

0
φ(Tτ)

2

∑
j=1

Aje
xj(Tv−Tτ)dTτ

]
(36)

For instantaneous loading, φ(t) can be expressed as

φ(t) = φ(0) = 1 (37)

By substituting Equation (37) into Equations (33) and (36), the solutions for excess
pore-water pressures and average degree of consolidation can be obtained as follows

u(z, t) = q0

∞

∑
m=1

[
1−

2

∑
j=1

Aj

xj

(
exjTv − 1

)]
Cm sin

(
M
H

z
)

(38)

Up(t) = 1− 1
1 + ζ/2

∞

∑
m=1

Cm

M

[
1−

2

∑
j=1

Aj

xj

(
exjTv − 1

)]
(39)

For ramp loading, φ(t) can be expressed as

φ(t) =
{

t/t0, 0 ≤ t ≤ t0
1, t > t0

(40)

where t0 is the construction time of ramp loading. By substituting Equation (40) into
Equations (33) and (36), the solution for excess pore-water pressure and average degree of
consolidation can be obtained as the following expressions:

u(z, t) =


q0

∞
∑

m=1

[
Tv
Tv0

(
1 +

2
∑

j=1

Aj
xj

)
+ 1

Tv0

2
∑

j=1

Aj

x2
j

(
1− exjTv

)]
Cm sin

(
M
H z
)

, 0 ≤ t ≤ t0

q0
∞
∑

m=1

[
1 +

2
∑

j=1

Aj
xj

+ 1
Tv0

2
∑

j=1

Aj

x2
j

exjTv
(

e−xjTv0 − 1
)]

Cm sin
(

M
H z
)

, t > t0

(41)
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Up(t) =


Tv
Tv0
− 1

1+ζ/2

∞
∑

m=1

Cm
M

[
Tv
Tv0

(
1 +

2
∑

j=1

Aj
xj

)
+ 1

Tv0

2
∑

j=1

Aj

x2
j

(
1− exjTv

)]
, 0 ≤ t ≤ t0

1− 1
1+ζ/2

∞
∑

m=1

Cm
M

[
1 +

2
∑

j=1

Aj
xj

+ 1
Tv0

2
∑

j=1

Aj

x2
j

exjTv
(

e−xjTv0 − 1
)]

, t > t0

(42)

where Tv0 = cvt0/H2.
For sinusoidal loading, φ(t) shown in Figure 2 can be expressed as

φ(t) =
1
2

[
1 + sin

(
2πt
T

)]
(43)

where T is the period of sinusoidal loading.
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By substituting Equation (43) into Equations (33) and (36), the solutions for the excess
pore-water pressures and average degree of consolidation can be obtained as the following
expressions:

u(z, t) = q0

∞

∑
m=1

[
φ(t) +

1
2

2

∑
j=1

Aj

xj

(
1− exjTv + vj

)]
Cm sin

(
M
H

z
)

(44)

Up(t) = φ(t)− 1
1 + ζ/2

∞

∑
m=1

Cm

M

[
φ(t) +

1
2

2

∑
j=1

Aj

xj

(
1− exjTv + vj

)]
(45)

where

vj =
xj

(2π/TT)
2 + x2

j

[
2π

TT
cos
(

2π

TT
Tv

)
+ xj sin

(
2π

TT
Tv

)
− 2π

TT
exjTv

]
(46)

Using the method of generalized Fourier series, φ(t) for a general cyclic loading shown
in Figure 3, can be expressed as

φ(t) =
1
2

a0 +
∞

∑
n=1

[
an cos

(
2nπ

T
t
)
+ bn sin

(
2nπ

T
t
)]

(47)
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The Fourier coefficients are given by{
an = 2/T

∫ T
0 φ(t) cos(2nπt/T)dt, n = 0, 1, 2 · · ·

bn = 2/T
∫ T

0 φ(t) sin(2nπt/T)dt, n = 1, 2 · · ·
(48)

By substituting Equation (48) into Equations (33) and (36), the solutions for the excess
pore-water pressures and average degree of consolidation can be obtained as the following
expressions:

u(z, t) = q0

∞

∑
m=1

{
φ(t) +

2

∑
j=1

Aj

xj

[
1
2

a0

(
1− exjTv

)
+ ωj

]}
Cm sin

(
M
H

z
)

(49)

Up(t) = φ(t)− 1
1 + ζ/2

∞

∑
m=1

Cm

M

{
φ(t) +

2

∑
j=1

Aj

xj

[
1
2

a0

(
1− exjTv

)
+ ωj

]}
(50)

where

ωj =
∞
∑

n=1

xj

(2nπ/TT)
2+x2

j

{
an

[
xj cos

(
2nπ
TT

Tv

)
− 2nπ

TT
sin
(

2nπ
TT

Tv

)
− xje

xjTv
]
+ bn

[
2nπ
TT

cos
(

2nπ
TT

Tv

)
+ xj sin

(
2nπ
TT

Tv

)
− 2nπ

TT
exjTv

]}
(51)

5. Verification and Discussion
5.1. Verification against Some Special Cases

To verify the proposed solution, the following case study is used. The height of
soil layer, coefficient of vertical permeability of soil mass and unite weight of water are
assumed as follows: H = 6 m, γw = 10 kN/m3, kv = 1 × 10−7 m/s. The values of the
rheological parameter and fractional order for each viscoelastic model are given in Table 2.
Considering that external loading is applied instantly and total vertical stress in soil layer is
uniform with depth, Figure 4 illustrates the results of excess pore-water pressure obtained
from the proposed solutions and existing solutions of Xie et al. [13], Wang et al. [20] and
Terzaghi [9]. Figure 4a gives the distribution of excess pore-water pressure with depth,
whereas Figure 4b gives the change of excess pore-water pressure with time factor. It can
be obviously observed that the results calculated from the proposed solution show good
agreement with those from the existing solutions derived from standard four-element
model [13], standard Merchant model [20], standard Maxwell model [13] and linear elastic
model [9], respectively, for Case I, II, III and IV. Therefore, the results of the proposed
solution and some existing theories are identical. Moreover, the proposed solution is more
general to predict the consolidation behavior of viscoelastic soils.
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soils incorporating the Caputo-Fabrizio fractional derivative. One example is conducted 
for the ramp loading, and the other one is performed for the sinusoidal loading. In each 
example, the average degree of consolidation incorporating various parameters is ob-
tained from the proposed solution, and the results are presented as a function of the time 
factor. 

For the case of ramp loading, the proposed solution for average degree of consoli-
dation, which is given in Equation (42), has seven dimensionless parameters governing 
the consolidation process. These parameters can be classified into three categories, 
namely fractional orders (i.e., 0α and 1α ), loading parameters (i.e., ζ and v0T ), and rhe-
ological parameters (i.e.,κ ,ϑ and 1Tλ ). 0α  and 1α  reflect the influence of fractional or-
ders of independent fractional-derivative element and that in fractional-derivative Kel-
vin-Voigt body, which further represent the fluid characteristic of soil mass. Indeed, 
higher fractional orders indicate that fluid characteristic of soil mass is more obvious. ζ  
reflects the influence of distribution pattern of total vertical stress with depth. In practical 
engineering, total vertical stress is supposed to change linearly with depth according to 
three types of distribution patterns, i.e., rectangular pattern as 0ζ = , trapezoidal pattern 
as 0ζ >  and inverse trapezoidal pattern as 0ζ < . v0T  (= 2

v 0 /c t H ) reflects the influence 
of construction time 0t . When v0T =0, ramp loading will become instantaneous loading, 
and the solution for this condition is given in Equation (39). κ  (= 1 0/E E ) reflects the in-
fluence of modulus ratio between fractional-derivative Kelvin-Voigt body and the inde-
pendent spring. ϑ  (= 1 0/η η ) reflects the influence of viscosity coefficient ratio between 
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Table 2. Rheological parameter and fractional order for each viscoelastic model.

Case Solution
Rheological Parameter Fractional Order

E0(Eeff)
(MPa)

E1
(MPa)

η0
(MPa+d)

η1
(MPa+d) α0 α1

I
This study 12 12 200 200 1 1

standard four-element
model [13] 12 12 200 200 / /

II
This study 12 12 200 200 0 1

standard Merchant
model [20] 6 * 12 / 200 / /

III
This study 12 12 200 200 1 0

standard Maxwell
model [13] 8 * / 200 / / /

IV
This study 12 12 200 200 0 0

linear elastic model [9] 4.8 * / / / / /

* Effective modulus (Eeff) of independent spring, which is obtained by the expression in Table 1.

5.2. Discussion about the Consolidation Behavior

This part presents two examples to discuss the consolidation behavior of viscoelastic
soils incorporating the Caputo-Fabrizio fractional derivative. One example is conducted
for the ramp loading, and the other one is performed for the sinusoidal loading. In each
example, the average degree of consolidation incorporating various parameters is obtained
from the proposed solution, and the results are presented as a function of the time factor.

For the case of ramp loading, the proposed solution for average degree of consolida-
tion, which is given in Equation (42), has seven dimensionless parameters governing the
consolidation process. These parameters can be classified into three categories, namely
fractional orders (i.e., α0 and α1), loading parameters (i.e., ζ and Tv0), and rheological
parameters (i.e., κ, ϑ and Tλ1). α0 and α1 reflect the influence of fractional orders of in-
dependent fractional-derivative element and that in fractional-derivative Kelvin-Voigt
body, which further represent the fluid characteristic of soil mass. Indeed, higher fractional
orders indicate that fluid characteristic of soil mass is more obvious. ζ reflects the influence
of distribution pattern of total vertical stress with depth. In practical engineering, total
vertical stress is supposed to change linearly with depth according to three types of distri-
bution patterns, i.e., rectangular pattern as ζ = 0, trapezoidal pattern as ζ > 0 and inverse
trapezoidal pattern as ζ < 0. Tv0 (=cvt0/H2) reflects the influence of construction time
t0. When Tv0 = 0, ramp loading will become instantaneous loading, and the solution for
this condition is given in Equation (39). κ (=E1/E0) reflects the influence of modulus ratio
between fractional-derivative Kelvin-Voigt body and the independent spring. ϑ (=η1/η0)
reflects the influence of viscosity coefficient ratio between fractional-derivative Kelvin-
Voigt body and the independent fractional-derivative element. Tλ1 (=cvλ1/H2) reflects the
influence of viscosity coefficient of fractional-derivative Kelvin-Voigt body. By changing
the values of these parameters one by one, consolidation behavior of viscoelastic soil under
ramp loading is investigated in the following discussion.

Figure 5 illustrates the influence of fractional orders on consolidation behavior under
ramp loading. In Figure 5a, α0 changes from 0 to 1 while the other parameters remain
constant, and the changes of average degree of consolidation (Up) with time factor are pre-
sented. It can be clearly seen that Up-curves under different α0 intersect each other with the
increase in time factor Tv. Higher α0 delivers larger Up in the early stage, but smaller one at
a later stage. This indicates that for higher α0, excess pore-water pressure dissipates faster
in the beginning and then more slowly during consolidation process. Moreover, the ul-
timate value of Up gradually decreases with the increase in α0. In Figure 5b, α1 changes
from 0 to 1, and the other parameters remain constant. In comparison with the results ob-
tained under various α0, the results obtained under different α1 also share similar changing
features for Up-curves. The only difference is that for various α1, the ultimate value of
Up is the same with each other. These influences demonstrate that fractional orders i.e.,
fluid characteristic of soil mass has a significant impact on consolidation behavior. More
fluid soils consolidate initially rapidly but more slowly at a later stage, and even their
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ultimate degree of consolidation will become smaller, if fluid characteristic is embodied in
the independent fractional rheological element.
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construction time factor (i.e., v0T ) varies from 0 to 1, whereas the other parameters re-
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Figure 5. Influence of fractional orders on consolidation behavior under ramp loading: (a) influence of α0 and (b) influence
of α1.

Figure 6 shows the influence of loading parameters on consolidation behavior un-
der ramp loading. In Figure 6a, ζ changes from −0.5 to 0.5, and the other parameters
remain constant. Herein three Up-curves, respectively, are corresponding to three types
of distribution patterns of total vertical stress; that is, inverse trapezoidal pattern (ζ < 0),
rectangular pattern (ζ = 0) and trapezoidal pattern (ζ > 0). It can be clearly observed
that the distribution pattern of total vertical stress has an important effect on the consoli-
dation behavior. Inverse trapezoidal pattern brings about the most rapid dissipation of
excess pore-water pressure; trapezoidal pattern results in the slowest dissipation of excess
pore-water pressure; and under rectangular pattern, the dissipation of excess pore-water
pressure falls in between them. During the consolidation process, the differences between
three Up-curves initially increase and reach a maximum at a given time, and then gradually
decrease and finally disappear with the increase in time. Figure 6b illustrates the changes of
Up with time factor under various construction times. The construction time factor (i.e., Tv0)
varies from 0 to 1, whereas the other parameters remain constant. It can be obviously
observed that larger construction time slow down the dissipation of excess pore-water
pressure (i.e., reduce Up) in the early stage, and then the difference between Up-curves of
various construction times decrease gradually as time increases.
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of Tv0.

Figure 7 illustrates the influence of rheological parameters on consolidation behavior
under ramp loading. The dimensionless parameters (i.e., κ, ϑ and Tλ1) varies from 0.1 to
10 one by one, whereas the other parameters remain constant. As observed in Figure 7a,
the higher the modulus ratio (i.e., modulus of Kelvin-Voigt body is larger), the faster
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the dissipation of excess pore-water pressure. Figure 7b indicates that higher viscosity
coefficient ratio (i.e., viscosity coefficient of independent fractional-derivative element is
smaller) brings about slower dissipation of excess pore-water pressure, and decrease the
ultimate consolidation degree as well. Figure 7c shows that Up-curves under different
Tλ1 intersect each other with the increase in time factor Tv. Higher Tλ1 (i.e., the viscosity
coefficient of Kelvin-Voigt body is larger) delivers faster dissipation of excess pore-water
pressure in the early stage, but more slowly one at a later stage.
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For the case of sinusoidal loading, Equation (45) for average degree of consolidation
also has seven governing parameters. All of them are the same as those for the case of
ramp loading except the loading parameter TT(=cvT/H2), which reflects the influence of
the period (T) of sinusoidal loading on consolidation behavior. By changing the values
of these parameters individually while holding the others constant, the consolidation
behavior of fractional viscoelastic soils under sinusoidal loading is investigated in the
following discussion. Figures 8–10 illustrate the changes of average degree of consolidation
(Up) with the increase in time factor (Tv). It can be observed that the change of Up under
sinusoidal loading is a vibrant process. In each period, Up maximizes at the beginning of
unloading stage, whereas minimizes at the beginning of the next loading stage. Moreover,
the maximum and minimum of Up gradually become stable with the increase in time.
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Figure 8 illustrates the influence of fractional orders on consolidation behavior under
sinusoidal loading, where α0 and α1 individually vary from 0 to 1, whereas the other
parameters remain constant. As observed in Figure 8a,b, Up curves under various fractional
orders intersect each other with the increase in time factor Tv. Higher fractional orders
result in faster dissipation of excess pore-water pressure in the early stage, but slower one
at a later stage. Within each period, the relative variation of Up becomes larger with the
increase in fractional orders. Moreover, increasing α0 (i.e., fractional order of independent
fractional rheological element) gradually decreases the ultimate consolidation degree.
However, α1 (i.e., fractional order of Kelvin-Voigt body) has no influence on the ultimate
consolidation degree.

Figure 9 shows the influence of loading parameters on consolidation behavior under
sinusoidal loading. ζ varying from−0.5 to 0.5 and TT varying from 0.05 to 0.20, respectively,
are taken for the investigations in Figure 9a,b. As observed in Figure 9a, the distribution
pattern of total vertical stress has a noteworthy effect on the change of Up and its relative
variation within each period. Inverse trapezoidal pattern (ζ < 0) delivers the fastest
dissipation of excess pore-water pressure as well as the largest relative variation of Up
within each period; trapezoidal pattern (ζ > 0) brings about the slowest dissipation of
excess pore-water pressure as well as the smallest relative variation of Up within each
period; and under rectangular pattern (ζ = 0), the dissipation of excess pore-water pressure
and the relative variation of Up fall in between those of two aforementioned patterns.
During the consolidation process, the differences between three Up-curves initially go up
to a maximum and then gradually decrease as the time increases. Figure 9b shows that
higher period (i.e, lower frequency) delivers a larger relative variation of Up within each
period, but the period has no influence on the stable value of Up.

Figure 10 illustrates the influence of rheological parameters on consolidation behavior
under sinusoidal loading. The conditions that κ, ϑ and Tλ1 individually varying from 0.1
to 10 are taken for the investigations. As observed in Figure 10a, higher modulus ratio
results in faster dissipation of excess pore-water pressure in the early stage of consolidation
process, and the influence of modulus ratio on the change of Up gradually reduces with
the increase in time. Figure 10b demonstrates that higher viscosity coefficient ratio delivers
slower dissipation of excess pore-water pressure as well as smaller ultimate consolidation
degree. This influence characteristic is the same as the result for the case of ramp loading.
Figure 10c shows that higher Tλ1 brings about faster dissipation of excess pore-water
pressure in the beginning of consolidation process, and then the difference of Up-curves
gradually decreases with the increase in time.

6. Conclusions

In order to capture the viscoelastic behavior of the soils, this paper has introduced the
Caputo-Fabrizio fractional derivative to propose a novel four-element fractional-derivative
model, and one-dimensional consolidation model has been further established to predict
the consolidation behavior of viscoelastic soils. A series of analytical solutions have been
derived to calculate the excess pore-water pressure and the average degree of consolidation.
A comparison for several special cases has been given to verify the correctness of the
proposed solutions, and two examples have been presented to study the consolidation
behavior of the viscoelastic soils. The results show that the proposed solutions agree
well with the existing theories. When the fractional orders are equal to zero and/or
one, the four-element fractional-derivative model will reduce to several standard models,
and particularly it allows a great convenience for practical application because of its
generality. The fractional orders, loading parameters and rheological parameters have
significant influences on the consolidation behavior. Higher fractional order or viscosity
coefficient of Kelvin-Voigt body delivers faster dissipation excess pore-water pressure in
the early stage, but slower one at a later stage. Inverse trapezoidal pattern of total vertical
stress brings about the fastest dissipation of excess pore-water pressure, and trapezoidal
pattern results in the slowest one. The consolidation is accelerated with the increase in
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modulus ration, while slowed down with the increase in viscosity coefficient ratio as well as
construction time. The relative variation of consolidation degree under sinusoidal loading
becomes larger as the period increases.
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