Automatic Detection of Linear Thermal Bridges from Infrared Thermal Images Using Neural Network
Abstract
:1. Introduction
2. Literature Review
3. Thermal Bridge Detection Method Using Neural Network
3.1. Thermal Anomaly Area Clustering
3.1.1. Temperature Clustering
3.1.2. Thermal Anomaly Area Segmentation
3.1.3. Thermal Anomaly Clustering
3.2. Feature Extraction
3.2.1. Data Distribution Linearity
3.2.2. Complexity of Data Boundaries
3.3. Thermal Bridge Modeling
4. Experimental Results
4.1. Collection of Thermal Bridge Data
4.2. Evaluation Metrics
4.3. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- ISO 10211. Thermal Bridges in Building Construction—Heat Flows and Surface Temperatures—Detailed Calculations. 2007. Available online: https://www.iso.org/standard/40967.html (accessed on 19 January 2021).
- Quinten, J.; Feldheim, V. Dynamic modelling of multidimensional thermal bridges in building envelopes: Review of existing methods, application and new mixed method. Energy Build. 2016, 110, 284–293. [Google Scholar] [CrossRef]
- Erhorn-Kluttig, H.; Erhorm, H. Impact of Thermal Bridges on the Energy Performance of Buildings. 2009. Available online: https://www.buildup.eu/en/practices/publications/impact-thermal-bridges-energy-performance-buildings (accessed on 19 January 2021).
- Theodosiou, T.G.; Papadopoulos, A.M. The impact of thermal bridges on the energy demand of buildings with double brick wall construction. Energy Build. 2008, 40, 2083–2089. [Google Scholar] [CrossRef]
- Alhawari, A.; Mukhopadhyaya, P. Thermal bridges in building envelopes-An overview of impacts and solutions. Int. Rev. Appl. Sci. Eng. 2018, 9, 31–40. [Google Scholar] [CrossRef]
- Theodosiou, T.; Tsikaloudaki, K.; Kontoleon, K.; Giarma, C. Assessing the accuracy of predictive thermal bridge heat flow methodologies. Renew. Sustain. Energy Rev. 2021, 136, 1–11. [Google Scholar] [CrossRef]
- Baldinelli, G.; Bianchi, F.; Rotili, A.; Costarelli, D.; Seracini, M.; Vinti, G.; Asdrubali, F.; Evangelisti, L. A model for the improvement of thermal bridges quantitative assessment by infrared thermography. Appl. Energy 2018, 211, 854–864. [Google Scholar] [CrossRef]
- Asdrubali, F.; Baldinelli, G.; Bianchi, F.; Costarelli, D.; Rotili, A.; Seracini, M.; Vinti, G. Detection of thermal bridges from thermographic images by means of image processing approximation algorithms. Appl. Math. Comput. 2018, 317, 160–171. [Google Scholar] [CrossRef]
- Masri, Y.E.; Rakha, T. A scoping review of non-destructive testing (NDT) techniques in building performance diagnostic inspections. Constr. Build. Mater. 2020, 265, 1–12. [Google Scholar] [CrossRef]
- Kirimtat, A.; Krejcar, O. A review of infrared thermography for the investigation of building envelopes: Advances and prospects. Energy Build. 2018, 176, 390–406. [Google Scholar] [CrossRef]
- Kylili, A.; Fokaides, P.A.; Christou, P.; Kalogirou, S.A. Infrared thermography (IRT) applications for building diagnostics: A review. Appl. Energy 2014, 134, 531–549. [Google Scholar] [CrossRef]
- Garrido, I.; Lagüela, S.; Arias, P.; Balado, J. Thermal-based analysis for the automatic detection and characterization of thermal bridges in buildings. Energy Build. 2018, 158, 1358–1367. [Google Scholar] [CrossRef]
- Fox, M.; Goodhew, S.; Wilde, P.D. Building defect detection: External versus internal thermography. Build. Environ. 2016, 105, 317–331. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.; Wang, L.; Lu, Y. Identifying cluster centroids from decision graph automatically using a statistical outlier detection method. Neurocomputing 2019, 329, 348–358. [Google Scholar] [CrossRef]
- Yang, C.; Sun, Y.; Ladubec, C.; Liu, Y. Developing machine learning-based models for railway inspection. Appl. Sci. 2021, 11, 13. [Google Scholar] [CrossRef]
- Tong, K.; Wang, Z.; Si, L.; Tan, C.; Li, P. A novel pipeline leak recognition method of mine air compressor based on infrared thermal image using IFA and SVM. Appl. Sci. 2020, 10, 5991. [Google Scholar] [CrossRef]
- Andoga, R.; Fozo, L.; Schrötter, M.; Ceškovi, M.; Szabo, S.; Bréda, R.; Schreiner, M. Intelligent thermal imaging-based diagnostics of turbojet engines. Appl. Sci. 2019, 9, 2253. [Google Scholar] [CrossRef] [Green Version]
- Henry, C.; Poudel, S.; Lee, S.; Jeong, H. Automatic detection system of deteriorated PV modules using drone with thermal camera. Appl. Sci. 2020, 10, 3802. [Google Scholar] [CrossRef]
- Fernández, A.; Usamentiaga, R.; Arquer, P.; Fernández, M.A.; Fernández, D.; Carús, J.L.; Fernández, M. Robust detection, classification and localization of defects in large photovoltaic plants based on unmanned aerial vehicles and infrared thermography. Appl. Sci. 2020, 10, 5948. [Google Scholar] [CrossRef]
- Szrek, J.; Wodecki, J.; Błazej, R.; Zimroz, R. An inspection robot for belt conveyor maintenance in underground mine—Infrared thermography for overheated idlers detection. Appl. Sci. 2020, 10, 4984. [Google Scholar] [CrossRef]
- Garg, G.; Prasad, G.; Coyle, D. Gaussian mixture model-based noise reduction in resting state fMRI data. J. Neurosci. Methods 2013, 215, 71–77. [Google Scholar] [CrossRef]
- Li, K.; Ma, Z.; Robinson, D.; Ma, J. Identification of typical building daily electricity usage profiles using Gaussian mixture model-based clustering and hierarchical clustering. Appl. Energy 2018, 231, 331–342. [Google Scholar] [CrossRef]
- Ester, M.; Kiregel, H.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. KDD-96 Proc. 1996, 96, 226–231. [Google Scholar]
- Schubert, E.; Sander, J.; Ester, M.; Kriegel, H.P.; Xu, X. DBSCAN revisited, revisited: Why and how you should (still) use DBSCAN. ACM Trans. Database Syst. 2017, 42, 1–21. [Google Scholar] [CrossRef]
- Czerniawski, T.; Sankaran, B.; Nahangi, M.; Haas, C.; Leite, F. 6D DBSCAN-based segmentation of building point clouds for planar object classification. Automat. Constr. 2018, 88, 44–58. [Google Scholar] [CrossRef]
- Yang, Z.; Cohen, F.S. Image registration and object recognition using affine invariants and convex hulls. IEEE Trans. Image Process. 1999, 8, 934–946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golnaraghi, S.; Zangenehmadar, Z.; Moselhi, O.; Alkass, S. Application of artificial neural network(s) in predicting formwork labour productivity. Adv. Civ. Eng. 2019, 2019, 1–11. [Google Scholar] [CrossRef] [Green Version]
- McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943, 5, 115–133. [Google Scholar] [CrossRef]
- Hijazi, A.; Al-Dahidi, S.; Altarazi, S. A novel assisted artificial neural network modeling approach for improved accuracy using small datasets: Application in residual strength evaluation of panels with multiple site damage cracks. Appl. Sci. 2020, 10, 8255. [Google Scholar] [CrossRef]
- Aamior, M.; Tolouei-Rad, M.; Vafadar, A.; Raja, M.N.A.; Giasin, K. Performance analysis of multi-spindle drilling of AI2024 with TiN and TiCN coated drills using experimental and artificial neural network technique. Appl. Sci. 2020, 10, 8633. [Google Scholar] [CrossRef]
- Xiao, R.; Li, K.; Sun, L.; Zhao, J.; Xing, P.; Wang, H. The prediction of liquid holdup in horizontal pipe with BP neural network. Energy Sci. Eng. 2020, 8, 2159–2168. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Dong, S.; Liu, Z.; He, Y.; Ai, F. Performance prediction of the centrifugal compressor based on a limited number of sample data. Math. Probl. Eng. 2019, 2019, 5954128. [Google Scholar] [CrossRef] [Green Version]
- Bekkari, N.; Zeddouri, A. Using artificial neural network for predicting and controlling the effluent chemical oxygen demand in wastewater treatment plant. Manag. Environ. Qual. Int. J. 2019, 30, 593–608. [Google Scholar] [CrossRef]
- ISO 6781. Thermal Insulation-Qualitative Detection of Thermal Irregularities in Building Envelopes—Infrared Method. 1983. Available online: https://www.iso.org/standard/13277.html (accessed on 19 January 2021).
- Garrido, I.; Lagüela, S.; Sfarra, S.; Madruga, F.J.; Arias, P. Automatic detection of moistures in different construction materials from thermographic images. J. Therm. Anal. Calorim. 2019, 138, 1649–1668. [Google Scholar] [CrossRef]
Title | Specification |
---|---|
Measurement range | −20 °C~+550 °C |
Accuracy | ±2 °C or ±2% |
Thermal sensitivity | 0.005 °C at 30 °C |
Wavelength range | 8~14 μm |
IR resolution | 320 × 240 pixels |
Case Number | Precision (%) | Recall (%) | F-Score (%) |
---|---|---|---|
1 | 94.52 | 71.46 | 81.39 |
2 | 89.62 | 94.44 | 91.97 |
3 | 85.33 | 91.69 | 88.39 |
4 | 78.12 | 86.64 | 82.16 |
5 | 75.97 | 99.08 | 86.00 |
6 | 94.93 | 89.54 | 92.12 |
7 | 96.60 | 73.68 | 83.60 |
8 | 99.25 | 91.81 | 95.38 |
Average | 89.29 | 87.29 | 87.63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, C.; Choi, J.-S.; Jang, H.; Kim, E.-J. Automatic Detection of Linear Thermal Bridges from Infrared Thermal Images Using Neural Network. Appl. Sci. 2021, 11, 931. https://doi.org/10.3390/app11030931
Kim C, Choi J-S, Jang H, Kim E-J. Automatic Detection of Linear Thermal Bridges from Infrared Thermal Images Using Neural Network. Applied Sciences. 2021; 11(3):931. https://doi.org/10.3390/app11030931
Chicago/Turabian StyleKim, Changmin, Jae-Sol Choi, Hyangin Jang, and Eui-Jong Kim. 2021. "Automatic Detection of Linear Thermal Bridges from Infrared Thermal Images Using Neural Network" Applied Sciences 11, no. 3: 931. https://doi.org/10.3390/app11030931
APA StyleKim, C., Choi, J. -S., Jang, H., & Kim, E. -J. (2021). Automatic Detection of Linear Thermal Bridges from Infrared Thermal Images Using Neural Network. Applied Sciences, 11(3), 931. https://doi.org/10.3390/app11030931