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Abstract: Detecting thermal bridges in building envelopes should be a priority to improve the thermal
performance of buildings. Recently, thermographic surveys are being used to detect thermal bridges.
However, conventional methods of detecting thermal bridges from thermal images rely on the
subjective judgment of audits. Research has been conducted to automatically detect thermal bridges
from thermal images to improve problems caused by such subjective judgment, but most of these
studies are still in the early stage. Therefore, this study proposes a linear thermal bridge detection
method based on image processing and machine learning. The proposed method includes thermal
anomaly area clustering, feature extraction, and an artificial-neural-network-based thermal bridge
detection. The proposed method was validated by detecting the thermal bridges in actual buildings.
As a result, the average precision, recall, and F-score were 89.29%, 87.29, and 87.63%, respectively.

Keywords: thermal bridge; infrared thermal image; image processing; neural network; building energy

1. Introduction

According to ISO 10211:2007, a thermal bridge is defined as “part of the building
envelope where the otherwise uniform thermal resistance is significantly changed by full or
partial penetration of the building envelope” [1]. Thermal bridges account for a significant
proportion of the heating load in buildings [2]. Previous studies have reported that thermal
bridges increase the heating load by up to 30% [3,4]. Thermal bridges not only increase
the amount of energy consumed to cool and heat buildings, but also lower the thermal
comfort of occupants because of cold outer walls [5] and cause serious problems, such
as condensation [6]. As described above, thermal bridges in building envelopes have
negative effects on the thermal performance of buildings, so detecting the location of these
thermal bridges helps to develop a strategy to retrofit building envelopes [7]. Therefore,
detecting thermal bridges in building envelopes should be a priority to improve the thermal
performance of buildings. Thermographic surveys are recently being used as a useful
method to detect thermal bridges in building envelopes [8]. Thermal anomalies, including
thermal bridges in buildings, affect the surface temperature of the envelope. An infrared
thermal imaging camera is a device that converts the radiation emitted by an object into
temperature and presents it in the form of images [9]. The infrared thermal images acquired
by a thermal imaging camera shows thermal anomalies caused by the surface temperature
differences in the envelope, and an audit can visually detect thermal defects in building
envelopes through these images [10,11]. In general, a thermographic survey proceeds as
follows. First, the auditor moves around the building and uses a thermal imaging camera
to check the temperature distribution of the building envelope. If the auditor finds areas
with abnormal temperature distribution in the thermal images, the auditor analyzes these
areas. During this analysis, the auditor generally uses experience and subjective judgment
to detect thermal bridges [12,13]. Therefore, as these results are significantly influenced by
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the auditor’s experience and subjective judgment, the auditor may either identify or fail to
detect actual thermal bridges.

Recently, several studies have been performed to automatically detect thermal bridges
from thermal images, to improve problems caused by reliance on auditors [8,12]. Previous
studies have shown that thermal bridges can be detected from thermal images, based on
thresholds such as the temperature difference and the shape of thermal bridges. However,
threshold-based methods produce good results in certain cases, but there are difficulties
in finding an optimized threshold applicable to all cases [14]. In the case of thermal
images of building envelopes, the objects displaying abnormal temperature are different
depending on the target and time of imaging. Furthermore, the thermal bridges in the
thermal images always change in temperature and shape, depending on the circumstances.
In such complicated situations, machine learning, rather than thresholds, can increase the
detection accuracy in various cases [15,16].

This study proposes a method for detecting linear thermal bridges from thermal
images based on machine learning. This article is structured as follows. Section 2 reviews
studies on detecting thermal anomalies from thermal images. Section 3 describes the
machine-learning-based thermal bridge detection method proposed in this study. Section 4
presents the results of applying this method to actual thermal images. Finally, Section 5
describes the conclusions of this study and future research.

2. Literature Review

Thermal imaging cameras were introduced to detect various thermal anomalies in
building envelopes via non-destructive methods. In recent years, several studies have been
performed to automatically detect thermal anomalies in building envelope by using image
processing, in addition to thermal imaging cameras. Asdrubali et al. [8] detected thermal
bridges from thermal images of specific areas, such as pillars and beam-pillar joints. This
study proposed a method for determining the threshold to distinguish the temperature
distribution in areas with normal and abnormal temperatures, to detect thermal bridges.
Garrido et al. [12] conducted a study to automatically detect thermal bridges from thermal
images by adding thresholds for geometric characteristics in addition to temperature
differences caused by thermal bridges. As a result of applying the proposed method to
thermal images, the precision, recall, and F-score were 55%, 68%, and 61%, respectively. As
presented above, previous studies showed that areas classified as thermal bridges from
thermal images can be recognized based on thresholds. However, there are difficulties
in selecting a commonly used threshold when using threshold-based methods. There are
also limitations in detecting and distinguishing thermal defects other than thermal bridges
within thermal images.

In addition to architecture, a wide variety of studies have been performed to auto-
matically detect problems, using thermal images in objects such as pipelines [16], turbojet
engines [17], photovoltaic module [18,19], and belt conveyors [20]. In particular, some of
these studies have proposed an intelligent method, such as machine learning, to increase
the accuracy of detection. Tong et al. [16] proposed a method using machine learning, to
detect leaks in pipelines. Thermal images of pipelines contain pipes and the background,
so the Otsu–Grabcut image segmentation algorithm was applied to segment only the
areas corresponding to pipes. Then, the Histogram of Oriented Gradient and Gray-Level
Co-Occurrence Matrix were extracted from the segmented thermal images, as features for
training. The extracted features were learned via a support vector machine. Through the
proposed method, the normal pipeline, leaking pipeline, worn pipeline, and the normal
valve were classified with an accuracy of 96.00%. Andoga et al. [17] proposed a method
using machine learning to detect defects in a turbojet engine. The Kohonen neural network
was applied to segment and recognize the defects. Through the proposed method, the
defects were classified with an accuracy of 91.8%. As described above, various studies are
being performed to apply image processing and machine learning techniques, to improve
the accuracy of recognizing defects from thermal images. Since each application has dif-
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ferent characteristics, each application requires a suitable method for segmenting images
and extracting features to apply machine learning. However, such methods have not been
proposed for thermal bridges in building structures.

3. Thermal Bridge Detection Method Using Neural Network

This study proposes a method for automatically detecting thermal bridges in building
envelopes from thermal images. Figure 1 shows the method proposed in this study.
First, the areas with thermal anomalies in the envelopes are clustered. Thermal anomaly
area clustering involves three processes. The first process is clustering according to the
temperature distribution, wherein areas with similar temperatures are considered as one
cluster. Second, only clusters considered to be abnormal temperature distributions are
segmented among the clusters with different temperature distributions. The results of
classifying thermal anomaly areas are considered one cluster, even if the physical distance is
distant, because clustering was performed by temperature distribution, as specified above.
In the third process, clustering according to distance is performed, to recognize physically
separated areas as different defects. The results of thermal anomaly area clustering allow us
to obtain physically separated clusters with an abnormal temperature distribution. Features
to detect thermal bridges are extracted from these individual clusters. Because thermal
bridges have long vertical or horizontal shapes, this study selected linear distribution and
complex boundaries as the features. After extracting the features, a pre-trained thermal
bridge detection model is used to recognize areas corresponding to thermal bridges within
the thermal image.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 3 of 14 
 

are being performed to apply image processing and machine learning techniques, to im-
prove the accuracy of recognizing defects from thermal images. Since each application has 
different characteristics, each application requires a suitable method for segmenting im-
ages and extracting features to apply machine learning. However, such methods have not 
been proposed for thermal bridges in building structures. 

3. Thermal Bridge Detection Method Using Neural Network 
This study proposes a method for automatically detecting thermal bridges in build-

ing envelopes from thermal images. Figure 1 shows the method proposed in this study. 
First, the areas with thermal anomalies in the envelopes are clustered. Thermal anomaly 
area clustering involves three processes. The first process is clustering according to the 
temperature distribution, wherein areas with similar temperatures are considered as one 
cluster. Second, only clusters considered to be abnormal temperature distributions are 
segmented among the clusters with different temperature distributions. The results of 
classifying thermal anomaly areas are considered one cluster, even if the physical distance 
is distant, because clustering was performed by temperature distribution, as specified 
above. In the third process, clustering according to distance is performed, to recognize 
physically separated areas as different defects. The results of thermal anomaly area clus-
tering allow us to obtain physically separated clusters with an abnormal temperature dis-
tribution. Features to detect thermal bridges are extracted from these individual clusters. 
Because thermal bridges have long vertical or horizontal shapes, this study selected linear 
distribution and complex boundaries as the features. After extracting the features, a pre-
trained thermal bridge detection model is used to recognize areas corresponding to ther-
mal bridges within the thermal image. 

 
Figure 1. Proposed thermal bridge detection method using neural network. Figure 1. Proposed thermal bridge detection method using neural network.



Appl. Sci. 2021, 11, 931 4 of 14

3.1. Thermal Anomaly Area Clustering
3.1.1. Temperature Clustering

Thermal anomalies in building envelopes, including thermal bridges, have a clear
temperature difference from normal areas. These characteristics are used to detect the
thermal anomalies of buildings through thermal images. Previous studies have confirmed
that the temperature distribution of normal areas and abnormal areas with thermal anoma-
lies follows a multi-modal Gaussian distribution [8,12]. The Gaussian Mixture Model
(GMM) is a clustering method that configures multiple Gaussian components, to perform
clustering [21]. Due to the nature of clustering based on Gaussian components, this study
applied GMM for clustering between similar temperature distributions.

The temperature clustering based on GMM, proposed in this study, is performed as
follows. First, clustering is performed by applying GMM with the temperature of each pixel
constituting the thermal image as input. As shown in Figure 2a, the results produce mixture
components with K Gaussian distributions. Figure 2a shows the temperature distribution
histogram for four mixture components. Figure 2b shows the location of each distribution
in the thermal image, and the colors between Figure 2a,b correspond to each other. As
shown in the figure, temperatures belonging to the same mixture component are regarded
as clusters with the same temperature characteristics. The Bayesian Information Criterion
(BIC) is applied to determine K, which represents the number of mixture components. BIC
is the most widely used method to determine the optimized K of GMM [22]. Since the
K-value to minimize BIC is the optimized K-value in GMM fitting, this study set the range
for finding the optimal K from 2 to 8 and selected the K-value with the lowest BIC value.
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Figure 2. Temperature area clustering based on Gaussian Mixture Model (GMM): (a) histogram of temperature and
(b) clustering result.

3.1.2. Thermal Anomaly Area Segmentation

Thermal images of building envelopes contain both areas with normal temperature
distributions and areas with abnormal temperature distributions. In general, areas with
normal temperature distributions occupy a large proportion within the thermal image, and
areas with abnormal temperature distributions cover a relatively small area. Based on this
assumption, this study segmented areas with abnormal temperature distributions based
on the temperature of each cluster.

As mentioned above, GMM-based clustering allows us to obtain the temperature of
the pixels included in each cluster. The average temperature in each cluster is calculated
by using the temperature of the pixels in each cluster. After calculating the average
temperature of each cluster, the number of pixels in each cluster is counted. The cluster
with the most pixels is regarded as the area corresponding to the normal outer wall.
As shown in Figure 3a, the clusters are distinguished with an abnormal temperature
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distribution by reflecting the season based on the average temperature µ2 of the cluster
with the most pixels. For example, during winter, the normal outer wall shows a relatively
lower temperature than areas with thermal anomalies, such as thermal bridges. Therefore,
in the case of thermal images measured in winter, clusters with an average temperature
higher than the average temperature of the cluster with the most pixels are classified
as abnormal areas. In terms of thermal images measured in summer, clusters with an
average temperature lower than the average temperature of the cluster with the most pixels
are classified as abnormal areas. Since the example in Figure 3 was measured in winter,
clusters with average temperatures (µ3 and µ4) higher than µ2, the average temperature of
the cluster with the most pixels, are classified as abnormal clusters. Figure 3b shows an
example of abnormal temperature areas segmentation.
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3.1.3. Thermal Anomaly Clustering

This study applied Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) [23], to segment physically separated clusters. DBSCAN is a density-based
clustering method that has been successfully applied in many real-world applications [24].
In particular, it is designed to find clusters in noisy data [25].

The segmentation process of abnormal area pixels by applying DBSCAN is as follows.
First, the pixels in the abnormal areas are converted into 2D coordinate values. The pixels
converted into 2D coordinate values have x and y coordinates, respectively. After selecting
a random starting point among the points converted into 2D coordinates, the neighboring
points located within a certain distance (ε) are identified from this starting point. If the
number of points within ε is equal to or greater than the minimum number of points
(MinPts), the corresponding point and neighboring point are considered as one cluster.
Then, the process is repeated for all the neighbors. If the number of neighboring points is
less than MinPts, the corresponding point is considered as noise. After repeating this for all
the neighbors, the procedure above is repeated for all the remaining points. Figure 4 below
shows the clustering process of pixels segmented as abnormal areas by applying DBSCAN.



Appl. Sci. 2021, 11, 931 6 of 14
Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 14 
 

 
Figure 4. Thermal anomaly clustering based on Density-Based Spatial Clustering of Applications with Noise (DBSCAN). 

3.2. Feature Extraction 
3.2.1. Data Distribution Linearity 

Thermal bridges in building envelopes are caused by structural insulation loss and 
mainly occur at the joints between wall–slab or wall–wall structures. Therefore, thermal 
images of the outer structure of buildings show long thermal bridges in a specific direc-
tion, such as the cross-sectional shape of slabs and walls. This study selected the ratio of 
the main axis in which data are distributed and the data perpendicular to the main axis as 
the first feature to reflect the linear shape of thermal bridges. Even if the shape of the 
thermal bridge is not vertical or horizontal in the thermal image, the feature proposed in 
this study can be applied robustly, because it calculates the main axis according to the 
distribution of data. 

To extract the features of the main axis and data distribution of the clusters seg-
mented above, a covariance matrix is calculated by using the 2D coordinates of the data 
included in each cluster. The covariance matrix is calculated as follows: 

Covariance	matrix = 	 1ܰ ሺ ܺ − തܺሻே
ୀଵ ሺ ܺ − തܺሻ் (1) 

where N is the number of points in each cluster, ܺ is the coordinates of the i-th point, 
and തܺ is the average of the coordinates of all the points in the cluster. 

The eigenvector and eigenvalue of each cluster can be obtained through decomposi-
tion of the covariance matrix. This eigenvector is the principal component vector, which 
shows the direction in which the variance is large in the distribution of the data, and the 
corresponding eigenvalue indicates the size of the variance in the that direction. This 
study extracted the first feature value ܨଵ by calculating the ratio of the eigenvalue corre-
sponding to the first eigenvector and the eigenvalue corresponding to the second eigen-
vector. The first feature is calculated as follows: ܨଵ =  ଵ (2)ߣଶߣ	

where ߣଵ is the eigenvalue corresponding to the first eigenvector, and ߣଶ is the eigen-
value corresponding to the second eigenvector. 

3.2.2. Complexity of Data Boundaries 
The thermal bridges in thermal images show simple trends similar to straight lines 

without complex boundaries in addition to linear shapes. This study proposes the ratio of 
actual data relative to the area surrounding individual clusters to extract features with 

Figure 4. Thermal anomaly clustering based on Density-Based Spatial Clustering of Applications with Noise (DBSCAN).

3.2. Feature Extraction
3.2.1. Data Distribution Linearity

Thermal bridges in building envelopes are caused by structural insulation loss and
mainly occur at the joints between wall–slab or wall–wall structures. Therefore, thermal
images of the outer structure of buildings show long thermal bridges in a specific direction,
such as the cross-sectional shape of slabs and walls. This study selected the ratio of the
main axis in which data are distributed and the data perpendicular to the main axis as the
first feature to reflect the linear shape of thermal bridges. Even if the shape of the thermal
bridge is not vertical or horizontal in the thermal image, the feature proposed in this study
can be applied robustly, because it calculates the main axis according to the distribution
of data.

To extract the features of the main axis and data distribution of the clusters segmented
above, a covariance matrix is calculated by using the 2D coordinates of the data included
in each cluster. The covariance matrix is calculated as follows:

Covariance matrix =
1
N

N

∑
i=1

(
Xi − X

)(
Xi − X

)T (1)

where N is the number of points in each cluster, Xi is the coordinates of the i-th point, and
X is the average of the coordinates of all the points in the cluster.

The eigenvector and eigenvalue of each cluster can be obtained through decomposition
of the covariance matrix. This eigenvector is the principal component vector, which
shows the direction in which the variance is large in the distribution of the data, and the
corresponding eigenvalue indicates the size of the variance in the that direction. This study
extracted the first feature value F1 by calculating the ratio of the eigenvalue corresponding
to the first eigenvector and the eigenvalue corresponding to the second eigenvector. The
first feature is calculated as follows:

F1 =
λ2

λ1
(2)

where λ1 is the eigenvalue corresponding to the first eigenvector, and λ2 is the eigenvalue
corresponding to the second eigenvector.

3.2.2. Complexity of Data Boundaries

The thermal bridges in thermal images show simple trends similar to straight lines
without complex boundaries in addition to linear shapes. This study proposes the ratio
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of actual data relative to the area surrounding individual clusters to extract features with
uncomplicated boundary surfaces. The features of the trend with complex data boundaries
proposed in this study are calculated as follows. First, the convex hull algorithm is applied
to calculate the area surrounding the individual clusters. The convex hull algorithm is
defined as a convex polygon that includes all the points in a binarized image [26]. The
convex hull algorithm is widely used to extract specific shapes within an image. Figure 5
below shows an example of applying convex hull in a 2D image. The line surrounding
the cluster represents the convex hull of that cluster, and the black shading represents the
points constituting the cluster.
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A convex polygon that contains the points constituting each cluster can be obtained by
calculating the convex hull. Based on the convex polygons, the area occupied by the convex
polygons constituting each cluster is calculated. Among the areas occupied by the convex
polygons, the proportion of the actual points depends on the distribution of the points in
the cluster. As shown in Figure 5a, in the case of thermal bridges, the actual points account
for a large proportion of the area of the convex polygon. However, in the case of clusters
that are not thermal bridges, the actual points account for only a small proportion of this
area, as shown in Figure 5b. Since each pixel has an area of 1 by 1, this study calculated
feature F2, which determines the complexity of data boundaries, as the number of pixels
relative to the area enclosed by a convex hull. The second feature is calculated as follows:

F2 =
Np

Ac
(3)

where Ac is the area of the convex polygon, and Np is the number of points in the cluster.

3.3. Thermal Bridge Modeling

The purpose of this study was to detect thermal bridges from thermal images, which
have morphologically distinct features that are slightly different from case to case, making
them difficult to detect by only using thresholds. An artificial neural network was applied
to achieve this purpose. Because of their ability to solve non-linear problems, artificial
neural networks (ANNs) are used in applications for predicting the relationship between
complex inputs and outputs including subjective judgment and experience [27].

The ANN is a method developed based on the behavior and structure of the human
brain [28]. The ANN is a mathematical model depicting biological neurons. A typical
ANN model consists of an input layer, an output layer, and a hidden layer [29]. Neurons
are arranged in each layer and fully connected with weights that affect results [30]. Each
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weight is defined in an optimization way to increase the accuracy in predicting target
values. For the non-linear feature of the transfer function between neurons, the ANN is
also good at solving the non-linear problems.

In the case of thermal images including thermal bridges, images of actual thermal
bridges must be obtained because there is no large-scale public database. Therefore, this
study constructed a structure for learning small datasets because of the lack of training
datasets for thermal-bridge modeling. The training process was performed by extracting
features from images of previously collected thermal bridges and other thermal-anomaly
areas. This study applied a backpropagation neural network, which is appropriate for
processing small amounts of data to train the ANN [31]. Among the training parameters,
the number of hidden layers has a significant influence on prediction results [32]. This
study set the number of hidden layers to one by considering the number of input and
output layers. The sigmoid function was applied as the activate function of the hidden
layer. Figure 6 shows the structure of the ANN in this study. The datasets for training were
randomly divided into training at 70%, validation at 15%, and testing at 15%, which is a
good ratio for small datasets [33].
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4. Experimental Results
4.1. Collection of Thermal Bridge Data

Thermal images of old houses were acquired to develop a model for classifying
thermal bridges. Thermal images were taken when environmental conditions suggested
by ISO 6781 [34] were satisfied. The images were taken at dawn before sunrise because
thermal images can be influenced by solar radiation. In addition, the images were taken
in winter because a high temperature difference between the indoor and outdoor may
distinguish thermal bridges from other normal thermal images. Actually, the average
outdoor and indoor temperature were −1.02 and 12.78 ◦C, respectively. This satisfied the
indoor and outdoor temperature difference of 10 ◦C or more, following ISO 6781. Finally,
all the measurements were achieved with a wind speed of less than 5 m/s. This study
chose the conventional walk-through thermal imaging method to take the images. In this
method, a person walks around the target to check the building envelope with thermal
images and takes images of thermal anomalies. In this study, the thermographer walked
around the target building and took images of all the thermal anomalies in the building
envelope, even if they were not thermal bridges. In the conventional method, the audit
records while moving around the building and interprets the pattern based on the apparent
temperature [13]. Therefore, in this study, the apparent temperature was measured by
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using default parameters for emissivity and reflected temperature. This study used a Testo
882 thermal imaging camera, the specifications of which are shown in Table 1.

Table 1. Specification of infrared thermal imaging camera used to collect thermal bridge data.

Title Specification

Measurement range −20 ◦C~+550 ◦C
Accuracy ±2 ◦C or ±2%

Thermal sensitivity 0.005 ◦C at 30 ◦C
Wavelength range 8~14 µm

IR resolution 320 × 240 pixels

After taking the thermal images, the thermal bridges and the other anomalies were
classified, cropped, and used as data for training. This study acquired a total of 134 thermal
images for thermal bridge modeling. These thermal images contain thermal anomaly
areas. A total of 151 thermal bridge cases and 223 other cases were cropped. All of these
data were used for thermal bridge modeling. In addition to the thermal images used for
thermal bridge modeling, eight more thermal images were acquired and used to validate
the methodology proposed in this study.

4.2. Evaluation Metrics

To validate the methodology proposed in this study, the results were compared with
the ground truth. To create the ground truth, the author checked each thermal image and
designated the areas corresponding to thermal bridges. The comparison between the ther-
mal bridge detection results and the ground truth was measured through precision, recall,
and F-score. These three metrics have been used to validate methodologies for detecting
thermal anomalies in thermal images, including thermal bridges [12] and moisture [35].
All three metrics are calculated as true positive, false positive, and false negative. True
positive refers to the number of pixels predicted as thermal bridges that are actual thermal
bridges. False positive refers to the number of pixels predicted as thermal bridges that are
not actual thermal bridges. False negative refers to the number of pixels predicted not to be
thermal bridges that are actual thermal bridges. Precision, recall, and F-score are calculated
as follows:

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F − score = 2 × Precission × Recall
Precision + Recall

(6)

where TP is true positive, FP is false positive, and FN is false negative.

4.3. Results

Figure 7 shows the thermal images, segmentation results, and thermal bridge detection
results used for validation. The segmentation results are the results of performing GMM-
based clustering, thermal anomaly area detection, and DBSCAN-based clustering. In
Figure 7, each cluster is displayed in different colors, and the pixels of the same color are in
the same cluster. When the thermal images only displayed a wall, as in Cases 3, 6, and 8,
the areas corresponding to thermal bridges were segmented well. However, as shown in
Cases 1, 2, 4, 5, and 7, if a thermal image contains areas that appear to be thermal defects
due to low thermal performance, such as windows and walls, the image contains clusters
that are both thermal bridges and not thermal bridges.
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When there are clusters that are thermal bridges and not thermal bridges, clusters
corresponding to thermal bridges can be classified by performing machine-learning-based
classification after feature extraction. Figure 7c shows the thermal bridge detection results
for each case. In the detection results, the areas highlighted in green represent the thermal
bridge areas detected by the proposed method. As shown in the results, when there is
only one thermal bridge, as in Case 1, Case 2, Case 3, Case7, and Case 8, only one cluster
was detected as a thermal bridge in the detection results. In Case 6, where there are two
thermal bridges, two clusters were detected as thermal bridges. However, in Case 4 and
Case 5, the areas where heat was generated because of the window frame and heating pipe
were classified as thermal bridges, but they actually were not thermal bridges. This was
because these areas had similar shapes as thermal bridges. The results below show that the
thermal bridge detection method proposed in this study can automatically detect multiple
thermal bridges, even when thermal images contain patterns that appear to be thermal
defects other than thermal bridges.

Table 2 shows the comparison with the ground truth after applying the proposed
method to eight thermal images. The results vary from case to case, but the maximum
and minimum precisions were 99.25% and 75.97%, respectively. In terms of cases with low
precision, several pixels were recognized as thermal bridges that were not actual thermal
bridges, as shown in Cases 4 and 5 in Table 2. This is because the upper frame of the window
and the outer wall area adjacent to a hot water pipe, which displayed similar shapes as
thermal bridges, were recognized as thermal bridges. The maximum and minimum recalls
were 99.08% and 71.46%, respectively. In Case 1, which has a low recall, there are many
areas of pixels that are not recognized as thermal bridges, even though they are thermal
bridges. This is because they were segmented into different clusters due to temperature
differences during the segmentation process. In terms of F-Score, the minimum score was
81.39%, and all the other cases were more than 80%. The average precision, recall, and
F-score of the eight thermal images used for validation were 89.29%, 87.29%, and 87.63%,
respectively. Although the validation targets are different, the detection results showed
improvement, compared to the results of previous studies, as follows: precision, 55%; recall,
68%; and F-score, 61%.

Table 2. Precision, recall, and F-score of the proposed thermal bridge detection method.

Case Number Precision (%) Recall (%) F-Score (%)

1 94.52 71.46 81.39
2 89.62 94.44 91.97
3 85.33 91.69 88.39
4 78.12 86.64 82.16
5 75.97 99.08 86.00
6 94.93 89.54 92.12
7 96.60 73.68 83.60
8 99.25 91.81 95.38

Average 89.29 87.29 87.63
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5. Conclusions

This study proposed a new method for detecting linear thermal bridges from thermal
images, using image processing and ANN. After performing GMM-based clustering, using
temperature, the average temperature of each cluster was calculated, to compare with
normal walls. Based on winter measurements, areas with higher temperatures than normal
walls were classified as thermal anomaly areas, and DBSCAN was applied to divide
the thermal anomaly areas into individual defects, to perform density-based clustering.
Subsequently, feature values reflecting morphological characteristics of thermal bridges
were extracted from each cluster. Based on the extracted feature values, only thermal
bridges were classified by using a trained model, using ANN. A field experiment was
performed to validate the thermal bridge detection method proposed in this study. Thermal
images were taken of buildings with actual thermal bridges, and the precision, recall, and
F-score were calculated. As a result, the average precision, recall, and F-score were 89.29%,
87.29%, and 87.63%, respectively.

The contributions of this study are as follows. First, it proposed a feature extraction
method that reflects the morphological characteristics of thermal bridges. The proposed
features can be used in other fields that require feature extraction of objects with linear or
flat shapes, in addition to thermal bridges. Second, this study proposed a thermal bridge
detection process using machine learning. Finally, from a practical aspect, the method
proposed in this study secures objectivity by automatically detecting thermal bridges,
which relied on subjective judgment in conventional audits. This study proposed a method
for detecting only thermal bridges among various thermal defects in building envelopes.
Further research will be conducted to propose a method to detect defects other than thermal
bridges.
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