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Abstract: DC/DC converters are widely used in photovoltaic (PV) systems to track the maximum
power points (MPP) of a photovoltaic generator (PVG). The variation of solar radiation (G) and PV
cells temperature (T) affect the power efficiency of these DC/DC converters because they change the
MPP, thus a sizing adaptation of the component values in these DC/DC converters is needed. Power
loss in the inductor due to core saturation can severely degrade power efficiency. This paper proposes
a new method that allows to adapt the inductor values according to the variable output power of
the PV array in order to minimize losses and improve the converter power efficiency. The main
idea is to replace the DC/DC inductor with a coupled inductor where the DC/DC inductor value
is adjusted through an additional winding in the magnetic core that modulates the magnetic field
inside it. Low current intensities from the PVG supply this winding through a circuit controlled by a
fuzzy logic controller in order to regulate the second winding current intensity. Experimental results
show a significant improvement of the power efficiency of the proposed solution as compared to a
conventional converter.

Keywords: PVG; boost converter; inductor/coupled inductor; hysteresis B-H curve; magnetic core;
fuzzy logic; boost converter efficiency

1. Introduction

It is very apparent that the interest in photovoltaic power generation has strongly
increased in recent years. Numerous studies and works have been done on this thematic to
improve their production [1]. A non-linear I = f(V) curve characterizes the photovoltaic
generators (PVG) with different points of maximum power (see Figures 1 and 2), [1,2].

PV cells temperature (T) and solar radiation (G) influence this characteristic [3–5],
which change the electrical power produced by such PVG. To remedy the latter problem,
specific control techniques were proposed and developed from 1968 until now in such a
manner that these PVG produce their maximum electrical power [1–7].

This type of control is called Maximum Power Point Tracking (MPPT) where the main
function provided by the designed control laws is to ensure to extract the maximum power
point (MPP) all the time. This is generally assured by DC/DC converters [8–13] (see Figure 1).
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Figure 1. Adaptation block as a power interface between a photovoltaic generator(PVG) and load, 
to transfer the maximum power. 

 
Figure 2. (a) Direct electrical connection between a PV generator and a load; (b) different operating 
points for two levels of radiation with different loads. 

Many MPPT strategies have been proposed in the literature to extract the maximum 
power for the PV systems [1,2,7] ranging from classical techniques like perturb and ob-
serve (P&O) and Incremental Conductance (IC) [3] to artificial and intelligent techniques 
[14]. 

Generally, the DC/DC converters element sizing is made for a fixed and known 
power supply. The DC/DC power output and the DC/DC power efficiency are high only 
for a good sizing of these elements [8–18]. The main element hardly affecting these two 
parameters is the power loss due to core saturation of the inductor. The sizing of inductor 
value in a DC/DC converter becomes difficult for a variable power supply, as in the case 
of a PV system under different levels of radiation and temperature change [2,8]. 

Most of the proposed modifications and improvements are applicable for a converter 
with fixed nominal values. In practice another problem appears on the power efficiency 
of the converter in PV applications under varying conditions and this issue is not well 
addressed in the literature. To the best of our knowledge, the efficiency improvement of 
the DC/DC converter for PV applications in practice is strongly related to the structure 
and the size of the inductor of the converter. In [12] a micro-scale topology was applied 
for a MPPT DC/DC converter without using an inductor but it is applicable only for very 
low power systems. 

In this paper, the main purpose is to improve the efficiency of a boost converter for 
PV applications and to reduce core losses in the inductor. In particular, a new DC/DC 
Boost converter topology using a variable inductor is proposed and tested in a PV appli-
cation in order to maximize the power efficiency and minimize power losses. 

In [16] a solution is proposed to improve the power efficiency for a buck converter 
with a suitable inductor using a coupled inductor. In the proposed topology, only simu-
lation results were presented without carrying out experimental validation. The purpose 
of this paper is to experimentally validate the same idea and extend it for a boost converter 
in PV systems. 

Figure 1. Adaptation block as a power interface between a photovoltaic generator(PVG) and load,
to transfer the maximum power.
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Many MPPT strategies have been proposed in the literature to extract the maximum
power for the PV systems [1,2,7] ranging from classical techniques like perturb and observe
(P&O) and Incremental Conductance (IC) [3] to artificial and intelligent techniques [14].

Generally, the DC/DC converters element sizing is made for a fixed and known
power supply. The DC/DC power output and the DC/DC power efficiency are high only
for a good sizing of these elements [8–18]. The main element hardly affecting these two
parameters is the power loss due to core saturation of the inductor. The sizing of inductor
value in a DC/DC converter becomes difficult for a variable power supply, as in the case of
a PV system under different levels of radiation and temperature change [2,8].

Most of the proposed modifications and improvements are applicable for a converter
with fixed nominal values. In practice another problem appears on the power efficiency
of the converter in PV applications under varying conditions and this issue is not well
addressed in the literature. To the best of our knowledge, the efficiency improvement of
the DC/DC converter for PV applications in practice is strongly related to the structure
and the size of the inductor of the converter. In [12] a micro-scale topology was applied for
a MPPT DC/DC converter without using an inductor but it is applicable only for very low
power systems.

In this paper, the main purpose is to improve the efficiency of a boost converter for PV
applications and to reduce core losses in the inductor. In particular, a new DC/DC Boost
converter topology using a variable inductor is proposed and tested in a PV application in
order to maximize the power efficiency and minimize power losses.

In [16] a solution is proposed to improve the power efficiency for a buck converter with
a suitable inductor using a coupled inductor. In the proposed topology, only simulation
results were presented without carrying out experimental validation. The purpose of this
paper is to experimentally validate the same idea and extend it for a boost converter in PV
systems.

The paper is structured as follows. In Section 2 we recall the PVG characteristics
and how to connect it to a load through a DC/DC converter and the operation of a
boost converter. The proposed topology and analysis of the coupled inductor is also
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presented. Simulation and experimental result of the proposed boost converter for PV
applications compared to a conventional topology are detailed. Section 4 is devoted to
analysis, discussions and comments of the proposed solution. Finally, Section 5 reports
concluding remarks.

2. Materials and Methods

It is well known that the PVG power production has a strong variation caused by solar
radiation changes, temperature changes, or load variation, as summarized in Figure 2 [2,3].

2.1. Inductor Sizing in a Conventional Boost Converter for PV Applications

As we can see from Figure 2, the operating point of the PVG strongly depends on
the solar radiation (G) and the characteristics of the associated load (R1, R2, R3, and R4
in Figure 2) [2,3,11]. For a given radiation value, there is a particular operating point,
called “Maximum Power Point” (MPP), noted MPP1 and MPP2 in Figure 2, which leads
to getting the maximum power from the PVG. We can observe that there is a difference
between the MPP that the PVG can produce and the power transferred to the load in direct
connection mode.

The commonly adopted solution to solve this problem is to introduce a static converter
to force the PVG working in its MPP, which acts like a source-load adapter [3,15,16],
as shown in Figure 1.

The action to the DC/DC converter to track the maximum power point is delivered by
the MPPT controller for any climate condition. The converter structure is chosen depending
on the load and the generated PVG voltage. Among the various methods adopted to get
MPP, the P&O method is widely adopted. It requires the measurement of the PVG output
voltage Vpv and output current Ipv. It detects the MPP and gives the output voltage where
the power is maximum [1,6].

In our case, we use a boost topology controlled by the P&O_MPPT controller to ensure
the adaptation between the load and the PV generator. The electric circuit of the boost
converter is shown in Figure 3. The operation of the boost converter in the continuous
conduction mode is described in detail in the Appendix A.
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The sizing of the components in the boost converter depends on the input voltage
Vi, and the input current Ii. The components to be sized and selected accordingly are the
inductance of the inductor L, the diode D, the values of capacitors C1 and C2, and the
switching transistor K. When these components are properly chosen, the energy loss can
be neglected [18,19]. The element mainly influencing the boost converter losses is the
inductor because its sizing depends directly on the input voltage as well as on the input
current. In the case of PV applications, the voltage and current changes depend on climate
parameters G and T.
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2.2. Proposed DC/DC Converter

The sizing of conventional DC/DC converter components is heavily based on the
nominal input power. In Table 1, a pre-sizing of inductor values for different current values
and duty cycle values is given by Equation (A13) in the Appendix A. It can be observed
that the optimal value of the inductor heavily varies according to the input current and to
the duty cycle value. It is clear that the duty cycle changes because of the MPPT controller.
In Table 1, the values of the table are calculated using Vi = 42 V (the value of Vi corresponds
to the nominal MPP value of a SANYO HIP-215NKHE5 PV panel, which will be used
in experimental measurements) with three values of duty cycle (d = 0.1, 0.5 and 0.9) for
different current levels at a switching frequency 20 kHz and a ripple of 10%.

Table 1. Inductor sizing for different current duty cycle values (f = 20 kHz, Vi = 42 V).

IL (A)
L (µH)

d = 0.1 d = 0.5 d = 0.9

0.5 4200 21,000 37,800

1 2100 10,500 18,900

1.5 1400 7000 12,600

2 1100 5300 9500

2.5 800 4200 7600

3 700 3500 6300

3.5 600 3000 5400

4 525 2600 4700

4.5 466 2300 4200

5 400 2100 3800

Indeed, the sizing of the inductor becomes a tedious task for PV applications where
the current varies steadily, and using only one value of the inductance results in power loss.
To reduce this power loss, the inductor can be sized for the maximum current. However,
this design choice results in an increased cost and more area occupation.

In the following section we propose a solution to fix the above-mentioned problem.
We propose to adaptively adjust the inductor value through an auxiliary circuit in order to
maximize the power efficiency of the converter. The new proposed topology is presented
in Figure 4 where a coupled inductor, L1–L2, is adopted instead of a simple inductor.
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To realize the coupled inductor, a second coil is introduced to the inductor magnetic
core, as described in the next subsection. The two electromagnetic fields created by the two
coils constitute the total electromagnetic field in the core. Any change in the electromagnetic
fields results in a change in the inductors values. To benefit from this feature, an external
circuit is added to make L1 adaptive to the input current, Ii. The current I2 that flows
through L2 is controlled to generate a variable electromagnetic field, therefore changing the
value of L1. The reference current I2ref that I2 must follow is calculated based only on the
measured current Ii.

2.2.1. Coupled Inductor Analysis and Implementation

A power inductor is composed of a winding and a magnetic core [19,20], as shown
in Figure 5. The winding is typically made up of round Litz copper wire, which can
pass a high current at a given voltage. The role of the magnetic core is to channel the
magnetic field lines in order to transfer or to store energy. Materials with high permeability,
supporting a significant induction field without saturation and with low losses at the target
switching frequency are required. In our application, the coupled inductor is made of the
magnetic core ETD 49 [21] and a copper winding.
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Figure 5. Basic ferromagnetic circuit.

Inductor losses occur from two sources, namely the losses in the core and the losses
generated in the windings. Winding losses are due to the wire resistance, R, and are
evaluated by Ampere’s law Ploss_wdg= Ri2. In this study ohmic winding losses are not
considered and the focus is mainly on the core losses. Based on theory and empirical
tests [16–20] core losses depend directly on the hysteresis loop and to the maximum flux,
Bmax. Consequently, we must avoid flux saturation on the core to avoid losses.

The hysteresis characteristic of an inductor is presented in Figure 6. Depending on the
inductor core size, it is known that in B = f(H) characteristics, the linear region can be long
or short. When the core size increases, the achieved maximum current in the linear region
increases as well. To avoid a complicated theoretical approach, we reduce the hysteresis
loop to a linear relationship between flux, B, and magnetic field, H. In the conventional
power converters, under all operating conditions of the PVG, the inductor operation point
needs to meet the linear region of the B-H curve [17–20].
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The sensing of the PV current in Figure 6 allows us to know the operating point
position of the inductor on the hysteresis characteristic. Indeed, since the total flux is given
by [17–20]

ϕT =
N2i
R (1)

where R is the reluctance of the magnetic core, N is the coil number of turns, and the
inductance, L, is defined as the ratio between the total flux, ϕT , and the current, i flowing
in the winding

L =
ϕT
i

(2)

The flux is therefore proportional to the current that flows into the inductor. Conse-
quently, the inductor core is sized to function in the linear region where the maximum
dissipated current into the inductor does not exceed one third (1/3) of the nominal PVG
current. This means that the inductor could operate in the saturation zone when the PVG
current increases, as shown in Figure 6.

To avoid saturation, we propose to add a second coil in order to produce an addi-
tional flux in the magnetic core. The latter can be added or subtracted from the first one,
depending on the direction of the second flux.

The basic model of a coupled inductor is shown in Figure 7. The coil L1 traversed
by the current i1 produces the flux ϕ11 self-induction through each turn of L1 and the
mutual flux ϕ21 through each turn of L2. Similarly, the coil L2 traversed by the current
i2 produces the self-induction flux ϕ22 through each turn of L2 and the mutual flux ϕ12
through each turn of L1. Fluxes ϕ11, ϕ21 and fluxes ϕ21, ϕ22 are added to each part
(Figure 7b), or subtracted (Figure 7c), according to the positive direction of currents chosen
arbitrarily, and the winding of the coils direction [17–20].
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Assuming that the flux coil is the same for each turn, the total flux is given by{
ϕTot

1 = ϕTot
11 + a ϕTot

12 = L1i1 + Mi2

ϕTot
2 = aϕTot

21 + ϕTot
22 = Mi1 + L2i2

(3)

where N1, L1 and i1 (N2, L2 and i2) are the number of turns, self-inductance and current
of the first (second) coil, parameter a is equal to 1 or −1 for additive or subtractive case,
respectively, and M is the mutual inductance between L1 and L2. Note that the sign of M is
equal to that of a.

Figure 8a depicts the assembly of the studied coupled inductor based on an ETD
49 magnetic core, whereas Figure 8b shows the assembled device used in experimental
measurements. Note that in the application of the standard inductor we use the same
assembly where we use only one coil.
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2.2.2. Design of the Fuzzy Controller

The average current generated by PVG follows solar radiation, G. When the radiation
is increased (decreased), the operating point of the inductor in the B-H curve moves to
(from) the saturation zone. The inductor value in this case must follow any changes in the
generated current.
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From this observation, the idea to integrate a fuzzy control came up [14,22]. From the
deviation between the current I2 and its reference, I2ref , coming from the measured Ipv,
we can decide whether to increment, decrement or keep the same duty cycle. One of the
advantages of this strategy is that only one measurement is required, namely the inductor
current i2.

The control diagram is presented in Figure 9. The fuzzy algorithm has been designed
using two linguistic input variables (error and change in error). Five membership functions
have been chosen for each variable. The output of the algorithm gives the required duty
cycle of the converter. The membership functions of the input and output variables are
highlighted in Figure 10a,b, respectively. The used fuzzy rules are summarized in Table 2.
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Table 2. Rules of the fuzzy controller.

DE\E NB NS Z PS PB

NB PB PS PS NS NB

NS PB PS Z NS NB

Z PB PS Z NS NB

PS PB PS Z NS NB

PB PB PS PS NS NB
Where NB: Negative Big, PB: Positive Big, PS: Positive Small, NS: Negative Small, and Z: Zero.

Figure 11 shows the result of the FC: reference current (I2ref ) in red color and measure-
ment current (Ipv) in blue. We note that the FC achieved good tracking performances.
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3. Results
3.1. Simulation Results

To model a magnetic core from the datasheet of ETD 49 core, which is constructed using
3C90 material with the following parameters (effective area Ae = 211 mm2, Area product
= 57,600 mm4, magnetic conductance AL = 4200 nH, with L = AL·N2). Our inductor was
calculated by taking d = 0.5 and I = 3 A. We have to wire a coil of N = 28 turns for L1 and N =
12 turns for L2 using a wire of 2 mm and density of (2.5 A/mm2), and the PSpice Model Editor
was used [21]. A co-simulation between Orcad and Simulink was used to simulate the system
by using the SLPS block, as shown in Figure 12. SIMULINK was used to implement control
part (P&O algorithm) and the PV panel of the system, while PSpice was used to model the
conventional and proposed boost converter in Figures 3 and 4, respectively.
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Figure 12. Simulation block diagram.

Figure 13a shows the simulated input solar radiation of the PV panel while Figure 13b,c
reports the simulated output power and power conversion efficiency of the conventional
and proposed converter with the following element values (C1 = 200 µF, C2 = 400 µF,
and L1 = 3500 µH), which are chosen corresponding to the used PV panel characteristics
(SANYOHP). It can be observed that the power conversion efficiency of the proposed
converter is about 9% higher than that of the conventional one when the radiation is equal
to 1000 W/m2 (i.e., when the input current value is maximum), whereas the two converters
show similar performance for values of radiation lower than 300 W/m2.
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3.2. Experimental Results

In experimental tests, we used the platform installed in the MIS Laboratory of the
University of Picardie Jules Verne in France, as Figure 14 presents.
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Figure 14. Hardware materials used in experimental tests.

The platform is made up by one SANYO, HIP-215NKHE5 PV panel and a radiation
sensor. The PVG is connected to the SEMIKRON shopper module as a DC/DC boost
converter that is considered as an adaptation block between the load and PV generator. The
system is controlled using a dsPACE controller board. The MPPT algorithm is implemented
in Simulink for implementation in real time.

Several experimental tests have been carried out to validate the proposed topology.
In particular, two systems have been tested. The first one adopts a standard boost as
presented in Figure 3 while the second uses a coupled inductor as shown in Figure 4.
Two similar PV panels installed close to each other in the MIS platform are used to compare
the performance of the two systems. Two SMIKRON devices are used: one for the Boost
with the coupled inductor circuit and the other for the standard Boost circuit. The two
inductors are made by the same magnetic core (ETD49). A P&O algorithm is used to track
the MPP of the PVG, and the same kind of the resistive load is used. The detailed schematic
of the two systems is shown in Figures 15 and 16, respectively. In both installations we
used an 1104 card of dSPACE to implement our algorithm in real time.
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Figure 16. (a) Schematic of the experimental setup for the proposed boost DC/DC converter. (b) Schematic of the small
Buck converter.

The Fuzzy controller is used to control the inductor current I2; this current must track
the reference current evaluated on PV current measurement, I1. The buck topology has
been chosen because the output current of a buck is always greater than its input current.
In this case we ensure that the second windings draws lower current even when I2 has
greater value.

To verify the improvement of the power efficiency of the proposed topology, the
power efficiencies of the two systems are evaluated under the same operating conditions.
Figure 17 shows the measured radiation during the experimental test of the two circuits.
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Figure 17. Measured solar radiation.

The input and output voltages for the proposed coupled inductor topology are shown
in Figure 18 whereas the coil and load current are presented in Figure 19.
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In Figure 20 the measured power transferred to the load for both circuits is presented.
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4. Discussion

Figure 18 shows clearly that the boost converter is operating as a step-up converter
and we notice from the input voltage that the PV panel delivers the maximum power. It is
noticed from Figure 19 that the coil current follows the radiation shape and it reaches the
maximum power point corresponding to 5 A when the radiation is almost 800 W/m2.

By inspection of Figures 13b and 20, we clearly notice that the power, in the case of the
proposed topology (red curve), is greater than the power of the standard boost topology
(blue curve), except during the intervals where the current that flows into both circuits is
around the value that does not saturate the core. These results confirm that the load power
is greater because the boost losses are minimized by avoiding magnetic core saturation in
the case of the proposed topology. This outcome is further confirmed by Figures 13c and 21
where the power efficiency of both converters is reported. It is apparent that the proposed
converter maintains a power efficiency as high as 92% when the solar radiation is high, i.e.,
when the input current saturates the core of the inductor of the conventional converter, and
the efficiency of which lowers to 80%.
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5. Conclusions

In this paper a boost converter with a coupled inductor was proposed and assessed
for PV applications. The proposed topology provides remarkable advantages. Firstly, the
lower inductor characteristics can be adapted (core size) by integrating a controlled current
of the second winding. Secondly, it improves the DC/DC converter for power efficiency
of PV applications. A fuzzy controller is introduced to control the second coil current
of the coupled inductor in order to avoid power loss due to core saturation. The main
advantage of the fuzzy controller is that it does not need prior knowledge about the system
parameters and that only one measured current is needed. Experimental results show
that power efficiency stays constant over different values of solar radiation, unlike the
conventional converter, where efficiency heavily reduces for high values of input current
(i.e., solar radiation).
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Appendix A. Operation of the Converter in Continuous Conduction Mode

To avoid power loss in the DC/DC converter, the latter must work in continuous
conduction mode (CCM) [17,18]. This mode is characterized by permanently having the
inductor current positive (IL > 0). To ensure operation in CCM mode, we follow the
following steps to calculate the inductor value. For the boost converter circuit presented in
Figure 3, two cases are possible. When the switch K is closed, we have

VL = Vi (A1)

when the switch K is open, the voltage Kirchhoff’s law yields

VL = Vi −Vo (A2)

The voltage across the inductor is given by

VL = L
dIL
dt

(A3)

From Equations (A1)–(A3), the inductor current can be written as

IL =
∫ dT

0

Vi
L

dt +
∫ T

dT

Vi −Vo

L
dt (A4)

where d is the duty cycle of the Pulse Width Modulation (PWM) signal applied to the
switch, K, shown in Figure A1.
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From Equations (A1)–(A4), the current curve through the inductance and its voltage
are represented in Figure A2.
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The current ripple of IL, is defined as,

∆IL = ILMax− ILMin (A5)

where if 0 < t < dT relation
IL =

Vi
L

t + ILMin (A6)

holds, whereas when dT < t < T

IL =
Vi − vo

L
(t− dT) + ILMax (A7)

The average voltage across the inductor, L, is zero, which results in

VL =
1
T

∫ T

0
VL·dt =

1
T

(∫ dT

0
Vi·dt +

∫ T

dT
(Vi −Vo)·dt

)
= 0 (A8)

Vi·dT = (1− d)T(Vo −Vi) (A9)

and
Vo =

1
1− d

Vi (A10)

The duty cycle value d is between 0 and 1 so the output voltage, Vo, is necessarily
greater than the input voltage, Vi.

The sizing of the inductor in DC/DC converters supplied by PVG is difficult because
its value is calculated and optimized for a given input power.

At the limit between continuous and discontinuous conduction mode (DCM), over a
period T, the ripple current through the inductor verifies relation

∆IL >
IL max

2
(A11)

At t = dT and from Equation (A6) we find that:

∆IL >
dTVi
2L

(A12)

From Equation (A12) we can calculate the inductor value for a given ripple current
through the coil from

L =
Vi d
∆IL f

(A13)

where Vi is input voltage, d is the duty cycle, IL is the inductor current and f is the frequency
of the PWM signal.
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