
applied
sciences

Article

Benchmarking and Performance Evaluations on Various
Configurations of Virtual Machine and Containers for
Cloud-Based Scientific Workloads

Syed Asif Raza Shah 1 , Ahmad Waqas 1 , Moon-Hyun Kim 2, Tae-Hyung Kim 3, Heejun Yoon 4

and Seo-Young Noh 2,*

����������
�������

Citation: Shah, S.A.R.; Waqas, A.;

Kim, M.-H.; Kim, T.-H.; Yoon, H.;

Noh, S.-Y. Benchmarking and

Performance Evaluations on Various

Configurations of Virtual Machine

and Containers for Cloud-Based

Scientific Workloads. Appl. Sci. 2021,

11, 993. https://doi.org/10.3390/

app11030993

Academic Editor: Fabrizio Marozzo

Received: 16 December 2020

Accepted: 20 January 2021

Published: 22 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science and CRAIB, Sukkur IBA University (SIBAU),
Sukkur 65200, Pakistan; asif.shah@iba-suk.edu.pk (S.A.R.S.); ahmad.waqas@iba-suk.edu.pk (A.W.)

2 Department of Computer Science, Chungbuk National University, Cheongju-si 28644, Korea;
moonhyun.dev@gmail.com

3 Samsung Electronics, Seoul 135856, Korea; thkim4u@gmail.com
4 Global Science Experimental Data Hub Center, Korea Institute of Science and Technology Information,

245 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea; k2@kisti.re.kr
* Correspondence: rsyoung@cbnu.ac.kr

Abstract: Cloud computing manages system resources such as processing, storage, and networking
by providing users with multiple virtual machines (VMs) as needed. It is one of the rapidly growing
fields that come with huge computational power for scientific workloads. Currently, the scientific
community is ready to work over the cloud as it is considered as a resource-rich paradigm. The
traditional way of executing scientific workloads on cloud computing is by using virtual machines.
However, the latest emerging concept of containerization is growing more rapidly and gained
popularity because of its unique features. Containers are treated as lightweight as compared to
virtual machines in cloud computing. In this regard, a few VMs/containers-associated problems of
performance and throughput are encountered because of middleware technologies such as virtual-
ization or containerization. In this paper, we introduce the configurations of VMs and containers for
cloud-based scientific workloads in order to utilize the technologies to solve scientific problems and
handle their workloads. This paper also tackles throughput and efficiency problems related to VMs
and containers in the cloud environment and explores efficient resource provisioning by combining
four unique methods: hyperthreading (HT), vCPU cores selection, vCPU affinity, and isolation of
vCPUs. The HEPSCPEC06 benchmark suite is used to evaluate the throughput and efficiency of
VMs and containers. The proposed solution is to implement four basic techniques to reduce the
effect of virtualization and containerization. Additionally, these techniques are used to make virtual
machines and containers more effective and powerful for scientific workloads. The results show that
allowing hyperthreading, isolation of CPU cores, proper numbering, and allocation of vCPU cores
can improve the throughput and performance of virtual machines and containers.

Keywords: cloud computing; virtual machines; containers; performance; throughput; virtualiza-
tion; isolation

1. Introduction

Recently, cloud computing [1] has become the most promising computing paradigm
that provides flexible and on-demand infrastructure to scientific workloads. It has evolved
from grid and utility computing. Being emerged from these computing paradigms, cloud
computing is recently considered as an alternative to grid, cluster, and supercomputing
for scientific workloads [2] because of the characteristics of cloud computing such as
scalability, on-demand self-service, elasticity, and availability. In cloud environments,
users do not need to worry about system implementation and administration, cloud
computing becomes a desired tool that works as infrastructure-as-a-service (IaaS) and

Appl. Sci. 2021, 11, 993. https://doi.org/10.3390/app11030993 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-6471-6380
https://orcid.org/0000-0003-3102-8391
https://orcid.org/0000-0001-6104-1752
https://doi.org/10.3390/app11030993
https://doi.org/10.3390/app11030993
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11030993
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/3/993?type=check_update&version=2

Appl. Sci. 2021, 11, 993 2 of 13

fulfills the necessity of computing resources [3]. Scientific workloads manipulated using
high performance computing (HPC), high throughput computing (HTC), and many-task
computing (MTC) [4] can be executed in virtualized computing environment.

High performance tasks require a huge amount of computing power for a short period
of time. In contrast, high throughput computing involves an enormous amount of com-
puting power over a longer period of time, such as months or years. Multitask computing
acts as a consensus solution to bridging the gap between HTC and HPC. It can perform
many independent and dependent tasks using huge computing in shorter time. In MTC,
task-parallel applications are performed on large-scale distributed systems. The major
concerns related to scientific workloads are higher throughput and enhanced performance
of virtualization or containerization in a cloud environment. In order to address these
concerns, some techniques need to be proposed to improve the overall performance.

The Virtual Machine Monitor (VMM) or hypervisor [5] is a software abstraction layer
that was introduced by virtualization technology. Cloud computing that uses virtual
machines (VMs) for enabling a complete system with resource virtualization becomes
most popular among other technologies. It makes physical infrastructures easy to manage
and virtualizes full software stacks effectively with its operating system [6]. The VM is a
computer system mirroring that provides real machines with functionality. It is regarded
as the cloud environment’s basic logical tool that provides computing facilities. VMM is
an abstraction layer of the physical hardware and tracks virtual machines. It works with
physical resources and logical resources. In addition, it also provides a complete view of
heterogeneous underlying hardware that allows VMs to run on any computing system
without considering the dependencies between software and hardware.

On the other hand, today’s cloud service providers are also offering container deploy-
ment (e.g., Docker, LXC, etc.), which is becoming more popular than the VMs. The concept
of container is similar to VM, but it consumes comparatively less time and resources. It is
considered more as an application-specific solution in cloud environments. In containeriza-
tion, the same kernel is being shared for containers and the host operating system; that is
the key enabling feature of containers that make it lightweight as compared to VMs. In
containerization, the hardware and software components are being shared between host
the operating system (OS) and containers’ applications. The host OS is mainly responsible
for ensuring the isolation among the applications of containers. Because of single host OS,
containers help to reduce the overhead of management as well.

Performance of non-virtualized environment differs from virtualized environment
because of the interactions of virtual machines with the abstraction layer called VMM.
Comparing the container’s performance with bare metal is also different because of shared
kernel. The main important factor for optimizing the VMs/containers is the efficiency and
availability for scientific workloads. Many scientific tasks require successful preparation
and fast execution to achieve useful scientific results. In order to obtain advantages of
cloud computing, the issues related to efficiency and throughput need to be addressed
directly in virtualized and containerized scientific cloud environments.

With the goal of addressing aforementioned challenges, this article proposes a method
for solving these issues—performance and throughput. Currently, the scientific community
is ready to work over the cloud as it is considered as a resource-rich paradigm. Cloud
computing enables users to work anywhere by providing logical resources such as virtual
machines or containers. However, it should be noted that there are a few VM/container
associated issues regarding performance and throughput. In this paper, in order to utilize
virtualization technologies, we evaluated the different configurations of VMs and con-
tainers, which are the main computing actors for scientific workloads. We also take into
consideration the problems of throughput and efficiency related to VMs and containers,
and explore efficient resource provisioning by combining four unique methods: hyper-
threading (HT), vCPU cores selection, vCPU affinity, and isolation of vCPUs. The scope
of this research is mainly focuses on scientific workloads. Furthermore, a balanced view
of performance and throughput is also given. A renowned cloud computing platform,

Appl. Sci. 2021, 11, 993 3 of 13

OpenStack [7], has been adopted to configure the computing environment for logical
setup and to run scientific applications. The HEPSPEC06 benchmark that is produced
by the HEPiX CPU Benchmark Group [8] is used for performance evaluation of virtual
machines and containers. Realistic issues regarding the performance of VMs/containers
and throughput degradation are also investigated. In this paper, we use the combination of
four famous techniques to achieve real-time performance and higher throughput of virtual
machines and containers. These techniques are: hyperthreading technology, the selection of
vCPU cores per virtual machine/container, physical CPU isolation, and pinning of vCPU
cores of a virtual machine/container in a multicore NUMA (nonuniform memory access)
architecture [9,10]. Our proposed solution shows that a fine combination can work very
efficiently to achieve higher performance and enhanced throughput of VMs and containers
in a cloud-based environment for scientific computing.

The rest of the paper is organized as follows. Section 2 provides an overview of related
work. In Section 3, the HEPSPEC06 benchmark suite is discussed. Section 4 presents
the proposed solution. Section 5 discusses the evaluation and results. Finally, Section 6
draws conclusions.

2. Related Work

Currently, many studies have been actively conducted by many researchers, address-
ing the performance evaluation of virtual machines. In literature, many articles work
on increased performance of virtual machines. Most of the literature have used VMM
abstraction layer in general to measure the overhead of VMs. In the article [10], the authors
reported the degradation of performance in virtual machines. They worked on NUMA
architectures, based on the effects of virtualization and tested the architecture with the
hypervisors such as KVM and Xen. In [11], the authors measured one of the performance
factors, i.e., startup-time of virtual machines in cloud environments. Those time measure-
ments are performed and analyzed among three well-known cloud providers: Amazon
EC2, Rackspace, and Microsoft Azure. The authors presented a systematic detailed analysis
of cloud computing application efficiency evaluations for scientific workloads [2]. The
result said that reliability and cloud efficiency are inadequate for scientific workloads.
Infrastructure-as-a-service is the main feature for adopting cloud to cope with scientific
workload. In [12], the authors presented a survey on performance overhead of virtual
machines. They also discussed how the performance varies from single server virtualiza-
tion to geo-distributed datacenters. The authors in [13] illustrated the impact of type of
workload, processor pinning, configuration, and partial background CPU load. They also
investigated and addressed the issues of paired colocated compute-intensive workloads
that create interference and reduce the overall performance. OpenStack cloud platform
for IaaS implementation evaluates energy efficiency in high-performance computing [14].
In this article, performance impact was evaluated, which is produced by the underlying
hypervisors and the IaaS solution by using the HPCC (High-Performance Computing
Cluster) and HPL (High-Performance Linpack) [15], and Graph500 benchmarks [16]. The
author in [17] evaluated performance of virtual machines and organization of scientific
workflow on virtual systems. They conducted a complete benchmark to test the CMS
(Compact Muon Solenoid) scientific workloads on virtual machines. The quantitative
analysis of the efficiency of Amazon EC2 (Public Cloud) for the workloads of HPC using
benchmarks was addressed in [18].

In [19], performance of virtual machines in the cloud is compared with containers
usage in the cloud. Virtual machines and Linux containers are compared in terms of net-
work performance and reduction of potential performance overhead. Some literature work
quantifies the overhead efficiency of VMs by using a VMM or Xen virtualization layer. To
improve the resource utilization in cloud computing environments, swarm optimization-
based workload optimization (SOWO) technique is proposed in [20]. In the research,
they also used the OpenStack platform and claimed that resource utilization is increased
by 50 percent in cloud computing environments. Operating containers on top of virtual

Appl. Sci. 2021, 11, 993 4 of 13

machines technique was examined in [21]. In the paper, they followed an observational ap-
proach to measure the overhead efficiency provided by the additional virtualization layer in
virtual machines by performing different benchmarking tests and implementing programs
with the real-world-use case scenarios. In [22], the authors compare the performance of a
typical KVM hypervisor to a Docker Linux container by contrasting the performance of
VMware Server with the actual physical servers. The extended paravirtualization (XPV) is
another approach evaluated for effective virtualization of NUMA architecture [23]. XPV
consists of revisiting the interface between the hypervisor and the host OS, and between
the host OS and the device runtime libraries (SRLs), so that they can automatically take
into account changes in the NUMA topology. The authors in [24] proposed an empiri-
cal overview of the success impact of the different resource affinities. They proposed a
performance prediction model called resource affinity function effect estimation (RAIE).
The RAIE model takes into account the real effect of resource affinity dependent on VM
activities that can be tracked online without VM alteration. The proposed model tried to
increase the average prediction accuracy of VMs.

It is difficult to find a study that analyzes the latest techniques for enhancing virtual
machine efficiency and throughput. The major purpose of our research is to enhance overall
efficiency and throughput of VMs and containers, so that scientific workloads can run more
efficiently. The series of four well-known techniques is used to reduce the impact of results
on virtual machines and containers.

3. Proposed Solution

This study proposes an approach based on four proven techniques in order to in-
crease the overall performance of virtualization/containerization technologies and en-
able scientific communities that use the cloud computing environment for their work-
loads. These techniques are able to increase the overall efficiency of virtual machines for a
scientific environment.

3.1. Overview

We enable the Intel HT (hyperthreading) technology to improve the performance
of the CPU cores [25]. HT technology was the origin of bringing parallel computation
to PCs. Using this technology, a single processor presented physically appears as two
logical processors that share physical resources and use the duplicated architecture in the
operating system. In other words, the operating system considers each CPU core as two
separated CPUs. Hyperthreading technology improves utilization of CPU resources; if we
enable the HT then we can utilize the resource efficiently. The performance of threaded
applications is improved and processing throughput is also increased. Not only is HT used
to maximize the performance of processors, but utilization of resources is enhanced that
leads to the higher throughput for specific types of scientific workloads. The processing
cores performance increases at some extent to their capacity by enabling HT on the system,
where virtual machines and containers are running the scientific workloads. The first
technique of study mentions that HT must be enabled on physical machines so that virtual
machines or containers running scientific workload produces higher throughput. The
underutilization of processor resources is also incorporated by HT technology. Application
level performance and system level performance can be boosted using HT. The second
proposed technique is used to improve performance of VMs or containers by selecting a
greater number of vCPU (virtual CPU) cores that run on virtual machines or containers.
Bare metal performs comparatively better than virtual machines and containers with
higher vCPU cores in scientific workloads. This performance degradation is caused by the
scheduling policy of hypervisor, and performance also decreases when loosely coupled
scientific tasks with a higher number of vCPUs runs on virtual machines or containers.
In VMs or containers, the performance of a single core might be increased when HT is
enabled because it adds the additional vCPU cores to the virtual machine or container.
This study proposes that to achieve real-time performance, virtual machines or containers

Appl. Sci. 2021, 11, 993 5 of 13

would operate with fewer vCPU core numbers. The third technique suggested is used
to enhance the overall throughput and efficiency of virtual machines or containers by
physically isolating the processor’s cores. In the host operating system, there are several
interferences running on the physical processing core, which decrease virtual machine or
container performance. Complete isolation of physical processing cores from the kernel
of the host OS improves the performance of VMs or containers. Using isolation, tasks in
the system do not follow scheduler assignment. The fourth technique suggests pinning
of CPU cores of VM or containers. For scientific workloads, CPU cores must be pinned
properly in order to improve performance. This pinning is required to consider NUMA
multicore processor architecture. Pinning needs to be performed on every logical CPU of
the guest virtual machine or container using the ID of host system. To execute the scientific
workloads efficiently, the NUMA architecture with pinning technique can maximize the
overall performance of virtual machines and containers. The proposed combinations of
four strategies are evaluated with several modifications to achieve higher efficiency and
performance of the virtual machine and container in the cloud computing world.

3.2. Experimental Setup

The operational private cloud environment is used for this experimental setup to test
the efficiency and output of virtual machines and containers. For our all experiments, we
utilized the OpenStack cloud operating system, which is an open source cloud management
solution. In this experiment, a cloud environment was set with the composition of fifteen
physical machines. Table 1 depicts the specification of every physical machine.

Table 1. Specification of the physical machine.

Description Specs

Architecture x86_64
Processor Type Intel Xeon 2.6 GHz CPU

Total Number Cores 16 (without HT)/32 (with HT)
Total RAM 96 GB

Storage Capacity (HDD) 350 GB
NUMA Nodes 2 (Node 0 = 8 cores and Node 1 = 8 cores)

NICs 3 × 1 Gbps Ethernet
Operating System CentOS 7.0

Hypervisor KVM
Linux Kernel v3.10

Compiler and flags Compiler: gcc-4.8, Flags: -O2-pthread-fPIC-m32

The aim of this benchmarking procedure is to measure the CPU performance of a
particular worker node in our cloud computing environment for scientific workloads.
According to HEPiX recommendation, we used the recommended version of OS and kernel
(CentOS 7 or Scientific Linux 7 and Kernel v3.1) to achieve better performance. In our
experimental setup, we used GNU Compiler Collection (gcc-4.8) default compiler along
with following compiler flags: -O2-pthread-fPIC-m32.

Figure 1 shows complete connectivity and flow of the experimental setup with the
fifteen machines. OpenStack is the free cloud platform with several nodes for providing
computing resources and other services. The system is composed of network, controller,
storage, and several compute nodes. The central management is provided by the controller
node in this cloud setup environment. The storage node provides capacity to store images
and instances and the network node provides the services related to communication and
networking in this environment. This experimental setup consists of twelve compute nodes
for providing resources to VMs or containers. These nodes play an essential role for our all
experiments because each virtual machine or container uses their computing resources in
order to work as a physical machine for scientific jobs.

Appl. Sci. 2021, 11, 993 6 of 13

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 14

computing resources and other services. The system is composed of network, controller,

storage, and several compute nodes. The central management is provided by the con‐

troller node in this cloud setup environment. The storage node provides capacity to store

images and instances and the network node provides the services related to communica‐

tion and networking in this environment. This experimental setup consists of twelve

compute nodes for providing resources to VMs or containers. These nodes play an es‐

sential role for our all experiments because each virtual machine or container uses their

computing resources in order to work as a physical machine for scientific jobs.

Figure 1. OpenStack‐based experimental setup and connectivity.

4. Evaluation and Test Cases

HEPSPEC06 is based on a benchmark specific high‐energy physics (HEP) suite de‐

rived from the SPEC06 CPU benchmark [26]. This benchmark suite delivers better per‐

formance, as it uses 64‐bit mode mainly. The HEPSPEC06 benchmark is used to test CPU

core performance. Before this benchmark set, SPECint 2000 [26] was regarded as the most

common benchmark in the high‐energy physics community, withdrawn in February

2007. This benchmark was introduced in the period of 2007–2008 by HEPiX CPU

Benchmark working group [8]. HEPiX group puts efforts together to launch this bench‐

mark that is considered as the replacement of SPECint 2000. It replaced the outdated

kSI2k metric. Briefly, this benchmark is used to measure a CPU’s performance. It is

suitable for the operations required for floating point calculations.

The HEPSPEC06 test performs different tests on a single machine for each core at the

same time. Since this test can perform integer operations and floating point closely linked

to HEP codes, the scientific communities of physics and IT disciplines would likely use

this benchmark. The HEPSPEC06 test also provides versatility on both 32‐bit and 64‐bit

architecture to run the benchmarks. For optimizing CPU performance of virtual ma‐

chines and containers in the cloud environment, HEPSPEC06 is the ideal benchmark. In

this experimental setup, the HEPSPEC06 test suite is used to evaluate performance of

VMs and containers supplied for scientific workload execution.

As noted, the HEPSPEC06 benchmark is used to test the efficiency and performance

of virtual machines and containers, so that high‐power scientific workloads can be car‐

ried out on the experimental setup presented above. Throughout this evaluation process,

the HEPSPEC06 benchmark runs on VMs or containers to analyze better performance

and throughput as well. In this experiment, normal CLI (command line interface) com‐

mands on OpenStack are used for provisioning virtual machines and containers. Each

virtual machine is initialized and controlled by an independently uploaded image that is

installed with the basic operating system of CentOS 7.1, which works the same as the host

operating system. On the other hand, the setup of containers also performed similarly in

Figure 1. OpenStack-based experimental setup and connectivity.

4. Evaluation and Test Cases

HEPSPEC06 is based on a benchmark specific high-energy physics (HEP) suite derived
from the SPEC06 CPU benchmark [26]. This benchmark suite delivers better performance,
as it uses 64-bit mode mainly. The HEPSPEC06 benchmark is used to test CPU core
performance. Before this benchmark set, SPECint 2000 [26] was regarded as the most
common benchmark in the high-energy physics community, withdrawn in February 2007.
This benchmark was introduced in the period of 2007–2008 by HEPiX CPU Benchmark
working group [8]. HEPiX group puts efforts together to launch this benchmark that is
considered as the replacement of SPECint 2000. It replaced the outdated kSI2k metric.
Briefly, this benchmark is used to measure a CPU’s performance. It is suitable for the
operations required for floating point calculations.

The HEPSPEC06 test performs different tests on a single machine for each core at the
same time. Since this test can perform integer operations and floating point closely linked
to HEP codes, the scientific communities of physics and IT disciplines would likely use
this benchmark. The HEPSPEC06 test also provides versatility on both 32-bit and 64-bit
architecture to run the benchmarks. For optimizing CPU performance of virtual machines
and containers in the cloud environment, HEPSPEC06 is the ideal benchmark. In this
experimental setup, the HEPSPEC06 test suite is used to evaluate performance of VMs and
containers supplied for scientific workload execution.

As noted, the HEPSPEC06 benchmark is used to test the efficiency and performance
of virtual machines and containers, so that high-power scientific workloads can be carried
out on the experimental setup presented above. Throughout this evaluation process, the
HEPSPEC06 benchmark runs on VMs or containers to analyze better performance and
throughput as well. In this experiment, normal CLI (command line interface) commands on
OpenStack are used for provisioning virtual machines and containers. Each virtual machine
is initialized and controlled by an independently uploaded image that is installed with the
basic operating system of CentOS 7.1, which works the same as the host operating system.
On the other hand, the setup of containers also performed similarly in the cloud. Required
necessary packages are also installed to run the HEPSPEC06 benchmark in virtual machines
and containers. Three different test cases are evaluated in conjunction with techniques to
increase VMs and containers’ efficiency and throughput. In this section, we discuss the
detailed results of all test cases.

4.1. Test-1

Our first experiment of test-1 depends on the size of the VM and container by selecting
the vCPU cores per virtual machine or container. In the cloud environment, hyperthreading
remains disabled on the physical host. To set up baseline results to equate with virtual

Appl. Sci. 2021, 11, 993 7 of 13

machine or container performance, the HEPSPEC06 test is executed on a cloud physical host.
In our current setup, five separate configurations are executed on the physical host system,
depending on the selection of vCPU cores for a single VM or container. Table 2 shows
evaluation of each configuration individually. The HEP-SPEC06 benchmark is running
simultaneously on all virtual machines or containers in single configuration. With each
virtual machine or container in the described setup, we assigned 20 GB of local permanent
storage for data. Regarding RAM, it is divided equally among VMs or containers. For
example, a single physical machine has a maximum of 96 GB RAM, and we are running
8 VMs/containers on it; this means each VM/container will get 12GB RAM. We also added
the RAM information into Tables 2 and 3.

Table 2. Five different configurations of VMs/containers for test-1.

Configurations Number of
Containers Number of VMs Number of vCPUs

Per VM/Container
Per VM/Container
RAM Allocation

Configuration #1 1 Container 1 VM 16 vCPUs 96 GB
Configuration #2 2 Containers 2 VMs 8 vCPUs 48 GB
Configuration #3 4 Containers 4 VMs 4 vCPUs 24 GB
Configuration #4 8 Containers 8 VMs 2 vCPUs 12 GB
Configuration #5 16 Containers 16 VMs 1 vCPU 6 GB

Table 3. Five different configurations of VMs/containers for test-2.

Configurations Number of
Containers Number of VMs Number of vCPUs

Per VM/Container
Per VM/Container
RAM Allocation

Configuration #1 1 Container 1 VM 32 vCPUs 96 GB
Configuration #2 2 Containers 2 VMs 16 vCPUs 48 GB
Configuration #3 4 Containers 4 VMs 8 vCPUs 24 GB
Configuration #4 8 Containers 8 VMs 4 vCPUs 12 GB
Configuration #5 16 Containers 16 VMs 2 vCPUs 6 GB

4.2. Test-2

In the second test case, a separate (compute node) physical host of the cloud is used.
Hyperthreading is enabled in this case with five different virtual machine and container
configurations, as shown in Table 3. The configurations may seem identical with the
previous case, but the difference is that each virtual machine or container has double vCPU
cores. The HEPSPEC06 benchmark is used to calculate starting performance on the physical
host. Each configuration is individually evaluated and all VM or container configurations
execute with the same benchmark.

The main goal of our test-2 is to compare the improvement in the performance of
multiple machines vs. HT on/off. Therefore, all of the input parameters for both experi-
ments were the same. Since the HT enabled machines will give more vCPU cores, these
features help us to assign more cores to VMs, which should be evaluated whether or not
such features provide meaningful performance improvements.

4.3. Test-3

In the third test case, the design of the previous test cases is applied for physical core
isolation and vCPU pinning. To perform the process of isolation, basic Linux commands
are used, and the kernel of the host operating system isolates all physical hosts CPU core
(excluding one). To get baseline performance, the HEPSPEC06 benchmark is used for
executing isolation cores on the cloud’s physical hosts. One-to-one strict pinning policy is
adopted for pinning the vCPUs of virtual machines or containers. OpenStack supported
method for pinning the vCPUs of virtual machine or containers is utilized. As the NUMA
node topology can also affect the performance, it is taken under consideration. We executed
configuration #2 (which consists of two virtual machines or two containers each having
eight vCPU cores). In this configuration, eight vCPU cores of the first virtual machine or
container were pinned with NUMA node 0, and second virtual machines or containers

Appl. Sci. 2021, 11, 993 8 of 13

eight vCPU cores were pinned with NUMA node 1. It should be noted that NUMA nodes
were assigned to each VM in all of our configurations. At the end, all configurations are run
independently on the physical machine of the cloud, which is designed for pinning and
isolation purposes. The HEPSPEC06 benchmark runs simultaneously on virtual machines
or containers in single configuration.

4.4. Test-4

Similar to test-3, our fourth test case also applied test-2′s configurations, but with the
addition of enabling hyperthreading, keeping in mind that the HT-enabled VMs/containers
and vCPUs will achieve better performance compared to the previous test cases. Basic
Linux commands are used, and the kernel of the host operating system isolates all physical
hosts CPU core (excluding one). To get baseline performance, the HEPSPEC06 benchmark
is used for executing isolation cores on the cloud’s physical hosts. One-to-one strict pinning
policy is adopted for pinning the HT-enabled vCPUs of virtual machines and containers.

5. Results and Discussions

Figure 2 comprises the details of all the configurations of the first test. In this result
section, performance difference of configurations can be seen clearly. In configuration 1,
a single virtual machine or container is assigned with higher number of CPU cores and
executes the HEPSPEC06 benchmark. In the result, it can be seen that performance loss of
VMs is up to 17% while containers are up to 13%, when only comparing with results of
bare metal. Our proposed techniques demonstrate that the overall efficiency of scientific
jobs can be maximized when we minimize the number of virtual cores and increase the
number of VMs or containers. In Figure 2, configuration 5 can minimize the performance
impact as it is the result of 16 virtual machines/container (assigned a single core to each
virtual machine/container). As seen, it minimizes the performance lose impact on VMs
from 17% to 5% and on containers from 13% to 2%. The other configurations, 2, 3, and 4,
can also reduce the overall impact of performance loss. It clearly shows the difference of
performance between VMs and containers configuration; containers perform much better
than the virtual machine configuration, which is much closer to bare-metal performance.
However, it is observed that by using configuration 5, it is possible to achieve near-real-time
performance with containers in our cloud environment.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 14

than the virtual machine configuration, which is much closer to bare‐metal performance.

However, it is observed that by using configuration 5, it is possible to achieve

near‐real‐time performance with containers in our cloud environment.

Figure 2. HEPSPEC06 benchmark results for five configurations of test‐1.

Figure 3 shows the result of five configurations over test‐2. The primary goal of this

test was to enhance the overall throughput of the physical system. Since the hyper‐

threading doubles the number of cores, we often allowed HT on a physical system with

16 cores; it doubles the cores up to 32. As illustrated in Figure 3, the efficiency of HEP‐

SPEC06 on the physical host (bare metal) is improved by up to 16%. This result is com‐

pared to the physical host of test‐1 having 16 physical cores. For better performance and

efficiency, this study used a similar technique of assigning cores per virtual machine or

container of the first test case (i.e., test‐1) but the total number of cores doubled for each

virtual machine or container. As shown in the results, using the HEPSPEC06 benchmark,

the performance loss of VM is 18% and containers is up to 14% of configuration 1 com‐

pared to the physical machine. With configuration 5, however, we increased the number

of virtual machines or containers with decreased numbers of cores, which improved

overall performance of VM up to 12% and container up to 10%, while comparing test‐2

with configuration 1. The size of the virtual machine or container can vary according to

scientific workload so that throughput and performance can be balanced according to

requirements.

In test‐3, to improve the performance of the VM or container, we applied the pinning

and isolation techniques that are implemented for both test cases and consist of five con‐

figurations. Figure 4 depicts that the HEPSPEC06 benchmark minimized the overall

performance losses; if the number of cores per virtual machine or container decreased

and proper pinning and isolation applied, then it further reduces the impact of virtual‐

ization from 18% to 6% and of containerization from 14% to 1.5%. It clearly shows that

the containers can give much better and near‐real‐time performance in a cloud environ‐

ment.

Figure 2. HEPSPEC06 benchmark results for five configurations of test-1.

Appl. Sci. 2021, 11, 993 9 of 13

Figure 3 shows the result of five configurations over test-2. The primary goal of this
test was to enhance the overall throughput of the physical system. Since the hyperthreading
doubles the number of cores, we often allowed HT on a physical system with 16 cores;
it doubles the cores up to 32. As illustrated in Figure 3, the efficiency of HEPSPEC06 on
the physical host (bare metal) is improved by up to 16%. This result is compared to the
physical host of test-1 having 16 physical cores. For better performance and efficiency, this
study used a similar technique of assigning cores per virtual machine or container of the
first test case (i.e., test-1) but the total number of cores doubled for each virtual machine or
container. As shown in the results, using the HEPSPEC06 benchmark, the performance
loss of VM is 18% and containers is up to 14% of configuration 1 compared to the physical
machine. With configuration 5, however, we increased the number of virtual machines
or containers with decreased numbers of cores, which improved overall performance of
VM up to 12% and container up to 10%, while comparing test-2 with configuration 1. The
size of the virtual machine or container can vary according to scientific workload so that
throughput and performance can be balanced according to requirements.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 14

Figure 3. HEPSPEC06 benchmark results for five configurations of test‐2.

Figure 4. HEPSPEC06 benchmark results of test‐3.

The results of the HEPSPEC06 benchmark shows the results of test‐4. As illustrated

in Figure 5, these results are evaluated after pinning and isolation of HT‐enabled

Figure 3. HEPSPEC06 benchmark results for five configurations of test-2.

In test-3, to improve the performance of the VM or container, we applied the pinning
and isolation techniques that are implemented for both test cases and consist of five
configurations. Figure 4 depicts that the HEPSPEC06 benchmark minimized the overall
performance losses; if the number of cores per virtual machine or container decreased and
proper pinning and isolation applied, then it further reduces the impact of virtualization
from 18% to 6% and of containerization from 14% to 1.5%. It clearly shows that the
containers can give much better and near-real-time performance in a cloud environment.

Appl. Sci. 2021, 11, 993 10 of 13

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 14

Figure 3. HEPSPEC06 benchmark results for five configurations of test‐2.

Figure 4. HEPSPEC06 benchmark results of test‐3.

The results of the HEPSPEC06 benchmark shows the results of test‐4. As illustrated

in Figure 5, these results are evaluated after pinning and isolation of HT‐enabled

Figure 4. HEPSPEC06 benchmark results of test-3.

The results of the HEPSPEC06 benchmark shows the results of test-4. As illus-
trated in Figure 5, these results are evaluated after pinning and isolation of HT-enabled
VMs/containers and vCPUs for the second test case. The results of test-2 show the iden-
tical numbers given by using configuration 5, then configuration 1, and others. We can
achieve near-real-time performance of the virtual machine with the difference of only 6%
in comparison to bare metal (physical machine). The performance of the container is much
closer to bare metal with only a difference of 2%, and it can be considered as near real-time
with enabling HT, isolation, and pinning techniques.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 14

VMs/containers and vCPUs for the second test case. The results of test‐2 show the iden‐

tical numbers given by using configuration 5, then configuration 1, and others. We can

achieve near‐real‐time performance of the virtual machine with the difference of only 6%

in comparison to bare metal (physical machine). The performance of the container is

much closer to bare metal with only a difference of 2%, and it can be considered as near

real‐time with enabling HT, isolation, and pinning techniques.

Figure 5. HEPSPEC06 benchmark results of test‐4.

Finally, the average performances of virtualization and containerization are tested and

comparative analysis of each test case is calculated. As illustrated in Figure 6, test‐3, using

pinning and isolation with all configurations of second test case (i.e., test‐2), can achieve

improved efficiency in the cloud environment compared to the other test cases. The aver‐

age performance of virtual machines increases up to 20% while containers up to 25%

compared with the other test cases. This test case can also be used for the scenario with the

mixed size of virtual machines or containers required for scientific jobs. In a cloud compu‐

ting environment, pinning and isolation help to enhance overall throughput. The proper

selection mechanism of vCPU cores along with pinning and isolation can improve the

throughput and performance of containers as well as VMs in cloud environments for sci‐

entific jobs.

Figure 5. HEPSPEC06 benchmark results of test-4.

Appl. Sci. 2021, 11, 993 11 of 13

Finally, the average performances of virtualization and containerization are tested
and comparative analysis of each test case is calculated. As illustrated in Figure 6, test-3,
using pinning and isolation with all configurations of second test case (i.e., test-2), can
achieve improved efficiency in the cloud environment compared to the other test cases.
The average performance of virtual machines increases up to 20% while containers up to
25% compared with the other test cases. This test case can also be used for the scenario
with the mixed size of virtual machines or containers required for scientific jobs. In a cloud
computing environment, pinning and isolation help to enhance overall throughput. The
proper selection mechanism of vCPU cores along with pinning and isolation can improve
the throughput and performance of containers as well as VMs in cloud environments for
scientific jobs.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 14

Figure 6. The average VMs performance achievement by each test case.

6. Conclusions

In this paper, we discuss the issues which are related to efficiency and throughput of

virtual machines and containers. The performance overhead problems to scientific work‐

loads in a cloud computing environment are evaluated with our configuration scenarios. We

propose an approach that combines the four techniques and improves the overall through‐

put and performance of virtual machines and containers. We present a balanced view of ef‐

ficiency and throughput for virtualization and containerization. Our analysis and experience

can enable VMs or containers to create a cloud‐based environment that can deliver the scien‐

tific workloads. One of the most promising benchmarks, HEPSPEC06, is used for perfor‐

mance evaluation, enhancements, and accomplishments in cloud computing environments.

Our experimental results show that the overall performance and efficiency of VMs and con‐

tainers can be enhanced only when we choose the minimum cores for a VM or container, and

overall throughput of CPU cores is also able to be maximized when we make hyperthread‐

ing enabled. Pinning and isolation of physical hosts’ CPU cores can further enhance perfor‐

mance in the cloud environment, especially for containerization. This research finds that

there is a need for tuning in the virtualization and containerization layers that directly affect

the performance in order to achieve the best performance and increase the throughput of

virtual machines and containers.

Although our benchmarking is valuable in a data‐intensive cloud computing envi‐

ronment, it should be noted that our benchmarking has a limitation. The experimental

results described in this paper are evaluating the differences among bare metal, VM, and

container in a cloud‐based scientific computing environment. Since HEPSPEC06 mainly

focuses on science‐oriented computing, applications of benchmarking may be limited

when comparing with other similar benchmarks that do not seriously consider a da‐

ta‐intensive environment like high energy physics. Therefore, meaningful future re‐

search would be to find and evaluate specific working applications that show perfor‐

mance gaps between HEPSPEC06 and other benchmarking tools.

Figure 6. The average VMs performance achievement by each test case.

6. Conclusions

In this paper, we discuss the issues which are related to efficiency and throughput
of virtual machines and containers. The performance overhead problems to scientific
workloads in a cloud computing environment are evaluated with our configuration scenar-
ios. We propose an approach that combines the four techniques and improves the overall
throughput and performance of virtual machines and containers. We present a balanced
view of efficiency and throughput for virtualization and containerization. Our analysis
and experience can enable VMs or containers to create a cloud-based environment that can
deliver the scientific workloads. One of the most promising benchmarks, HEPSPEC06, is
used for performance evaluation, enhancements, and accomplishments in cloud computing
environments. Our experimental results show that the overall performance and efficiency
of VMs and containers can be enhanced only when we choose the minimum cores for a
VM or container, and overall throughput of CPU cores is also able to be maximized when
we make hyperthreading enabled. Pinning and isolation of physical hosts’ CPU cores can
further enhance performance in the cloud environment, especially for containerization.
This research finds that there is a need for tuning in the virtualization and containerization
layers that directly affect the performance in order to achieve the best performance and
increase the throughput of virtual machines and containers.

Appl. Sci. 2021, 11, 993 12 of 13

Although our benchmarking is valuable in a data-intensive cloud computing envi-
ronment, it should be noted that our benchmarking has a limitation. The experimental
results described in this paper are evaluating the differences among bare metal, VM, and
container in a cloud-based scientific computing environment. Since HEPSPEC06 mainly
focuses on science-oriented computing, applications of benchmarking may be limited when
comparing with other similar benchmarks that do not seriously consider a data-intensive
environment like high energy physics. Therefore, meaningful future research would be
to find and evaluate specific working applications that show performance gaps between
HEPSPEC06 and other benchmarking tools.

Author Contributions: Conceptualization, S.A.R.S.; methodology, S.A.R.S., T.-H.K., and S.-Y.N.;
software, S.A.R.S. and A.W.; validation, S.A.R.S. and H.Y.; formal analysis, S.A.R.S. and A.W.;
resources, S.-Y.N. and H.Y.; writing—original draft preparation, S.A.R.S. and A.W.; writing—review
and editing, S.-Y.N., M.-H.K., T.-H.K., and H.Y.; supervision, S.-Y.N. and T.-H.K.; funding acquisition,
S.-Y.N. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No. NRF-2008-00458) and Korea Institute of Science and
Technology Information.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to extend our sincere thanks to Global Science experi-
mental Data hub Center at Korea Institute of Science Technology Information for their supporting
our research and providing the experimental environment.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Armbrust, M.; Fox, A.; Griffith, R.; Anthony, D.J.; Katz, R.; Konwinski, A.; Lee, G.; Patterson, D.; Rabkin, A.; Stoica, I.; et al. A

view of cloud computing. Commun. ACM 2010, 53, 50–58. [CrossRef]
2. Ostermann, S.; Iosup, A.; Yigitbasi, N.; Prodan, R.; Fahringer, T.; Epema, D. A performance analysis of EC2 cloud computing

services for scientific computing. In Cloud Computing; Springer: Berlin/Heidelberg, Germany, 2010; pp. 115–131.
3. Foster, I.; Zhao, Y.; Raicu, I.; Lu, S. Cloud computing and grid computing 360-degree compared. In Proceedings of the 2008 Grid

Computing Environments Workshop, Austin, TX, USA, 12–16 November 2008; pp. 1–10.
4. Wang, L.; Zhan, J.; Shi, W.; Liang, Y.; Yuan, L. In cloud, do mtc or htc service providers benefit from the economies of

scale? In Proceedings of the 2nd Workshop on Many-Task Computing on Grids and Supercomputers, Portland, OR, USA,
16 November 2009; Association for Computing Machinery: New York, NY, USA, 2009; p. 7.

5. Beloglazov, A.; Buyya, R. Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient
dynamic consolidation of virtual machines in cloud data centers. Concurr. Comput. Pract. Exp. 2012, 24, 1397–1420. [CrossRef]

6. Vecchiola, C.; Pandey, S.; Buyya, R. High-performance cloud computing: A view of scientific applications. In Proceed-
ings of the 10th International Symposium on Pervasive Systems, Algorithms, and Networks (ISPAN), Kaohsiung, Taiwan,
14–16 December 2009; pp. 4–16.

7. OpenStack an Open Source Cloud Management Platform. Available online: https://www.openstack.org (accessed on
12 December 2014).

8. HEPSPEC06 Benchmark. Available online: https://w3.hepix.org/benchmarking (accessed on 15 October 2015).
9. Rao, J.; Wang, K.; Zhou, X.; Xu, C.Z. Optimizing virtual machine scheduling in NUMA multicore systems. In Proceed-

ings of the IEEE 19th International Symposium on High Performance Computer Architecture (HPCA2013), Shenzhen, China,
23–27 February 2013; pp. 306–317.

10. Ibrahim, K.Z.; Hofmeyr, S.; Iancu, C. Characterizing the Performance of Parallel Applications on Multi-socket Virtual Machines.
In Proceedings of the 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, Newport Beach, CA,
USA, 23–26 May 2011; pp. 1–12.

11. Mao, M.; Humphrey, M. A performance study on the vm startup time in the cloud. In Proceedings of the IEEE Fifth International
Conference on Cloud Computing, Honolulu, HI, USA, 24–29 June 2012.

12. Xu, F.; Liu, F.; Jin, H.; Vasilakos, A.V. Managing performance overhead of virtual machines in cloud computing: A survey, state of
the art, and future directions. Proc. IEEE 2013, 102, 11–31. [CrossRef]

http://doi.org/10.1145/1721654.1721672
http://doi.org/10.1002/cpe.1867
https://www.openstack.org
https://w3.hepix.org/benchmarking
http://doi.org/10.1109/JPROC.2013.2287711

Appl. Sci. 2021, 11, 993 13 of 13

13. Podzimek, A.; Bulej, L.; Chen, L.; Binder, W.; Tuma, P. Analyzing the Impact of CPU Pinning and Partial CPU Loads on
Performance and Energy Efficiency. In Proceedings of the 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), Shenzhen, China, 4–7 May 2015; pp. 1–10.

14. Varrette, S.; Plugaru, V.; Guzek, M.; Besseron, X.; Bouvry, P. HPC Performance and Energy-Efficiency of the OpenStack Cloud
Middleware. In Proceedings of the 43rd International Conference on Parallel Processing Workshops (ICCPW), Minneapolis, MN,
USA, 9–12 September 2014; pp. 419–428.

15. High-Performance Linpack (HPL). Available online: http://www.netlib.org/benchmark/hpl/ (accessed on 8 July 2020).
16. Graph500. Large Scale Benchmarks. Available online: https://graph500.org/ (accessed on 1 August 2020).
17. Wang, L.; Kunze, M.; Tao, J. Performance evaluation of virtual machine based Grid workflow system. Concurr. Comput. Pract. Exp.

2008, 20, 1759–1771. [CrossRef]
18. Jackson, K.R.; Ramakrishnan, L.; Muriki, K.; Canon, S.; Cholia, S.; Shalf, J.; Wasserman, H.J.; Wright, N.J. Performance analysis of

high performance computing applications on the amazon web services cloud. In Proceedings of the IEEE Second International
Conference on Cloud Computing Technology and Science (CloudCom), Indianapolis, IN, USA, 30 November–3 December 2010;
pp. 159–168.

19. Barik, R.K.; Lenka, R.K.; Rao, K.R.; Ghose, D. Performance analysis of virtual machines and containers in cloud computing.
In Proceedings of the International Conference on Computing, Communication and Automation (ICCCA), Noida, India,
29–30 April 2016.

20. Yan, J.; Zhang, H.; Xu, H.; Zhang, Z. Discrete pso-based workload optimization in virtual machine placement. Pers. Ubiquitous Comput.
2018, 22, 589–596. [CrossRef]

21. Mavridis, I.; Karatza, H. Combining containers and virtual machines to enhance isolation and extend functionality on cloud
computing. Future Gener. Comput. Syst. 2019, 94, 674–696. [CrossRef]

22. Chae, M.; Lee, H.; Lee, K. A performance comparison of linux containers and virtual machines using Docker and KVM.
Clust. Comput. 2019, 22, 1765–1775. [CrossRef]

23. Bui, B.; Mvondo, D.; Teabe, B.; Jiokeng, K.; Wapet, L.; Tchana, A.; Depalma, N. When extended para-virtualization (xpv) meets
numa. In Proceedings of the Fourteenth EuroSys Conference, Dresden, Germany, 25–28 March 2019; Association for Computing
Machinery: New York, NY, USA, 2019; pp. 1–15.

24. Li, J.; Qian, J.; Guan, H. A Holistic Model for Performance Prediction and Optimization on NUMA-based Virtualized Systems.
In Proceedings of the INFOCOM 2019—IEEE Conference on Computer Communications, Paris, France, 29 April–2 May 2019;
pp. 352–360.

25. Intel Hyper-Threading Technology: Technical User Guide 2013. Available online: https://www.utdallas.edu/~{}edsha/parallel/
2010S/Intel-HyperThreads.pdf (accessed on 5 April 2020).

26. Integer Component of SPEC CPU2000. Available online: https://www.spec.org/cpu2000/CINT2000/ (accessed on 10 March 2020).

http://www.netlib.org/benchmark/hpl/
https://graph500.org/
http://doi.org/10.1002/cpe.1328
http://doi.org/10.1007/s00779-018-1111-z
http://doi.org/10.1016/j.future.2018.12.035
http://doi.org/10.1007/s10586-017-1511-2
https://www.utdallas.edu/~{}edsha/parallel/2010S/Intel-HyperThreads.pdf
https://www.utdallas.edu/~{}edsha/parallel/2010S/Intel-HyperThreads.pdf
https://www.spec.org/cpu2000/CINT2000/

	Introduction
	Related Work
	Proposed Solution
	Overview
	Experimental Setup

	Evaluation and Test Cases
	Test-1
	Test-2
	Test-3
	Test-4

	Results and Discussions
	Conclusions
	References

