Nonlinear Dynamics and Stability Analysis of a Three-Cell Flying Capacitor DC-DC Converter
Abstract
:1. Introduction
2. System Description
2.1. Power Stage Circuit
2.2. Operating Mode under Study
2.3. Discrete-Time Controller
3. Nonlinear Behavior from Time-Domain Numerical Simulations
4. Theoretical Background for Stability Analysis of Limit Cycles
4.1. Limit Cycles Computation
4.2. Accurate Stability Analysis Using Floquet Theory
4.3. Approximate Expression of the Monodromy Matrix and Stability Region in the Parametric Space
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Erickson, R.W.; Maksimovic, D. Fundamentals of Power Electronics; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Meynard, T.A.; Fadel, M.; Aouda, N. Modeling of Multilevel Converters. IEEE Trans. Ind. Electron. 1997, 44, 356–364. [Google Scholar] [CrossRef]
- Meynard, T.A.; Foch, H.; Thom, P. Multicell Converters: Basic concepts and Industry Applications. IEEE Trans. Ind. Electron. 2002, 49, 955–964. [Google Scholar] [CrossRef]
- El Aroudi, A.; Debbat, M.; Martinez-Salamero, L. Poincaré maps modeling and local orbital stability analysis of discontinuous piecewise affine periodically driven systems. Nonlinear Dyn. 2007, 50, 431–445. [Google Scholar] [CrossRef]
- Deane, J.H.B.; Hamill, D.C. Instability, subharmonics and chaos in power electronic systems. IEEE Trans. Power Electron. 1990, 5, 260–268. [Google Scholar] [CrossRef]
- Tse, C.K. Flip bifurcation and chaos in three-state boost switching regulators. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1994, 41, 16–23. [Google Scholar] [CrossRef]
- Tse, C.K. Chaos from a Buck switching regulator operating in discontinuous mode. Int. J. Cir. Theor. Appl. 1994, 22, 262–278. [Google Scholar] [CrossRef]
- Wolf, D.; Verghese, M.; Sanders, S.R. Bifurcation of Power Electronic Circuits. J. Frankl. Inst. 1994, 331B, 957–999. [Google Scholar] [CrossRef]
- Chakrabarty, K.; Poddar, G.S.; Banerjee, S. Bifurcation behavior of the buck converter. IEEE Trans. Power Electron. 1996, 11, 439–447. [Google Scholar] [CrossRef]
- Fossas, E.; Olivar, G. Study of chaos in the Buck converter. IEEE Trans. Circuits Syst. 1996, 43, 13–25. [Google Scholar] [CrossRef] [Green Version]
- di Bernardo, M.; Garofalo, F.; Glielmo, L.; Vasca, F. Switchings, bifurcations, and Chaos in DC-DC converters. IEEE Trans. Circuits Syst. 1998, 48, 133–141. [Google Scholar] [CrossRef]
- El Aroudi, A.; Benadero, L.; Toribio, E.; Olivar, G. Hopf bifurcation and chaos from torus breakdown in a PWM voltage-controlled DC-DC boost converter. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1999, 46, 1374–1382. [Google Scholar] [CrossRef]
- Robert, B.; Robert, C. Border Collision Bifurcations in a One-Dimensional Piecewise Smooth Map for a PWM Current-Programmed H-Bridge Inverter. Int. J. Control 2002, 7, 1356–1367. [Google Scholar] [CrossRef]
- Mazumder, S.K.; Nayfeh, A.H.; Borojevi, D. Theoretical and experimental investigation of the fast- and slow-scale instabilities of a DC-DC converter. IEEE Trans. Power Electron. 2001, 16, 201–216. [Google Scholar] [CrossRef]
- Zhusubaliyev, Z.T.; Soukhoterin, E.A.; Mosekilde, E. Quasi-periodicity and border-collision bifurcations in a DC-DC converter with pulsewidth modulation. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 2003, 50, 1047–1057. [Google Scholar] [CrossRef]
- Banerjee, S.; Verghese, G.C. Nonlinear Phenomena in Power Electronics—Attractors, Bifurcations, Chaos, and Nonlinear Control; IEEE Press: New York, NY, USA, 2001. [Google Scholar]
- Tse, C.K. Complex Behavior of Switching Power Converters; CRC Press: New York, NY, USA, 2003. [Google Scholar]
- Chua, L.O. Special issue on chaos in electronic systems; tutorial and descriptive articles for the non-specialist. Proc. IEEE 1987, 75, 1022–1032. [Google Scholar]
- Hamill, D. Power electronics: A field rich in nonlinear dynamics. In Proceedings of the Workshop on Nonlinear Dynamics of Electronic Systems, Dublin, Ireland, 28–29 July 1995; pp. 164–179. [Google Scholar]
- El Aroudi, A.; Debbat, M.; Giral, R.; Benadero, L.; Olivar, G.; Toribio, E. Bifurcations in DC-DC switching converters: Review of methods and applications. Int. J. Bifurc. Chaos 2005, 15, 1549–1578. [Google Scholar] [CrossRef]
- El Aroudi, A.; Giaouris, D.; Iu, H.H.; Hiskens, I.A. A Review on Stability Analysis Methods for Switching Mode Power Converters. IEEE J. Emerg. Sel. Top. Circuits Syst. 2015, 5, 302–315. [Google Scholar] [CrossRef]
- El Aroudi, A.; Haroun, R.; Cid-Pastor, A.; Martinez-Salamero, L. Suppression of Line Frequency Instabilities in PFC AC-DC Power Supplies by Feedback Notch Filtering the Pre-Regulator Output Voltage. IEEE Trans. Circuits Syst. I Regul. Pap. 2013, 60, 796–809. [Google Scholar] [CrossRef]
- Kassakian, J.G.; Schlecht, M.F.; Verghese, G.C. Principles of Power Electronics; Addison-Wesley: New York, NY, USA, 1991. [Google Scholar]
- Leine, R.L.; Nijemeijer, H. Dynamics and Bifurcations of Non-Smooth Mechanical Systems; Lecture Notes in Applied and Computational Mechanics; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Giaouris, D.; Maity, S.; Banerjee, S.; Pickert, V.; Zahawi, B. Application of Filippov method for the analysis of subharmonic instability in DC-DC converters. Int. J. Circuit Theory Appl. 2009, 37, 899–919. [Google Scholar] [CrossRef] [Green Version]
- Floquet, G. Sur les équations différentielles linéaires à coefficients périodiques. Ann. Sci. de L’E.N.S. 2eme Ser. 1883, 12, 47–88. [Google Scholar] [CrossRef] [Green Version]
- Aizerman, M.A.; Gantmakher, F.R. On the stability of Periodic Motions. J. Appl. Math. Mech. 1958, 22, 1065–1078. [Google Scholar] [CrossRef]
- Filippov, A.F. Differential Equations with Discontinuous Righthand Side; Kluwer Academic: Dordrecht, The Netherlands, 1988. [Google Scholar]
- Robert, B.; El Aroudi, A. Discrete time model of a multi-cell dc/dc converter: Non linear approach. Math. Comput. Simulat. 2006, 71, 310–319. [Google Scholar] [CrossRef]
- El Aroudi, A.; Robert, B.; Cid-Pastor, A.; Martinez-Salamero, L. Modeling and Design Rules of a Two-Cell Buck Converter under a Digital PWM Controller. IEEE Trans. Power Electron. 2008, 23, 859–870. [Google Scholar] [CrossRef]
- El Aroudi, A.; Angulo, F.; Olivar, G.; Robert, B.; Feki, M. Stabilizing a Two-Cell DC-DC buck Converter by Fixed Point Induced Control. Int. J. Bifurc. Chaos 2009, 19, 2043–2057. [Google Scholar] [CrossRef]
- Kaoubaa, K.; Pelaez-Restrepo, J.; Feki, M.; Robert, B.G.M.; El Aroudi, A. Improved static and dynamic performances of a two-cell DC-DC buck converter using a digital dynamic time-delayed control. Int. J. Circ. Theor. App. 2012, 40, 395–407. [Google Scholar] [CrossRef]
- El Aroudi, A.; Giaouris, D.; Mandal, M.; Banerjee, S.; Al-Hindawi, M.; Abusorrah, A.; Al-Turki, Y. Complex non-linear phenomena and stability analysis of interconnected power converters used in distributed power systems. IET Power Electron. 2016, 9, 855–863. [Google Scholar] [CrossRef] [Green Version]
- Reznikov, B.; Ruderman, A.; Galanina, V. Analysis of Transients in a Three-Level DC–DC Flying Capacitor Converter. Time Domain Approach. Power Electron. Drives 2019, 4, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Patino, D.; Bâja, M.; Commerais, H.; Riedinger, P.; Buisson, J.; Iung, C. Alternative control methods for DC-DC converters. An application to a four-level three-cell DC-DC converter. Int. J. Robust Nonlinear Control 2011, 21, 1112–1133. [Google Scholar] [CrossRef]
- Asmarashid, B.P.; Koichi, M.; Koji, O.; Jun-ichi, I. Size Reduction of DC-DC Converter using Flying Capacitor Topology with Small Capacitance. IEEE J. Ind. Appl. 2014, 3, 446–454. [Google Scholar]
- Abdelhamid, E.; Corradini, L.; Mattavelli, P.; Bonanno, G.; Agostinelli, M. Sensorless Stabilization Technique for Peak Current Mode Controlled Three-Level Flying-Capacitor Converters. IEEE Trans. Power Electron. 2020, 35, 3208–3220. [Google Scholar] [CrossRef]
- Bonnano, G.; Agostinelli, M.; Corradini, L.; Eslam, A.; Mattavelli, P. Digital Predictive Current-Mode Control of Three-Level Flying Capacitor Buck Converters Flying Capacitor Balancing in a Multi-Level Voltage Converter. U.S. Patent 10,686,370, 16 June 2020. [Google Scholar]
- Abdelmoula, M.; Robert, B. Bifurcations and Chaos in a Photovoltaic Plant. Int. J. Bifurc. Chaos 2019, 29, 1950102. [Google Scholar] [CrossRef]
- Koubaâ, K.; Feki, M. Discrete-time modelling and behaviour analysis of an N-cell DC/DC buck converter. Int. J. Eng. Syst. Model. Simul. 2016, 8, 54–64. [Google Scholar] [CrossRef]
- Gkizas, G.; Giaouris, D.; Pickert, V. A new method on the limit cycle stability analysis of digitally controlled interleaved DC–DC converters. Control Eng. Pract. 2019, 9, 111–122. [Google Scholar] [CrossRef]
- Ogata, K. Discrete-Time Control Systems, 2nd ed.; Prentice Hall: Minneapolis, MN, USA, 1995. [Google Scholar]
Configurations | A Matrices | B Vectors | Charge | Charge | L Charge |
---|---|---|---|---|---|
discharged | charged | charged | |||
discharged | maintained | discharged | |||
maintained | discharged | charged | |||
charged | discharged | discharged | |||
charged | maintained | charged | |||
maintained | charged | discharged |
L | R | ||||||
---|---|---|---|---|---|---|---|
1200 V | 1 mH | 22 μF | 22 μF | 40 kHz | 10 Ω | 0.01 V−1 | 0.01 V−1 |
(Exact) | (Approx) | μ (Exact) | μ (Approx) | Stability | |
---|---|---|---|---|---|
0.04 | stable | ||||
0.05 | stable | ||||
0.06 | unstable | ||||
0.07 | unstable |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Aroudi, A.; Cañas-Estrada, N.; Debbat, M.; Al-Numay, M. Nonlinear Dynamics and Stability Analysis of a Three-Cell Flying Capacitor DC-DC Converter. Appl. Sci. 2021, 11, 1395. https://doi.org/10.3390/app11041395
El Aroudi A, Cañas-Estrada N, Debbat M, Al-Numay M. Nonlinear Dynamics and Stability Analysis of a Three-Cell Flying Capacitor DC-DC Converter. Applied Sciences. 2021; 11(4):1395. https://doi.org/10.3390/app11041395
Chicago/Turabian StyleEl Aroudi, Abdelali, Natalia Cañas-Estrada, Mohamed Debbat, and Mohamed Al-Numay. 2021. "Nonlinear Dynamics and Stability Analysis of a Three-Cell Flying Capacitor DC-DC Converter" Applied Sciences 11, no. 4: 1395. https://doi.org/10.3390/app11041395
APA StyleEl Aroudi, A., Cañas-Estrada, N., Debbat, M., & Al-Numay, M. (2021). Nonlinear Dynamics and Stability Analysis of a Three-Cell Flying Capacitor DC-DC Converter. Applied Sciences, 11(4), 1395. https://doi.org/10.3390/app11041395