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Featured Application: Online wheel condition monitoring for condition based and predictive
maintenance.

Abstract: Continuous wheel condition monitoring is indispensable for the early detection of wheel
defects. In this paper, we provide an approach based on cepstral analysis of axle-box accelerations
(ABA). It is applied to the data in the spatial domain, which is why we introduce a new data
representation called navewumber domain. In this domain, the wheel circumference and hence the
wear of the wheel can be monitored. Furthermore, the amplitudes of peaks in the navewumber
domain indicate the severity of possible wheel defects. We demonstrate our approach on simple
synthetic data and real data gathered with an on-board multi-sensor system. The speed information
obtained from fusing global navigation satellite system (GNSS) and inertial measurement unit (IMU)
data is used to transform the data from time to space. The data acquisition was performed with a
measurement train under normal operating conditions in the mainline railway network of Austria.
We can show that our approach provides robust features that can be used for on-board wheel
condition monitoring. Therefore, it enables further advances in the field of condition based and
predictive maintenance of railway wheels.

Keywords: cepstrum; condition monitoring; condition-based maintenance; navewumber; vibration
analysis; wheel defects

1. Introduction

The condition of train wheels has an impact on the passengers’ comfort, the rolling
noise generation and the deterioration of railway infrastructure and, hence, the safety of
railway operations. Severe wheel defects cause high dynamical load, which can damage
the railway track and shorten the life span of railway bridges [1]. There are several
types of wheel defects and wear mechanisms. An overview of different wheel tread
irregularities is given in [2]. Prominent examples are isolated wheel flats, polygonal wheels,
corrugation, spalling, shelling and roughness. All these defects have different amplitudes
and wavelengths but all increase the dynamic wheel–rail contact forces. Additionally,
permanent wheel wear leads to a constant reduction of the wheel diameter that amount
to several centimeters over the wheel’s life span. In several studies, the effects of wheel
defects on the dynamic wheel–rail interaction have been investigated, e.g., Bian et al. [3]
used a finite element model to analyze the impact induced by a wheel flat. Bogacz and
Frischmuth [4] studied the rolling motion of a polygonalized railway wheel and in [5], a
method for the computation of the wheel–rail surface degradation in a curve is explained.
Casanueva et al. [6] address the issues of model complexity, accuracy and the input needed
for wheel and track damage prediction using vehicle–track dynamic simulations.
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The traditional maintenance strategies of wheelsets are based on the removal of the
wheelset at given intervals. However, from a safety, environmental and economic point
of view, the early detection of wheel defects is important. Wayside monitoring systems
are commonly used to detect faulty wheelsets in service. Mosleh et al. [7] investigated an
envelope spectral analysis approach to detect wheel flats with wayside sensors using a
range of 3D simulations based on a train–track interaction model. In contrast to wayside
systems, on-board monitoring systems have traditionally been focused on the detection
of track defects [8–12] but are more and more considered for vehicle monitoring [13]. The
advantage of on-board monitoring systems is that the wheel is monitored continuously
and not only when the vehicle passes a track side monitoring site. This allows for the
timely detection of emerging wheel defects [14]. Furthermore, if the on-board monitoring
system provides positioning, the occurrence of a wheel defect can be linked to a position
on the track. The track at this position can then be inspected and in case a track defect is
identified, appropriate maintenance actions can be issued to avoid further damage to the
rail and other passing vehicles.

Previous studies have also shown that train-borne accelerometers can be used to
monitor the wheel. In [15] a methodology is proposed to monitor the wheel diameter
by means of onboard vibration measurements. Jia and Dhanasekar [16] used wavelet
approaches for monitoring rail wheel flat damage from bogie vertical acceleration signa-
tures. Several methods based on the analysis of axle-box acceleration (ABA) have been
proposed. Bosso et al. [14] used vertical ABA to detect wheel flat defects. In [17], a data
driven approach to estimate the length of a wheel flat is proposed. Bai et al. [18] presented
a frequency-domain image classification method to analyze wheel flats.

In general, a trend can be noticed in sensor data analysis and condition monitoring
towards analysis techniques based on data driven machine learning approaches. They
can be used to find patterns, i.e., clusters and for outlier and novelty detection in an unsu-
pervised manner. Furthermore, supervised machine learning can be used to predict class
memberships and their probabilities and to estimate relationships between independent
variables, e.g., health status indices, and features extracted from the data. These methodolo-
gies are quite powerful. They can approximate complex and non-linear relationships and
need little or no a priori information. Therefore, they are often preferred over model-based
approaches. However, since machine learning techniques make use of the underlying
statistics in the data, they rely on the fact that sufficient data are available. In addition,
supervised machine learning approaches need sufficient labeled data for training. A strong
focus on machine learning techniques bears the risk that powerful traditional signal pro-
cessing techniques are overseen, even when they might be the right choice for a specific
data analysis problem. One example of such a powerful but uncommonly used tool is the
cepstrum analysis. It dates back to the 1960s and 1970s, when it was introduced to analyze,
e.g., echoes and reverberations in radar, sonar, speech and seismic data. For a detailed
overview see [19,20] and the references therein. The power cepstrum was first defined
by Bogert et al. [21] as the power spectrum of the logarithm of the power spectrum of a
signal. In contrast to the complex cepstrum it does not consider any phase information and
therefore only involves the logarithm of real, positive numbers. Bracciali and Cascini [22]
used cepstrum analysis of rail acceleration to detect wheel flats of railway wheels. They
identified the power cepstrum as the best instrument to reveal periodic acceleration peaks
as those excited by wheel flats. Here, we adapt this methodology to the analysis of ABA
data for wheel condition monitoring. Specifically, and in analogy to the estimation of
the arrival times of echoes and their relative amplitudes, we use the power cepstrum to
estimate the wheel circumference and the relative contribution of the wheel imperfections
to the excited wheel vibrations.

The main contribution of this research is to introduce a simple, robust and yet precise
methodology to extract wheel wear related features from the ABA signals without relying
on a priori knowledge or training data. This methodology relies on the processing of ABA
data in the distance domain. That is, the ABA time series need to be transformed using
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speed information so as to obtain spatial acceleration signatures. Hence, the vehicle speed
must be estimated using further onboard sensors, namely a global navigation satellite
system (GNSS) receiver [23] and an inertial measurement unit (IMU) [24]. The estimation
relies on Kalman filter methods [25].

The remainder of the paper is structured as follows. Section 2 provides the theoretical
background by reviewing the calculation of the power cepstrum and introducing the term
navewumber. In Section 3, the sensitivity of the cepstral analysis to different wheel surface
defects is tested by means of simple synthetic data. In Section 4, experimental data are used
to test the performance of the cepstrum under real-world conditions. Data pre-processing
and vehicle speed estimation is also explained in this section. In Section 5, the results are
discussed and Section 6 provides a final conclusion.

2. Cepstral Analysis and Navewumber Domain

The power cepstrum Cp(x̃) can be defined as the power spectrum of the logarithm of
the power spectrum of a function f (x):

C f (x̃) = |F−1{log(|F{ f (x)}|2)}|2. (1)

Here, the Fourier transform F{·} is calculated by using the fast Fourier transform
(FFT) algorithm. The application of the forward FFT or the inverse FFT to the logarithm of
the power spectrum in Equation (1) provides the same result apart from a scaling factor.
The independent variable x̃ has the same dimension as x and is originally called quefrency
to indicate that it is the inverse of the frequency, which is the case for the cepstrum of a time
series. Accordingly, the independent variable of the cepstrum of data in the spatial domain
is dimensionally a distance. Following the nomenclature introduced by Borgert et al. [21],
we call the independent variable of the cepstrum navewumber when its dimension is a
distance, since in this case it is the inverse of the wavenumber. Furthermore, we call the
cepstral domain navewumber domain. In the following the term cepstrum is always used
for the power cepstrum.

The cepstrum can be used to convert a convolution into the addition of the individual
components and thus a complicated deconvolution procedure can be performed by simply
subtracting the undesired components in the cepstral domain. This procedure is called
homomorphic deconvolution [26]. According to Equation (1), the cepstrum of a continuous
function y(x) consisting of two components s(x) and r(x) coupled via convolution [∗] can
be calculated by the following sequence of mathematical operations:

1. The power spectrum |Y(k)|2 of the function

y(x) = s(x) ∗ r(x), (2)

is calculated:
|Y(k)|2 = |S(k)|2·|R(k)|2, (3)

so that the convolution transforms to a simple multiplication in the Fourier domain.
2. The logarithm of the power spectrum is taken:

log(|Y(k)|2) = log(|S(k)|2) + log(|R(k)|2). (4)

Thus, the components are coupled by addition.
3. Applying the inverse Fourier transform to the logarithmic power spectrum log(|Y(k)|2)

and finally squaring the results yield the cepstrum of y(x):

Cy(x̃) = Cs(x̃) + Cr(x̃) + cross-product term. (5)

Due to the linearity of the Fourier transform, the components in the cepstrum are
still coupled by addition. The final squaring operation produces a cross product term.



Appl. Sci. 2021, 11, 1432 4 of 12

However, if the cepstra of s and r occupy different navewumber ranges, this term can be
omitted [27] and Equation (5) becomes

Cy(x̃) = Cs(x̃) + Cr(x̃). (6)

The cross-terms can also be avoided if the final squaring operation is not included
in Equation (1).

Periodic components of the logarithmic power spectrum are reduced to series of
spikes (Dirac delta functions) in the cepstral domain. Ulrych [27] found out that if the
spectrum of a signal is smooth it maps around the origin in the navewumber domain,
while the cepstrum of a periodic impulse sequence, as excited by a wheel irregularity, is
also an impulse sequence with the same period. This means that in the cepstrum of ABA
data, the component of a wheel defect can simply be separated from the component of the
transmission path, i.e., the cepstra of the impulse responses of the track, wheel and sensor.
Hence, bypassing the transmission path makes trend analyses robust towards changes of
the mechanical structures of the components, which influence the signal transmission. This
property makes the cepstrum a promising tool for wheel monitoring.

3. Synthetic Data Analysis

Simple synthetic data are used to investigate the sensitivity of the cepstrum to the
severity and type of different wheel surface defects and to rail roughness.

3.1. Synthetic Models

The wheel–rail contact vibrations are excited by the unevenness of the wheel and
rail. Here, we employ a “moving irregularity model”, where the wheel is static and the
wheel–rail surface is pulled between the wheel and rail [28]. Since the cepstrum analysis
allows to bypass the transmission path, only the excitation signal is considered in the
synthetic data. The impulse response of the resulting relative displacement can then be
written as:

y(x) = uw(x) + ur(x), (7)

where uw, ur are the surface profile functions of the wheel and rail, respectively, with
respect to the distance x covered by the train. The wheel profile function is periodic with
a period of L = 2πRw, where Rw is the wheel radius. Thus, it can be expressed by a
convolution of the wheel surface profile pw with an impulse train constructed from Dirac
delta functions:

uw(x) = pw(x) ∗
n=N

∑
n=0

δ(x− nL), (8)

with N the number of wheel rotations. The cepstrum of a periodic series of delta functions
with a period L is also a periodic delta function with the period of L. Therefore, according
to Equations (2)–(6), the cepstrum of uw(x) can be written as:

C{uw(x)}(x̃) = C{pw(x)}(x̃) +
n=N

∑
n=0

δ(x̃− nL), (9)

The particular contribution of the left and right term of the cepstrum in Equation (9)
depends on the shape of the wheel surface profile. The smoother the wheel the higher the
contribution of the left term. From Equations (8) and (9) one can see that if pw is a spike with
a certain amplitude, the cepstrum reduces to a series of spikes with the same amplitude. In
contrast, if pw is a sinusoid, as one would expect of a perfectly periodically polygonized
wheel, the right term in Equation (9) would vanish. In general, the cepstrum provides a
measure of the periodicity, namely the wheel circumference, and the repeatability of the
ABA signal.
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In the following we consider different models with a length of 15 m (L = 3 m, N = 5,
see Figure 1). The models represent a wheel with a flat spot of different length and depth.
The vertical profile of the wheel flat is modelled as:

pw(x) =


0, 0 ≤ x < L/2− l/2,

− d
2
(
1− cos 2πx

l
)
, L/2− l/2 ≤ x ≤ L/2 + l/2,

0, L/2 + l/2 < x ≤ L,

(10)

where l and d are the wheel flat length and depth, respectively. Additionally, wheel and
track roughness are modeled as a Gaussian random signal with varying standard deviation
(std). The parameters of the different models can be found in Table 1.

Table 1. Parameters of the different relative displacement models.

Model Number Wheel Flat Length in
mm

Wheel Flat Depth in
mm

Wheel Roughness Std
in mm

Track Roughness
Std in mm

1 50 0.3 - 0.01
2 50 0.6 - 0.01
3 100 0.3 - 0.01
4 50 0.3 0.01 0.01
5 50 0.3 0.05 0.01
6 50 0.3 0.01 0.002
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3.2. Cepstrum Analysis of Synthetic Data

A peak at a navewumber of 3 m can be noticed in the cepstra of all models (Figure 2).
It indicates the wheel circumference. Comparing the cepstra of the first three models shows
that with increasing wheel-flat depth the amplitude of this peak increases, while the length
of the wheel flat has the opposite effect. A longer wheel flat is smoother or less spiky and
the resulting harmonics in the spectrum are weaker, which leads to weaker peaks in the
cepstrum. The cepstra of models 4 and 5 indicate that an increase in wheel roughness
leads to an increase of the peak amplitude. However, comparing the cepstra of models 5
and 6 suggests that decreasing the amplitude of the rail roughness has a similar effect on
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the peak amplitude than increasing the amplitude of the wheel roughness. This can be
explained by applying Equations (2)–(6) to Equation (7):

C{y(x)}(x̃) = C{ur(x)}(x̃) +


∣∣∣∣∣F−1

{
log

(∣∣∣∣Uw(k)
Ur(k)

∣∣∣∣2 + 1

)}∣∣∣∣∣
2
(x̃). (11)
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The second term in Equation (11) shows that the power spectrum of the wheel profile
is scaled by the power spectrum of the rail profile before the inverse Fourier transform is
taken. Thus, the amplitude of the peak in the cepstrum at the wheel circumference can be
interpreted as the relation between the contributions of the wheel and track to the relative
displacement and hence to the dynamic wheel–rail interaction. If the rail roughness is zero,
Equation (11) reduces to Equation (9) and the amplitudes of the wheel irregularities have
no influence on the amplitude of the peaks at the wheel circumference.

4. Experimental Data

ABA data acquired during a measurement campaign in Austria were analyzed to
investigate the performance of the cepstrum algorithm at normal operating conditions.

4.1. Data Acquisition

The data have been acquired with a prototype of a multi-sensor system developed at
the German Aerospace Center (DLR, Institute of Transportation Systems, Braunschweig,
Germany). The system comprises a GNSS receiver with external antenna, an inertial
measurement unit and an analogue-to-digital converter with a three-axial analogue ABA
sensor. The data acquisition and processing has been implemented in Robot Operating
System (ROS). ABA data were recorded at a sampling rate of 20 kHz.

The system was installed on a measurement car of the Österreichische Bundesbahnen
(ÖBB, Vienna, Austria, Figure 3). Data were gathered throughout a two-weeks measure-
ment campaign in June 2019. During this campaign the measurement train was travelling
at normal operating speed of up to 200 km/h.
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4.2. Speed Estimation and Data Pre-Processing

Speed information is essential in the presented ABA data analysis methodology and
used to transform ABA time series into functions of a scalar along-track distance.

Speed information can be obtained from the GNSS and IMU signals. Both exhibit
characteristic errors. GNSS reception is compromised in areas where the satellite sight
is obstructed with, e.g., buildings or trees. Tunnels result in temporary signal outages.
MEMS-IMU show slowly drifting bias errors. These shortcomings were accommodated
in a sensor fusion framework with additional pre-processing steps to nevertheless obtain
accurate speed information at a constant 100 Hz rate.

A simple Kalman filter (KF) [25] scheme was employed to fuse the speed information
provided by the GNSS with the longitudinal IMU acceleration. Typical GNSS rates are
around 1 Hz. Combination with the IMU data at around 100 Hz in a KF yields constant
100 Hz speed rates even during GNSS outages. The signal characteristics of both GNSS
and IMU data depend on the vehicle state of motion. Therefore, a parallel motion and
standstill detection scheme was implemented. For instance, vehicle standstill results in low
instantaneous power of the IMU acceleration signals and can be detected accordingly. A
viable option is to run a KF with a state vector comprising the scalar along-track velocity,
acceleration and acceleration bias. Depending on the state of motion different KF time
and measurement updates are performed iteratively. For instance, in standstill the speed
and acceleration are known to be zero. Therefore, the bias can be observed in the noisy
acceleration data. In motion one observes the sum of the acceleration and the bias. GNSS
outlier removal can be performed by only using speed measurements with enough satellites
in view. In addition to the state vector, the KF provides uncertainty information in the
form of an estimation error covariance. The KF results were further improved offline
in the following way: From the motion detection results the data can be divided into
single sequences of motion, which we call journeys. For each journey the vehicle does not
change direction. Hence, its velocity does not change its sign. With a Rauch–Tung–Striebel
(RTS) smoother [25] the KF results of the individual journeys can be re-processed using an
iteration that resembles a KF run backwards in time. The RTS iterations result in smoother
state estimates and are especially beneficial in the presence of GNSS gaps.

The speed information is then used to separate the ABA time series into different
journeys with a defined minimal speed. Furthermore, the speed is used to convert the
data from time to distance domain. Subsequently, the data are resampled to an equidistant
interval of 0.001 m. Notice, that at lower speed the data might be down-sampled, so that an
anti-aliasing filter needs to be applied before resampling. Figure 4 depicts the track layout
and Figure 5 shows the raw ABA together with the enhanced speed data from an 11 km
journey with speeds between 10 m/s and 28 m/s.
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4.3. Cepstrum Analysis of Experimental Data

The cepstrum analysis is performed for the data represented in Figure 5. First, the
cepstrum was calculated for the whole length of the data (11,100 m). The cepstrum shows a
distinct peak at a navewumber of 3 m that corresponds to the wheel circumference (Figure 6).
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In order to investigate the changes of the cepstrum along the train journey, the data
was divided into segments of a certain length using a Hann window with 50% overlap.
Then the cepstrum was calculated for each window and the peak position and amplitude
determined between navewumbers of 2 m and 4 m. Different window sizes were tested.
The results are shown in Table 2. For each test the median peak position across all windows
was computed. Then, the percentage of windows in which the peak occurred in a range
of 0.01 m around the median peak position and the mean amplitude of those peaks were
determined. In Table 2, we refer to these peaks close to the median position as “correctly”
depicted peaks. It can be seen that the median peak position is constant for all tests. The
percentage of windows in which the peak position was close to the median position is
very similar for windows larger than 20 m. It can be assumed that smaller windows
are more affected by track singularities, which might mask the cepstral response of the
wheel. The mean amplitude of the peaks of the shortest windows might be affected for the
same reason.

Table 2. Results of segmented cepstrum analysis with different window sizes.

Window
Length in m

Number of
Windows

Median Peak
Position in m

Percentage of “Correctly”
Depicted Peaks

Mean Amplitude of
“Correctly” Depicted Peaks

10 2222 2.99 56.57 0.28
20 1112 2.99 79.77 0.52
40 557 2.99 86.71 0.53
80 279 2.99 86.02 0.52

160 140 2.99 89.29 0.51
320 71 2.99 84.51 0.56
640 36 2.99 88.89 0.52

1280 19 2.99 84.21 0.54

The position of the cepstrum peaks and their amplitudes for segments of 40 m length
are shown in Figure 7. The position of the cepstrum peak could be precisely recovered
apart from a few locations. Especially at the beginning and the end of the journey, where
the train speed is low, the algorithm struggles to find the right peak location. Therefore, we
assume that a minimum speed of 15 m/s is necessary to provide reliable results.
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5. Discussion
5.1. Wheel Condition Monitoring with ABA Sensors

Wheel monitoring with train-borne sensors means that each wagon needs to be
equipped with sensors. In contrast, wayside measurement systems are able to measure
conditions of all wheelsets of each passing train with one measurement system. However,
on-board systems provide a quasi-continuous monitoring of the wagon, while wayside
systems only provide data in certain time intervals, when the train passes. Another
advantage of train-borne measurement systems is that they can be used to monitor the track
as well, which could justify the high number of sensors. Using broad-band accelerometers
below the suspension, in contrast to sensors installed at the bogie or car body, allows to
monitor the wheel diameter with very high resolution, which is beneficial for wheel-wear
trend analysis. A comprehensive cost-benefit study of available wheel monitoring systems
for condition-based and predictive maintenance was not part of this work but should be
dealt with in future studies.

5.2. Navewumber Analysis

The navewumber analysis provides a robust tool to extract the wheel circumference
from the ABA data. It can be recovered with a resolution equal to the distance between
two measurement points, which depends on the train speed and sampling frequency. At
a speed of 20 m/s and sampling frequency of 20 kHz the cepstral resolution is 0.001. We
could show that between 80 and 90 percent of the calculated wheel circumferences were
within a range of two millimeters along the whole train journey.

The high resolution and accuracy allow precise monitoring of the wheel diameter
and therefore enable wheel-wear trend analysis. The approach provides reliable results
under varying operational conditions. We found out that a minimal train speed of 15 m/s
is sufficient to allow the estimation of the wheel circumference. Above this speed, the
navewumber analysis is not affected by the train speed but its accuracy directly depends
on the accuracy of the speed estimation that is used to transform the data from the time to
distance domain. Thus, short-term variations of the estimated wheel diameter most likely
relate to speed estimation errors. These Gaussian distributed errors can be estimated by
the positioning algorithms introduced in Section 4.2.

It is especially noteworthy that the track condition only has a minor effect on the
estimation of the wheel circumference. Even at track segments, where high wheel vibrations
were excited, the wheel circumference could be determined accurately.

Due to the conicity of the wheels, the gauge and curve radius might have an influence
on the estimated wheel circumference. However, the data analyzed in this study were
not affected by the track geometry. Furthermore, the wear-related reduction of the wheel
diameter is monotonic, while track-geometry changes only occur at certain track segments.
Therefore, trend analysis of the wheel wear is not influenced by the track geometry. The
influence of the track conditions can be further reduced by averaging over several track
segments or taking longer track segments into account.

The synthetic data analysis has shown that the absolute amplitude of the cepstral peak
can be similarly influenced by the track as well as wheel conditions. A mildly defected
wheel running on a track with low roughness can produce a peak similar to that produced
by a more severely defected wheel on a track with higher roughness. More generally, the
amplitudes of the peaks in the navewumber domain provide a measure of the repeatability
of the ABA signal and hence a measure of the relative contribution of the wheel condition
to the dynamic wheel rail interaction.

The discrimination of different wheel defects using cepstral peak position and ampli-
tude alone seems to be impracticable. Nevertheless, the cepstral features might complement
other data driven approaches for wheel defect diagnosis.

It should be noticed that the measurement campaign, which builds the data base for
this study did not focus on wheel monitoring but rather on testing the performance of the
multi-sensor system. Therefore, no ground truth on the actual condition of the wheel exists.
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Nevertheless, no severe wheel defects were observed during operation. Hence, further tests
including ground truth measurements and calibration by means of direct wheel profile
measurements are required to determine thresholds for wheel defect detection. In principal,
the methodology provided here, could be similarly used for the on-board detection of
bearing defects, which should be subject of future studies.

6. Conclusions

The early detection of wheel defects is an important asset management and mainte-
nance task. Wheel vibrations are excited by the imperfections of the wheel and rail and
hence contain information on the health status of both assets. These vibrations can be
measured by means of ABA sensors.

In this paper, a promising methodology, the cepstrum analysis, was tested for the ap-
plication to wheel condition monitoring. The cepstrum is powerful in revealing periodic
signals and separating them from the rest of the signal. This makes the cepstrum particularly
interesting for wheel monitoring. The vibration signal excited by the wheel profile is peri-
odic with respect to the wheel circumference. This periodicity changes with the rotational
frequency of the wheel and hence depends on the speed of the train. This dependency can
be compensated for by transforming the ABA data from the time to the spatial domain. To
accomplish that, accurate speed information is necessary, which was obtained by fusing
IMU and (E)GNSS data. The cepstral analysis was then performed in the spatial domain.
The obtained cepstrum itself is then in a spatial domain, which we called navewumber
domain to highlight the inverse relation to the wavenumber. The periodicity of the ABA
signal excited by the wheel is then represented by a peak in the cepstrum at a wavenumber
equal to the wheel circumference. The position of the peak precisely indicates the wheel
circumference and can therefore be used to monitor the wheel diameter. The amplitude
of this peak provides a measure of the relative contribution of the wheel to the combined
wheel–rail roughness. The cepstral wheel monitoring approach presented here requires
neither extensive hyperparameter testing nor training data. Ground truth data might be
used to define hard thresholds for the detection of certain track defects. However, we think
that it is more reasonable and also sufficient to monitor changes in the cepstral features and
thus detect deviations from the normal behavior that can be related to wheel defects.

Through the analysis of experimental data, we could show that the cepstrum analysis
is robust under varying operating conditions.

From these findings we conclude that cepstral analysis of ABA data is a powerful
methodology to monitor the wear-related reduction of the wheel circumference and to
detect and monitor the evolution of wheel surface defects.
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