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Abstract: The utilization of stereo cameras in robotic applications is presented in this paper. The use
of a stereo depth sensor is a principal step in robotics applications, since it is the first step in sequences
of robotic actions where the intent is to detect and extract windows and obstacles that are not meant
to be painted from the surrounding wall. A RealSense D435 stereo camera was used for surface
recording via a real-time, appearance-based (RTAB) mapping procedure, as well as to navigate the
painting robot. Later, wall detection and the obstacle avoidance processes were performed using
statistical filtering and a random sample consensus model (RANSAC) algorithm.

Keywords: depth image; RTAB mapping; statistical filter; RANSAC; obstacle avoidance

1. Introduction

This paper presents a specific robotic application based on the processing of depth
images captured using a low-cost Intel RealSense D435 stereo camera [1–14]. This work is
part of an industrial-research project aiming to build a robot that would automatically—based
on data obtained from the depth camera—be able paint a building’s facades or interior walls
with wall paint. The goal was to develop a robust and simple computer vision algorithm to
detect and extract windows and coarse obstacles on walls using depth images recorded with
a stereo camera, which is also able to notify the control system [15–22]. The acquired depth
images and point clouds of the environment serve as resources for the robot to determine
which surfaces to paint.

This paper introduces a procedure for window and obstacle detection and for extract-
ing these objects from walls using captured depth images.

This project is a part of the KFI_16-1-2017-00485 project, which involves the develop-
ment of a robot for painting and thermal insulation of facades of monument buildings. The
client’s instruction and the main goal of the project is to use already proven and reliable
algorithms to ensure smooth and reliable operation of a painting robot. Almost all wall
painting robots on the market are not automated, meaning the operator fully controls
the painting arm and decides what should be painted. In this project, the client requires
automation using a computer vision system. This approach is new in in the design of
commercial wall painting robots. The basic hardware in the vision system is the Intel
RealSense depth camera.

The wall extraction algorithm is based on real-time, appearance-based mapping
(RTAB-Map) [23–27] and a random sample consensus model (RANSAC) [28,29]. The
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input point cloud is formed via an RTAB-Map algorithm using zig-zag robot movements
along with a built-in RealSense depth camera by merging recorded point clouds during
movement [30–32]. Further, before extracting the RANSAC algorithm, the initial step is to
apply a statistical filter [30] to remove most of the outliers from the captured point clouds.
Finally, the RANSAC algorithm combined with the clustering procedure is performed for
the wall extraction process. RANSAC is a powerful iterative method used to assess the
parameters of a mathematical model from a set of data containing outliers.

2. Related Work

Plane detection and extraction is a common problem in robotic vision. This operation
can be crucial in certain applications where it is necessary to separate certain objects from
the background. There are various ways to make this distinction, but one of the most
common methods is to use the RANSAC algorithm [28,29].

Carfagni et al. [1] compared devices through four types of experiments: with the error
measured using a calibrated sphere at a very close distance; with the errors measured
with the Association of German Engineers (VDI)/Association for Electrical, Electronic, and
Information Technologies (VDE) 2634 part 2 standard; with the systematic depth errors
produced through the acquisition of a planar surface at increasing ranges; and with the 3D
reconstruction of an object. Experiments have shown that the RealSense D415 model is fully
comparable to its predecessor model in terms of errors assessed through the VDI/VDE
standard. The D415 camera is also in line with results obtained from other cameras in
the scientific literature and surpasses their performance when considering filtered data.
El-Sayed et al. [32] proposed a new method for plane detection from 3D point clouds. The
method is contingent on two concepts to achieve a balance between high-accuracy and
fast performance. The first concept is to utilize a fast new octree-based, balanced density
down-sampling technique to reduce the number of points. The next concept is the fact that
the number of planes in any dataset is much lower than the number of the points. Random
points are inspected to find the 3D planes. It has been demonstrated experimentally that
the suggested algorithm yields precise results and has expeditious performance, is robust
to noise, and has a high potential to detect planes with small angle variations.

Gallo et al. [33] introduced a new algorithm, the connected components RANSAC
(CC-RANSAC), which uses only the largest connected components of inliers to estimate the
suitability of a candidate plane. They stated that this allegedly minor modification could
yield appreciably better fits than RANSAC. Mufti et al. [34] considered the task of ground
plane estimation in range image data acquired from a time-of-flight camera. They extended
the 3D spatial RANSAC for ground plane estimation to a 4D spatiotemporal RANSAC
by including a time axis. The ground plane models were obtained from spatiotemporal
random data points, thereby making the proposed method robust against short-term
transitory effects such as passing cars and pedestrians. They noted that the computationally
fast and robust assessment of ground planes led to the reliable identification of obstacles and
pedestrians using statistically obtained spatial thresholds. Nurunnabi et al. [35] introduced
two robust statistical methods for outlier detection and robust saliency properties, such as
surface normal and curvature assessments in laser scanning 3D point cloud data. The first
was formed using a robust z-score, while the second technique uses a Mahalanobis-type
robust distance. They stated that the algorithms are fast, accurate, and robust.

Li et al. [36] presented an ameliorative RANSAC method, relying on normal distribu-
tion transformation (NDT) cells in their research to avoid false planes for 3D point cloud
plane segmentation. They selected a planar NDT cell as a minimal sample in each iteration
to ensure the correctness of sampling on the same plane surface. Basically, the 3D NDT
presents the point cloud with a set of NDT cells and models the observed data with a
normal distribution within each cell. The geometric representations of NDT cells were
used to separate them into planar and non-planar cells. The experiments showed that the
correctness exceeded 88.5% and the completeness exceeded 85.0%. These results indicate
that the introduced method is more dependable and accurate than the standard RANSAC.



Appl. Sci. 2021, 11, 1467 3 of 18

Li et al. [37] proposed an accurate plane-fitting procedure for a structured light-based
red–green–blue–depth (RGB-D) sensor. In the first step, they obtained an error model of
point cloud data from the structured light-based RGB-D camera through error propagation
from the raw measurement to the point coordinates. Then, the new cost function based
on minimizing the radial distances with the obtained rigorous error model was proposed
for the RANSAC-based plane fitting procedure. Schwarze and Lauer [38] presented two
approaches to assess the local geometric structures of urban street canyons captured from
a head-mounted depth camera. The dense disparity assessment was the only input used
in both approaches. The first approach showed how left and right building facades were
obtained using planar segmentation based on RANSAC. In the other approach, they trans-
formed the disparity into an elevation map, from which they extracted the main building
orientation. Xu and Lu [39] presented a new type of RANSAC, named the distributed
RANSAC (D-RANSAC), to reduce the computation time and increase accuracy. The au-
thors compared their outcomes with the classical RANSAC and randomized RANSAC
(R-RANSAC) results. The tests showed that D-RANSAC was superior to RANSAC and
R-RANSAC in computational complexity and accuracy in most cases, primarily when
the inlier proportion was below 65%. Xu et al. [40] developed a new weighted RANSAC
method for roof point cloud segmentation, whereby the hard threshold voting function
using both the point-plane distance and the normal vector consistence was converted into
a soft threshold voting function based on two weight functions. Zhou et al. [41] introduced
a handheld 3D scanning device developed alongside light detection and ranging (LiDAR),
inertial measurement units, and other auxiliary equipment, based on which a 3D map
of a forest environment was generated. The ground point cloud was removed using the
RANSAC algorithm. The trees in the experimental area were segmented using a Euclidian
clustering algorithm. They noted that the experimental results were good and met the
requirements for forestry mapping. Deschaud and Goulette [42] proposed a rapid and
accurate method to detect planes in unorganized point clouds utilizing filtered normal and
voxel growth. They showed the efficiency of the method with different kinds of data, as
well as its speed on large data sets.

3. Industrial Robots and Depth Cameras

Industrial robots are multifunctional, reprogrammable, manipulative, and automati-
cally controlled machines with multiple degrees of freedom (DOFs), which can be fixed
or mobile, as well as used for automated industrial applications. Industrial robots are
designed to work over a long period of time in challenging working conditions in industrial
environments. Robots are very complex devices that involve automatic control theory,
machine theory, computer engineering, artificial intelligence, and sensor technology.

People now view robots as machines that allow for further and more flexible au-
tomation. Robots substitute humans primarily in hazardous, monotonous, and difficult
jobs. As a result, robotic systems contribute concurrently to increasing productivity and
humanizing work.

In the application introduced in this paper, the paint spraying unit was moved by
a 5 DOF robotic arm. The first three joints (base, shoulder, and elbow) are responsible
for moving the end effector to the desired position, while the last two joints (wrist pitch
and yaw) are responsible for correcting the orientation. Regarding the orientation, the
requirement is that the axis of the industrial spray gun has to be perpendicular to the wall,
hence using a robot with 5 degrees of freedom was sufficient.

In the first three joints, servo motors and harmonic drives were implemented. The
robot’s wrist uses a specially designed differential drive driven by two servo motors
equipped with planetary gearboxes. The torques of the motors and the lengths of the
segments were determined based on previously performed dynamic simulations. The first
three segments are made of aluminum alloy. The parts of the differential joint are made of
ABS plastic using 3D printing. The robot’s reach is 1820 mm, and its total weight is about
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50 kg. During the tests, the robot was mounted on a wheeled structure, which simulated
the movement of the crane.

The behavior of the robot was tested first in the Gazebo open-source dynamics sim-
ulator. This simulator uses physics engines, and therefore it enabled us to observe the
dynamics of the designed robot arm. The Gazebo environment spawned the robot model
based on the Unified Robot Description Format (URDF) file, which contained the iner-
tia and mass properties of the robot. Moreover, this file contained the limits of joints
and the actuators that drove the robot joints. The joints were controlled in closed loop
with proportional–integral–derivative (PID) position controllers. The ros_controllers meta-
package was employed to implement these controllers. Based on iterative tuning, the PID
parameters (Kp, Ki, and Kd) were set up heuristically in Gazebo. The true states of the
robot model were sampled using the joint state controller. The RGB-D measurements were
provided by the Gazebo Depth Camera Plugin [43], which supplied the instantaneous point
cloud measurements. Similarly to the real robot, this Gazebo depth camera was attached to
the end effector of the robot model, therefore an identical structure was achieved in the
simulation environment. Based on the simulated robot behavior and measurements, the
processing of camera data was achieved with our software and the functionality of the
whole painting process was validated.

Lately, image processing applications based on two-dimensional (2D) image process-
ing have been extensively constrained due to a lack of information in the third dimension,
i.e., depth. Unlike 2D computer vision, three-dimensional (3D) computer vision makes it
feasible for computers and other machines to distinguish different shapes, shape dimen-
sions, distances, and control accurately and with high precision in the real 3D world [1–4].

In 2014, Intel presented a family of depth sensors, i.e., Intel RealSense cameras. These
systems are composed of a microprocessor for image processing, a component for forming
depth images, a component for tracking movements, and depth cameras. These stereo
depth cameras rely on deep scanning technology, which allows computers to see objects in
the same way as humans.

RealSense cameras use stereovision to determinate depth information. A stereovision
system consists of left- and right-side cameras, i.e., sensors, and an infrared (IR) projector.
The IR projector projects invisible infrared rays that increase the accuracy of the depth
information in scenes with poor texture. The left-side and right-side cameras capture the
scene and send information about the image to the signal processor, which based on the
received information, calculates the depth values for each pixel of the depth image, thereby
correlating the points received with the left-side camera to the image received with the
right-side camera [1–14]. The value of a depth pixel depicting the depth of an object is
calculated in relation to a parallel plane from the sensor doing the recording and not in
relation to the actual range of the object from the camera [7].

It should be noted that the RealSense depth cameras are already factory pre-calibrated
and tuned for optimal use by the manufacturer, and that calibrating these cameras is
not recommended. Calibration is necessary only if there are serious problems during the
capture process [7]. Further, for development and testing, the open-source RealSense official
(ROS) software package was used. This software contains all procedures and algorithms
needed for depth image recording and embedding in a robot’s operating system [7–10].

The performance and affordable cost are the advantages that make Intel RealSense
cameras a popular choice in many devices that require depth cameras with high-speed
data processing [1–14].

As will be discussed in the next sections, a depth cameras will be used for depth
estimation of the obstacles on a wall. The depth camera detects objects at different distances
and separates them. This information is contained by Z coordinate values. Later, the wall
will be separated with the segmentation algorithm based on the depth difference from
the obstacles and the background. Hence, the separation of windows from walls will be
achieved using depth measurement and visualization.
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4. Wall Extraction Algorithm

The task related to the painting robot and the depth camera can be divided into the
following steps:

1. Capturing images for part of the building;
2. Detecting the window and obstacles in the wall that must not be painted;
3. Forwarding the information about the coordinates of the wall to the robot for painting;
4. Painting the wall by bypassing the detected window and the obstacles.

The corresponding painting robot is shown in Figure 1. Since the process of developing
and testing the painting equipment is still in its building phase, the experiments were
operated with the embedded robot operating system (ROS) simulator.
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Figure 1. The painting robot in the testing process.

In the simulation phase, a laser pointer was placed in the robot’s tool center point.
Later, a spray gun was attached here using a tool holder.

Further, because in robotics a high degree of accuracy and precision is required, the
depth cameras needed to be calibrated in the appropriate manner, so that the obstacle
was clearly visible and detected in a complex image. There were numerous parameters
and conditions that affected the quality of the depth image, such as noise and light [1–14].
Finally, when the camera and the robot parameters were tuned appropriately, the experi-
ments began.

Next, the principles and methods for the four main steps of the wall extraction
procedure are briefly described. The first sub-section introduces the RTAB-Map, the second
describes the statistical filter, the third sub-section depicts the RANSAC algorithm, and the
fourth sub-section describes the segmentation algorithm with the corresponding clustering
procedure. Figure 2 shows a block diagram of the wall extraction algorithm.
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4.1. Real-Time Appearance-Based Mapping (RTAB-Map)

RTAB-Map is an open-source library implementing loop closure detection with a
memory management approach [23–27]. This method limits the size of the map so that
loop closure detection is always performed under a fixed time limit, hence satisfying online
requirements for long-term and large-scale environment mapping [23]. RTAB-Map includes
a complete graph-based simultaneous localization and mapping (SLAM) approach, and it
is, therefore, possible to use it in various setups and applications [23]. RTAB-Map has the
following options [23–27]:

• Online processing;
• Robust and low-drift odometry;
• Robust localization;
• Practical map generation and exploitation;
• Multisession mapping;
• Integration in ROS.

RTAB-Map can accept a variety of inputs, such as depth color images (RGB-D), stereo
images, odometry, 2D laser scans, 3D point clouds, and other user data. All input data
can be used, depending on the available sensors. Further, RTAB-Map supports the use
of multiple RGB-D cameras, as long as they have the same image size [23]. The loop
closure detection method is implemented using the bag-of-words approach described by
Labbé and Michaud [27]. Proximity detection is used to localize nodes close to the current
position with laser scans when they are available [24]. Using proximity detection, the
localization can be done when the robot traverses back through the same corridor in a
different direction, during which the camera cannot be used to find loop closures. After
loop closure or proximity detection are performed, or when certain nodes are retrieved or
transferred because of memory management, a graph optimization approach is executed
to minimize errors in the map [23]. If loop closure occurs, the global map should be
reassembled according to all new optimized positions for nodes in the map’s graph [23–27].
This process is necessary so that obstacles that were wrongly cleared before the loop closure
process may later be reincluded. The point cloud outputs are composed of all points on
the local maps, presented in the standard ROS format. Finally, voxel grid filtering can be
applied to merge overlapping surfaces in point clouds. The resulted merged point cloud is
then suitable for further processing [23].

4.2. Statistical Filter

The first operation for the given point cloud before the wall extraction step was to
apply a statistical filter to remove unnecessary, noisy gross outlier data. Namely, stereo
cameras generated point clouds of varying point densities and the resulting point clouds
had sparse outliers that corrupted the results. This complicated the estimation of local point
cloud characteristics, such as surface normal or curvature changes, leading to incorrect
values, which in turn could cause point cloud processing failures.

The applied filter used point neighborhood statistics to filter outlier data [30]. The
sparse outlier removal step corrected these irregularities by computing the mean and
standard deviation of nearest k neighbor distances and pruning the points that fell outside
the calculated threshold t:

t = µ± ασ (1)
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where µ is the mean, σ is the standard deviation, and α is the multiplier. The value of
α depends on the size of the analyzed neighborhood [30]. The values of k and α are set
experimentaly. For instance, if 1% of point cloud points are considered as noise outliers,
one example would be α = 1 and k = 30, because experiments with multiple datasets have
confirmed the applicability of the µ± σ threshold as a good practice [30].

Basically, the filtering algorithm iterates through the entire input point cloud twice.
During the first iteration, it computes the average distance that each point has to its nearest
k neighbors [29]. Further, the mean and standard deviation of all these distances are
computed in order to determine a distance threshold. During the second iteration, the
points can be classified as either inliers or outliers if their average neighbor distances are
below or above the threshold, respectively [30].

4.3. Random Sample Consensus Model: RANSAC Algorithm

Since the statistical filter made huge quality improvements [30], the next step was
the obstacle and window detection, which resulted in a wall extraction being painted by
the robot.

Since the wall mainly differed in depth from the obstacles and the window, it was es-
sentially located in a separate parallel plane from the obstacles and the window. Therefore,
the goal was to separate the wall plane from the other planes that were parallel to the wall
plane in point cloud data. The most popular planar segmentation algorithms are based on
the RANSAC algorithm.

RANSAC is a general parameter estimation approach designed to cope with a large
proportion of outliers in input data. This is a resampling technique that generates candidate
solutions by using the minimum number of observations and data points required to
estimate underlying model parameters. Unlike conventional sampling techniques that use
as much of the data as possible to obtain an initial solution and then proceed to prune
outliers, RANSAC uses the smallest set possible and proceeds to enlarge this set with
consistent data points [28,29].

The RANSAC algorithm process can be described as follows:

1. Randomly select the minimum number of points required to determine the model
parameters, i.e., all free parameters of the model reconstructed from the inliers;

2. Test all data for the parameters of the determined model;
3. Determine how many points from the set fit with a predefined tolerance (this is

defined through the probability);
4. If the fraction of the number of inliers over the total number of points in the set exceeds

a predefined threshold T, re-estimate the model parameters using the identified inliers
and terminate the algorithm;

5. Otherwise, repeat steps 1–4 a maximum of N times [28,29].

The number of iterations N should be high enough to ensure that the probability p
at least has one set of random samples that does not include an outlier [28,29]. The value
for the probability is usually set to 0.99, but this is not mandatory. Let a represent the
probability that any selected datum point is an inlier and b = 1− a the probability of
observing an outlier. Then, the N iterations of the minimum number of points denoted as
m are required, where [28,29]:

1− p = (1− am)N . (2)

After the reorganization of the previous expression, one can obtain the following [28,29]:

N =
log(1− p)

log(1− (1− v)m)
(3)

The steps of the algorithm are repeated a fixed number of times, each time producing
either a model that is rejected because too few points are classified as inliers or a refined
model together with a corresponding error measure. In the latter case, the refined model
should be kept if its error is lower than the last saved model [28].
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An advantage of RANSAC is its ability to perform robust estimation of the model pa-
rameters, because it can estimate the parameters with a high degree of accuracy even when
a significant number of outliers are present in the data set. A disadvantage of RANSAC is
that there is no upper limit on the time it takes to compute the model parameters. When
the number of iterations computed is limited, the solution obtained may not be optimal
and it may not fit the data well. In this way, RANSAC offers a trade-off; by computing
a greater number of iterations, the probability of a reasonable model being produced is
increased. Another disadvantage of RANSAC is that it requires the setting of problem-
specific thresholds. In addition, RANSAC can only estimate one model for a particular
data set. For any single-model approach, when two or more models exist, RANSAC may
fail to find either one. This problem can be solved by adding particular conditions; for
example, if the largest object of the given geometry is sought in the point cloud data, the
assumption is that the wall represents the largest plane in the image. This optimization
will overcome the problem related to estimating incorrect model parameters [28,29].

In this project, the plane detection was based on 3D coordinates. This means that N
sets of a point triplets were formed by random distribution within the point cloud and that
for each of the triplets a corresponding plane was defined based on geometric equations.
In the second step, the quality of each of these N models was evaluated based on the whole
sample. In this case, for each pixel in the image, we estimated whether it belonged to a
defined plane or not. Finally, the detected plane represented the wall to be painted by the
painting robot.

4.4. Detailed Explanation of the Segmentation Algorithm Steps

In this section, an explanation of the steps in the developed segmentation algorithm are
summarized. The segmentation algorithm uses a 3D point cloud (with X, Y, Z dimensions)
and performs the following steps:

(1) Apply a statistical filter [30] on the 3D point cloud to remove outlier points, based on
the thresholded standard deviation calculated on neighboring points. The number
of neighbors used to analyze for each point is set to 50 and the standard deviation
multiplier is set to 3.5. This means that all points with a distance larger than 3.5
standard deviations of the mean distance to the query point will be marked as outliers
and removed;

(2) Perform the plane clustering step using the iterative RANSAC algorithm, with the
“distance threshold” set to 0.03 m, which determines how close a point the model
must be in order to be considered an inlier. The RANSAC [28,29] algorithm selects
the greatest plane from the remaining point cloud in each iteration, where the points
of selected planes are removed before the next iteration. Each plane receives a new
cluster id or label (using integers). The cycles are stopped when the remaining cloud
is smaller than 0.5% of the original or the maximum iteration number of 20 is reached;

(3) Resample the 3D cluster label cloud to a 2D cluster label with a predefined resolution
on the plane of the wall. The output is a 2 × 2 m rectangle in the plane of the
wall, gridded equally in both directions (GY = height by direction Y, GX = width
by direction X) at 0.01 m, i.e., 1 cm. This produces a 200 × 200 cluster label image
(C2d) along with the depth in the Z direction (Z2d). The algorithm first collects all
available points (X, Y, Z) belonging to each 1 × 1 cm pixel (x, y); the set of these pixels
is denoted Sx,y (4). Secondly, it selects the closest point to its average Z distance

(
Z
)

from this small set and inherits the cluster label and Z axis for the selected point (5).

Sx,y =

{
∀s :

∣∣∣∣√X(s) + Y(s)−
√

GX(x) + GY(y)
∣∣∣∣ ≤ 0.01

√
2/2

}
(4)

C2d(x, y) = C(i∗), Z2d(x, y) = X(i∗), i∗ = argmin
i∈Sx,y

(∣∣∣Z(i)− ZSx,y

∣∣∣) (5)

(4) Disconnect regions within clusters based on two criteria:
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a. Separate regions based on Euclidean distance clustering with a distance tol-
erance of 0.08 m [44]. This step uses the cluster method and k-dimensional
tree search method to separate clusters [45–48]. K-d trees are very useful for
range and nearest neighbor searches, which are the best for separating possible
regions. This process also takes into account the depth information (z axis);

b. Separate regions based on adjacent criteria in the 2D plane (if the cluster consists
of more than one region or when the region is a subset containing only adjacent
pixels). The algorithm checks the adjacency of pixels within one cluster, and if
more than one is region found, these are separated and labeled differently. This
process does not take into account the depth information (z axis);

(5) Erase small-area clusters that are highly likely to be noise or outliers. The algo-
rithm first calculates the area for each cluster and selects “tiny” clusters smaller than
0.005 m2 (50 cm2). The pixels of tiny clusters inherit cluster labels from the nearest
neighbor pixels belonging to non-tiny clusters. The nearest neighbor criteria are
checked on the 2D plane of the wall (X/Y plane) independently from the depth
(z axis). This process filters out any remaining bad pixels, i.e., any clusters with only
one pixel;

(6) Sort the cluster labels by area, whereby each of the remaining clusters get a new sorted
label, with the first belonging to the largest area. Typically, the largest cluster is the
wall, but this is checked using the expected wall distance (in the Z direction) too. If
there is a window, then typically the second biggest area is the plane of the window,
the depth of which is greater than the wall distance.

Finally, after finishing the segmentation process, the appropriate clusters containing
the information about the wall surface will be specified for the painting operation.

All the procedures described in Sections 4.2–4.4 are included in the open-source Point
Cloud Library [49–56].

5. Experiments and Results

In this part, the experiments and their outcomes are explained in detail. The experi-
ments were conducted with a RealSense D435 depth camera. We chose the D435 because
this camera has a wider field of view [7,8,46,47]. This is an important point because the
goal is to cover a wide surface during the painting process. The camera and the robot’s tool
center point were about 70 cm from the wall. This distance is reported as being the best for
the recording the depth via D415 and D435 RealSense cameras in the literature [1,7,8,46,47].

ROS-based robot navigation is the robotic basis for this experiment and will be ex-
plained only in brief in the next paragraph, since a robotics explanation is not within
the scope of this paper. The communication between the motor drivers and the control
software is achieved via controller area network open (CANopen) protocol. A controller
area network (CAN) is a robust vehicle bus standard developed to allow devices and mi-
crocontrollers to communicate with each other’s applications without a host computer. The
communication initialization process is composed of two parts. First, the socketCAN driver
is executed, which loads the CAN drivers and networking stacks. Then, the CANopen
control package is executed, which establishes the connection between the ROS and motor
drivers via the CANopen interface. This package is based on the CiA402 standard (CAN
in automation), uses the robot description file (URDF file), and defines the high-level
controllers that drive the motors in a closed loop (joint trajectory controller and joint state
controller). The motion planning of the robot is executed with the MoveIt software package.
This package considers the structure of the robot and generates both the achievable poses
and collision configurations. Moreover, MoveIt is used to (i) define the group of joints to
be used in the painting process, (ii) save different joint combinations (e.g., home position),
and (iii) incorporate the stream of the RGB-D camera in the motion planning process. A
custom-made kinematics package was defined for forward and inverse kinematics-based
manipulation, which is the base of the aforementioned MoveIt package. The RGB-D camera
is started with the official realsense2_camera ROS package, which loads the driver and
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makes the real-time point cloud measurements available in the ROS environment. A static
transformation is applied between the camera and robot coordinate systems. The RTAB-
Map package is executed to merge the real-time camera stream. This algorithm is executed
with default parameters and produces the concatenated point cloud data structure, which
describes the environment in front of the robot. Our custom-made graphical user interface
is used to control the whole painting process.

The first step was to form a point cloud using the RTAB mapping procedure [23–27].
During the mapping process, the robot arm tracked the surface with the camera and slowly
formed the point cloud. Then, voxel grid filtering was applied to merge overlapping
surfaces in point clouds [23–27]. Figure 3a,b shows the procedure used to merge the
point clouds.
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Finally, the resulting point cloud was observed to be suitable for further processing.
Figure 4 shows the final merged point cloud of the wall surface with the obstacles (the blue
colored stick, the white bottle, and the red colored boxes).

The next step was plane detection, specifically the detection and extraction of the
wall area to be painted. The goal of the wall detection process was to avoid the barriers
on the wall that should not be colored. The plane extraction process was performed
by executing the RANSAC algorithm, preceded by statistical filtering. The statistical
filtering [30] removed unnecessary, noisy gross outlier data from the point cloud. This
operation is important because the point cloud is cleaned of non-essential outliers, meaning
it is more efficient and able to execute the RANSAC algorithm quicker [28,29]. As was
mentioned earlier, the main precedence of the RANSAC algorithm is its capability for
robust assessment of the model parameters, because it can estimate the parameters with
a high degree of accuracy, even when a great number of outliers are present in the data
set. This means that in the case of lower quality depth information and depth images, the
RANSAC algorithm detects the desired plane of the wall. This is an important feature,
since a low-cost D435 depth camera is used for surface depth mapping [45,46].

The RANSAC plane detection results are presented in Figure 5a. The wall area was
successfully extracted and is shown as green in the image. The red parts denote the detected
obstacles. Since the obstacles were closer to the camera, they were set to be red in the
camera’s built-in software. The blue parts are the shadows of the obstacles, which the D435
camera recognized as very distant objects. As a result, they were not significant in the later
painting process.
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Figure 5. (a) The detected plane without obstacles representing the wall, as detected by the RANSAC algorithm. (b) Binary
mask of the detected plane without obstacles, which represents the wall to be painted by the painting robot.

Figure 5b shows the binary mask of the plane-detected image. The white area rep-
resents the surface that should be painted. This binary image was connected with the
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coordinates of the point cloud of the surface and this information was forwarded to the
robot’s control system. Taking the obtained data and using the ROS, the control software
began the painting process. Since the development and equipping of the painting equip-
ment was still in progress, the painting process was simulated using the robot’s arm and
ROS software.

Figure 6a,b shows the simulation process for the wall painting. It should be noted that
the red, blue, and purple lines show the movement of the painting head. It is easy to notice
that the panting head avoided the obstacles during the painting process.
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Figure 6. (a) The movement of the painting robot during the painting simulating process for the
detected wall surface. (b) The movement of the painting robot in the painting simulating process on
the detected wall surface for the real point cloud.

The complete procedure for wall capturing, point cloud merging, plane detection,
and wall painting lasted about 4–5 min on the corresponding hardware. The hardware
configuration used in the tests included an Intel Core i7 8700 K CPU, Asus GeForce GTX
1050 Dual 2 GB GDDR5 128 bit graphic card, 32 GB 3000 MHz DDR4 RAM memory, Sam-
sung 850 EVO 250 GB SATA3 SSD, and Asus PRIME Z370-A desktop motherboard. This
is important for commercial purposes, since the whole procedure is quite fast—certainly
faster than the time it would take a person to paint the same surface.

The next example will introduce the segmentation process and the painting simulation
process for an outdoor wall on a terrace.

Figure 7a shows a door and the window surrounded by the wall to be painted.
Figure 7b,c displays the painting robot during the RTAB mapping process used to form the
point cloud of the complex surface. The red rectangle-based object represents the depth
camera used in simulation process. As can be seen, the point cloud is formed successfully
using the previously explained procedure.



Appl. Sci. 2021, 11, 1467 13 of 18

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 19 

The complete procedure for wall capturing, point cloud merging, plane detection, 
and wall painting lasted about 4–5 min on the corresponding hardware. The hardware 
configuration used in the tests included an Intel Core i7 8700 K CPU, Asus GeForce GTX 
1050 Dual 2 GB GDDR5 128 bit graphic card, 32 GB 3000 MHz DDR4 RAM memory, 
Samsung 850 EVO 250 GB SATA3 SSD, and Asus PRIME Z370-A desktop motherboard. 
This is important for commercial purposes, since the whole procedure is quite fast—
certainly faster than the time it would take a person to paint the same surface. 

The next example will introduce the segmentation process and the painting 
simulation process for an outdoor wall on a terrace. 

(a) (b) (c) 

Figure 7. (a) The experiment setup. (b) The painting robot during RTAB mapping process used to form the point cloud of 
the wall surface. (c) The resulting merged point cloud of the wall surface with a door and window. 

The next step in the process was plane detection, again with the goal of detecting and 
extracting the wall area to be painted. The goal of the wall detection process was to avoid 
the door and the window, which were not to be painted. The plane extraction process was 
performed again by executing the RANSAC-based segmentation algorithm, preceded by 
statistical filtering. In this example, the wall area was successfully extracted and is colored 
green in the image. The red parts denote the detected obstacles, notably the door and the 
window, as can be seen in Figure 8a,b. The blue areas represent the frames of the door 
and window in the image. Since the depth camera sees through the glass, the door and 
the window areas are detected as distant objects in the depth image and are successfully 
separated from the wall area. 

Finally, Figure 8a–c shows the painting process simulation. Again, it should be noted 
that the red, blue, and purple lines show the movement of the painting head. It is easy to 
notice that the panting head avoids the door and window during the painting process. 
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the wall surface. (c) The resulting merged point cloud of the wall surface with a door and window.

The next step in the process was plane detection, again with the goal of detecting and
extracting the wall area to be painted. The goal of the wall detection process was to avoid
the door and the window, which were not to be painted. The plane extraction process was
performed again by executing the RANSAC-based segmentation algorithm, preceded by
statistical filtering. In this example, the wall area was successfully extracted and is colored
green in the image. The red parts denote the detected obstacles, notably the door and the
window, as can be seen in Figure 8a,b. The blue areas represent the frames of the door
and window in the image. Since the depth camera sees through the glass, the door and
the window areas are detected as distant objects in the depth image and are successfully
separated from the wall area.
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Finally, Figure 8a–c shows the painting process simulation. Again, it should be noted
that the red, blue, and purple lines show the movement of the painting head. It is easy to
notice that the panting head avoids the door and window during the painting process.

The next example will show the segmentation process and the painting simulation
process for an indoor wall in a room.
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Figure 9a shows the window surrounded by the wall to be painted. Figure 9b,c shows
the painting robot during the RTAB mapping process used to form the point cloud of the
complex surface. Again, the point cloud was formed successfully using the previously
explained procedure.
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The next step involved detecting the wall area to be painted. The goal of the wall
detection step was to avoid the window, which was not to be painted. The plane extraction
process was again performed successfully. In this example, the wall area was extracted
and is colored green in the image. The red parts denote the detected obstacles, notably the
window, as can be seen in Figure 10a,b. In this example also, the depth camera was able to
see through the glass and the window area was detected as a distant object in the scene of
the depth image, and was successfully separated from the wall area.
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Finally, Figure 10a–c shows the painting process simulation. The red, blue, and purple
lines show the movement of the painting head. It is easy to notice again that the panting
head avoided the window during the painting process.
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Finally, in order to verify the experiments, the simulation results are summarized
in brief. Figure 11a–f shows the simulation process performed with Gazebo. During the
simulation, the movement of the 5 DOF robot can be seen. In this example, a wall was
simulated, whereby small cubes were placed as obstacles. Figure 11a shows the simulation
setup, i.e., the wall with the obstacles. Figure 11b,c depicts the wall scanning process,
which is analogous to the RTAB mapping process. Figure 11d,e illustrates the point cloud
of the wall with the detected obstacles and the path planning process. Finally, Figure 11f
shows the wall painting process in the simulation environment. As can be seen in the
verification example in Figure 11, the testing results for the actual scenarios are consistent
with the simulation results.
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Figure 11. (a–f) The simulation process for the painting robot application.

Since the client’s requirement, and the main goal of the project, was the separation
of the wall and windows, this goal was fulfilled. The windows would be covered with
a protective foil in real life, as in any other painting job. The reason for covering the
window is that even the best spray guns are not precise enough to avoid painting some
parts of the edges of windows, while light winds and dripping paint can also damage the
window. The experiments proved that the RealSense depth camera can reliably separate
depth differences from about 4 cm. Usually, the depth differences between the walls
and windows are greater than 4 cm, which is suitable for the RealSense camera. In this
manner, the depth camera performed satisfactorily in terms of the client’s satisfaction
and instructions.
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6. Conclusions

Here, we introduced the working principles and properties of a painting robot. The
main steps of the wall extraction process were presented, i.e., RTAB mapping, statistical
filtering, the RANSAC algorithm, and the clustering procedure. The point cloud of the
surface was formed using an RTAB-Map procedure with a RealSense depth camera. Next,
a statistical filter was applied to remove the outliers from the merged point cloud. In the
end, the RANSAC algorithm together with the clustering procedure was used for the wall
extraction process. RANSAC is a powerful iterative method used to assess parameters
of mathematical models from sets of data containing outliers. The goal of this industrial
research project was to build a robot vision system with known and reliable procedures
in order to ensure the reliability of the robot’s working process. Appropriate experiments
were conducted according to the client’s instructions on certain wall–window surfaces. All
experiments were performed successfully. During the development of the robot and vision
system, all of the client’s requirements and instructions were followed. As a result, the
client was satisfied and the project’s goal was fully achieved.

7. Future Works

In the future, special painting equipment with a spray gun should be embedded in the
robot with the depth camera and the robot should be tested in real painting applications.
Further, there is a possibility for refinement of the visual mechanism using a depth camera
with better performance or by adapting the robot control system to the technological
process during practical use. We also plan to start series production of the painting robot.
Finally, all improvements were client-dependent, and future research and development
will be done depending on the requirements of each client.
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