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Abstract: Current state-of-the-art joint entity and relation extraction framework is based on span-
level entity classification and relation identification between pairs of entity mentions. However,
while maintaining an efficient exhaustive search on spans, the importance of syntactic features is
not taken into consideration. It will lead to a problem that the prediction of a relation between two
entities is related based on corresponding entity types, but in fact they are not related in the sentence.
In addition, although previous works have proven that extract local context is beneficial for the task,
it still lacks in-depth learning of contextual features in local context. In this paper, we propose to
incorporate syntax knowledge into multi-head self-attention by employing part of heads to focus on
syntactic parents of each token from pruned dependency trees, and we use it to model the global
context to fuse syntactic and semantic features. In addition, in order to get richer contextual features
from the local context, we apply local focus mechanism on entity pairs and corresponding context.
Based on applying the two strategies, we perform joint entity and relation extraction on span-level.
Experimental results show that our model achieves significant improvements on both Conll04 and
SciERC dataset compared to strong competitors.

Keywords: entity recognition; relation extraction; dependency tree; self-attention

1. Introduction

Relation Extraction (RE) is the task of aiming to find semantic relationships between
pairs of the entity mentions from unstructured texts based on entity recognition. As an
essential task in information extraction, which is widely applied in question answering [1],
populate knowledge base [2], and other knowledge-based tasks. The relational facts
obtained from RE are often expressed in form of knowledge triplet {h, r, t}, where h and
t represent head and tail entity, respectively, and r represents the relation between the
entities. One annotated example is illustrated in Figure 1.

Figure 1. Annotated result in a sample sentence (ORG: organization; PER: person).

Previous works can be divided into two categories: one is in pipelined setting, the
other is in joint setting. The pipelined method [3–5] divides the task into two steps: named
entity recognition (NER) and relation extraction (RE). Although this kind of method seems
reasonable, it ignores relevance between the two tasks. For example, by identifying entity
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mentions, we can classify “Michael Jackson” and “Chicago” as person and locate type,
respectively. It is easy to find that the type of above two entities is helpful for identifying
relation “Live-in”. To tackle with this problem, joint method is proposed. Different
from pipelined models, joint models can extract both entities and relations with shared
parameters in an end-to-end architecture. It can effectively integrate the feature of entities
and relations and achieve better results in the task.

For the problem of extracting relations, the relational facts in sentences are often
complicated: a sentence may contain multiple entities, an entity may participate in multiple
relational triplets, and triplets may have overlapped entity pairs. In addition to this, the
nesting issue may occur in these entity mentions. Refs. [6–8] only can cover the situation
where none of triplets have overlapped entities in a sentence. After that, many works
like [9–11] can cover the situation where triplets have overlapped entity pairs and an
entity participates in different triplets. Among these models, each token corresponds to a
single fixed representation and we usually refer to them as token-based models. However,
some tokens may participate in different spans, such as “the minister of the department
of education” and “the department of education”. It’s hard for token-level models to
model overlapping entities due to their natural limitation that one token has a single fixed
representation. To tackle this issue, span-based models are proposed. Refs. [12,13] solve
the problem of entity nesting by searching all possible spans exhaustively to complete RE
task. At present, span-based joint entity and relation extraction models can cover the most
complex situations.

However, despite span-based model can cover more cases, it still has many shortcom-
ings that affect the quality of extraction. First, while maintaining an efficient exhaustive
search on spans, the importance of syntactic features is not taken into consideration. It will
lead to a problem that the prediction of a relation between two entities is related based
on corresponding entity types, but in fact they are not related in the sentence. Employing
additional syntactic features is helpful for this issue. Second, although previous state-of-
the-art work like [13] has proven that extracting local context is superior to global context
for RE task, but simply conducting a pooling method over the context directly to align
feature dimensions can result in the loss of some critical information. For the processing of
local context, in-depth learning of contextual features is needed.

Recently, Transformer [14] is a popular model applied on a wide range of Natural
Language Processing (NLP) tasks. Multi-head self-attention is the core component of Trans-
former, by dividing semantic features into multiple subspaces and performing multiple
attention functions to compute attention scores for each contextual word, it is possible to
learn richer contextual features in the sentence. However, recent works [15–18] show that
the power of multiple heads is not fully exploited. Therefore, how to make full use of these
heads is a valuable question. In addition, BERT [19] is a new language representation model
based on a multi-layer bidirectional Transformer, which achieved impressive improve-
ments on many NLP tasks, such as sentiment classification [20], question answering [21],
reading comprehension [22], and so on.

Based on the above observations, we propose a joint model based on pre-trained BERT,
which combines syntax-informed and local context attention mechanism. In NER task, we
map span-based entity mentions to specified types and then get candidate entity pairs. In
RE task, based on candidate entity pairs, the above two attention mechanisms are applied.
We use pruned dependency trees as our syntactic features, and then analyze the effect of
different pruning methods on results.

To recap, the main contributions of this work are as follows:

• We propose to incorporate syntax knowledge into multi-head self-attention by em-
ploying part of the heads to focus on syntactic parents of each token from pruned
dependency trees. In addition, we use it to model the global context to fuse syntactic
and semantic features. Then, we compare the effects of several different pruning
methods on the results;
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• Based on the first point, according to the different positions of each pair of candidate
entities from the NER task, we mask part of content of the sentence dynamically,
just keeping the entity pair and content between them, and perform a local focus
mechanism on the context to learn richer contextual features in the RE task;

• We employ BERT as our pre-trained language model and fine-tune it during training,
and experimental results show that our model achieves significant improvements on
both Conll04 and SciERC dataset compared to strong competitors.

2. Related Works
2.1. Syntax-Based Relation Extraction Model

Syntactic features are beneficial for RE tasks because they can capture dependencies
between different components in a sentence that may be ambiguous on the surface. In
the past, at the core of relation extraction approaches are statistical classifiers, many of
which find that syntactic features play an important role. For traditional methods, Ref. [23]
proposed a tree-based kernel approach and introduced kernels defined over shallow parse
representations of text. Ref. [24] introduced the simplified dependency path to tree kernels.
They proved that such feature can improve the performance of extraction. For neural-based
models, Ref. [25] first proposed to learn relation representations from Shortest Dependency
Path (SDP) through Convolutional Neural Network (CNN), and Refs. [26,27] tried to
employ LSTM to encode SDP, which proved the effectiveness for syntactic feature encoding
with neural models. In addition, they removed irrelevant information by trimming the
trees and achieved better results. In addition to these preliminary attempts, some works
modeled syntax trees by improving feature extractors. Refs. [6,28] used Tree-LSTM [29] and
Tree-GRU models, respectively, which were an extended form of RNNs over dependency
trees and had stronger modeling capabilities. After that, since the dependency tree structure
is inherently graph-like, with the emergence of Graph Convolution Network (GCN) [30],
Refs. [11,31] employed GCN to generate syntactic representations. Experimental results
proved that sequence models had complementary strengths to syntax-based models and
combining them can achieve impressive performance on their benchmarks. Ref. [32] used
dependency trees to extract the syntax-based importance scores for the words with Ordered-
Neuron Long-Short Term Memory Networks [33] (ON-LSTM) and injected these features
into the model. Their experimental results showed that capturing the syntactic importance
of the words was beneficial for RE task and had greater generalization ability.

In addition, with the introduction of Transformer [14], although the multi-head self-
attention mechanism has been proven to have excellent performance in some NLP tasks, it
lacks a hierarchical structure of the input sentence. Refs. [34,35] employed absolute struc-
tural position and relative structural position to encode structural features, and integrated
them into self-attention, respectively, which had better performance on machine translation
tasks. In summary, it is feasible to incorporate syntactic feature into self-attention and
provide more possibilities for the expansion of syntax-based model in other NLP tasks.

2.2. Joint Entity and Relation Extraction Model

Early joint models were mainly feature-based [36–38]. They often rely on the quality of
feature construction heavily, which is time-consuming and lacks sufficient generalizability.
With success of deep learning on many NLP tasks, neural-based models make up for the
shortcomings of feature-based models, and have many applications in the field of RE
tasks. Ref. [6] proposed to employ RNN-LSTM with Tree-LSTM for joint entity and relation
extraction, and modeled syntactic and sequence information simultaneously. Ref. [39]
proposed a hybrid neural network that employed BiLSTM for entity recognition and CNN
for relationship extraction without any handcrafted features. Refs. [40,41] proposed to
model the task as a table filling problem, but it would cause redundant information and
increase the possibility of errors. Ref. [8] first proposed to model the task as a sequence
labeling problem on BIOES scheme. They synthesized entity types and relations as labels,
and artificially features were not adopted. To some extent, although the problem of error
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propagation is avoided, it has shortcomings on identification of the overlapping relations.
After that, Ref. [9] proposed to divide situations into three categories: Normal (none
of its triplets have overlapped entities), Single Entity Overlap (SEO), and Entity Pair
Overlap (EPO). They viewed the task as a triple generation process based on seq2seq with
a copy mechanism to cover all above situations. Refs. [6–8] only solved the problem of the
Normal situation. After that, some works began to cover SEO and EPO situations. Ref. [10]
employed BiLSTM to encode sequence information and modeled the RE task as a multi-
head selection problem. In addition, Conditional Random Field (CRF) was used to decode
so that the model can identify entities and all possible relations between them to solve
overlapping relations issue. Based on the architecture of [10], Refs. [42,43] incorporated
different types of attention, but still based on a sequence labeling scheme. Ref. [11] adopted
GCN to encode dependency trees and BiLSTM as their sequence model, and integrated
them into an end-to-end architecture. Ref. [44] formulated the joint extraction as a token
pair linking problem and introduced a novel handshaking tagging scheme to align the
boundary tokens of entity pairs under each relation type. In addition, the results showed
that their method had good performance on relation extraction task. Due to the entity
nesting issue, span-based method becomes popular. Refs. [12,13] completed the NER task
by exhaustively searching spans and made these spans into candidate entity pairs, and
let the model cover situations not considered in [9]. Ref. [45] dynamically constructed
span graphs, by selecting the most confident entity spans and linking these nodes with
confidence-weight. Through propagation of the graph, it can refine the span representation
iteratively. On the basis of [45], Ref. [46] replaced the RNN encoder with BERT, and get
better extraction results. Ref. [47] was also based on the Transformer and modeled the
task as a multi-turn QA problem in an innovative manner, but it required constructing
question templates manually, which was time-consuming. Overall, span-based method
has achieved the best performance on multiple benchmarks of joint models and using the
Transformer for feature extraction usually has better performance.

3. Methodology

In this section, we present our joint model illustrated in Figure 2. We employ BERT
as our language representation model and fine-tune it during training. First, the input
sequence will be mapped into BERT embeddings, and then we adopt pooling strategy to
group the subword units of each word and obtain its representation on the word level
(see Section 3.2). Second, due to the span-level, the NER task can better identify nested
entity mentions. We use feature embeddings from the first step to construct span-level
representation, then complete the NER task on the span level and get candidate entity pairs
(see Section 3.3). Third, in order to let the model attend to syntactic features, we adopt
syntax-informed multi-head self-attention to model the global context (see Section 3.4).
Fourth, we leverage these candidate entity pairs from the second step to extract context be-
tween them, and local context representation is constructed based on the features from the
previous step. Then, we apply the local focus mechanism on it. The attention mechanism
of local context can help us to learn in-depth contextual features (see Section 3.5). Finally,
we get final representations of entity pairs and corresponding context to complete the RE
task (see Section 3.6).

3.1. Task Definition

Our model is a unified framework to classify named entities and relations in entity
pairs. The input of our model represents a sequence of tokens W = {w0, w1, · · · , wn}. For
the input sequence, we search for all possible spans that satisfy the specified requirements
and then get the candidate span set S. For each span s ∈ S, we compute a vector of
entity type scores and choose the category with the highest score as its type. For the
span whose prediction is none, we will filter it out. Then, from candidate entity pair set
S× S and pre-defined relation set R, we extract corresponding semantic relationship based
on context.
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Figure 2. The overall architecture of our joint model.

3.2. Embedding Layer

Given a sentence Wraw = {w0, w1, · · · , wn} as a sequence of tokens, the embedding
layer will map these tokens into feature vectors. In this layer, we employ BERT as our
pre-trained language model. Before mapping these tokens, we transform the input as a
sequence W = {[CLS], w0, w1, · · · , wn, [SEP]}, where [CLS] is a special token added in
front of every input sample, and [SEP] is a special separator token.

Since the BERT tokenizer is created with Wordpiece [48], which decomposes infrequent
words into frequent subwords for unsupervised tokenization of the input token, but since
syntactic features can only be represented on word-level, we need to align the subword
units with their corresponding origin word. Therefore, if a word has multiple subword
units, we will adopt the average pooling to group these units and obtain the word-level
representation. After that, we can get feature sequence X = {x0, x1, · · · , xl}, where l is the
length of the input sequence.

3.3. Span-Based Named Entity Recognition

First, we find all candidate spans from the input sentence. Since too many spans will
take up too much memory, we set a threshold t to limit the length of candidate spans, and
spans whose length exceed t will be discarded. We denote a span as s = {s0, s1, · · · , sn},
where n ≤ t. For span s, we apply max pooling over it to create its representation. Since
width is a distinguishing feature for span, we will integrate it into representation of span
and denote w as the width feature. In addition, after BERT encodes the input sentence,
the vector corresponding to token [CLS] will be generated, and it represents contextual
features of the whole sentence. For entity classification, contextual information usually
plays an important role, so we will incorporate it into span representation and denote the
[CLS] vector as c. Finally, we concatenate all above features to get the final representation
s′ of a candidate span:

s′ = MaxPool(s0, s1, · · · , sn)⊕ wn ⊕ c (1)

where ⊕ represents the feature concatenation operator.
After getting the final representation s′, we classify candidate spans into specific types.

Let E be a set of pre-defined entity types. We then employ a fully connected layer for
classification of entities. For each entity type e ∈ E, we have

Pe = so f tmax(We × s′ + be) (2)
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From (2), we can get the score of each type of the span. In addition, each span will be
assigned the entity type corresponding to the highest prediction score. Then, all spans are
classified as none will be filtered out. Others will be combined into candidate entity pairs
for the future RE task.

3.4. Syntax-Informed Multi-Head Self-Attention

Multi-head self-attention is the core component of Transformer [14], which not only
allows the model to jointly attend to information from different feature subspaces at
different positions, but also can be parallelized. Each of the heads learns a distinct attention
function to attend to all of tokens in the sequence, and the feature of these heads will be
concatenated to create the final representation.

Many experimental results have shown that it has a powerful ability to learn context
features and achieves impressive performance in neural machine translation benchmark [14,49].
However, there are many studies find that the multi-head self-attention’s capability has not
been fully exploited [15–18], and we expect to incorporate syntactic features into multi-head self-
attention architecture to enhance its modeling capabilities. Therefore, we propose to incorporate
syntax knowledge into multi-head self-attention by employing part of the heads to focus on
syntactic parents of each token from pruned dependency trees, and use the rest of the heads to
focus on semantic information in order to exploit the ability of the heads even further. In this
layer, we will apply this mechanism on the global context.

For semantic feature, we let h1 attention heads to attend to it. For each head, we map
the input matrix X of N tokens representations into query Qh, key Kh, and value Vh with h
different learnable matrices: Qh = LinearQ

h (X) = X ∗WQ
h

Kh = LinearK
h (X) = X ∗WK

h
Vh = LinearV

h (X) = X ∗WV
h

(3)

After projecting, our Qh, Kh, and Vh are of dimensions N × dQ, N × dK and N × dV ,
0 ≤ h ≤ h1, and dQ, dK, dV are dimensions of one head. Then, we use scaled dot-product to
calculate attention weights, which is formulated as follows:

ASem
h = so f tmax(

QhKT
h√

dh
) (4)

where
√

dh is a scaled weight, and the value is a square root of its embedding dimension.
Then, semantic attention weights will be multiplied by Vh for each token, and we will

get the semantic-attended token representations:

MSem
h = ASem

h ×Vh (5)

Then, we concatenate the results of these heads, and get semantic representation MSem:

MSem = [MSem
0 , · · · , MSem

h1
] (6)

For syntactic features, we let h2 attention heads to attend to it and map the input
matrix into query, key, and value as (4). We use external tools to generate a dependency tree
of the input sentence, and prune the tree with different methods according to the candidate
entity pairs generated from NER task. Similar to [6], we test three methods for pruning:

• ALL: Keep the entire syntax tree without any pruning operations;
• SDP (Shortest Dependency Path): Keep the shortest dependency path between enti-

ties in the syntax tree;
• LCA (Lowest Common Ancestors): Keep the subtree under the lowest common

ancestor of the entities pair.
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Then, we convert the prune tree into an adjacency matrix, and denote it as Aprune. The
attention weights are calculated as

ASyn
h = Aprune (7)

where Aprune is a N × N one–hot matrix, and 0 ≤ h ≤ h2.
Similarly, syntactic attention weights will be multiplied by Vh for each token, and we

will get the syntax-attended token representations MSyn:

MSyn
h = ASyn

h ×Vh (8)

MSyn = [MSyn
0 , · · · , MSyn

h2
] (9)

After that, we concatenate syntactic and semantic representation together, and denote
it as M:

M = MSyn ⊕MSem (10)

Finally, we employ a residual connection to our model. A layer of linear transformation
is performed on the feature representation M and then added to the input matrix X
(see Section 3.2). After that, the result followed by a layer normalization [50] operation,
and get output representation O:

O = LayerNorm(X + (WSA M + bSA)) (11)

where WSA and bSA are parameters of the linear transformation, and dimensionality of
the WSA is d f × d f , where d f is the dimension of word embedding. We can also treat the
transformation as a convolution operation with a kernel size of 1.

3.5. Local Context Focus Layer

In this layer, our goal is to capture internal correlation of the local context and let the
model focus on features that are beneficial for the RE task.

As shown in Figure 3, local context is part of the input sentence. Based on O from
Section 3.4, it will be divided into three parts: head entity shead = {Oh0 , Oh1 , · · · , Ohl1

}, tail
entity stail = {Ot0 , Ot1 , · · · , Otl2}, and context between the two entities crel = {Oc0 , Oc1 ,
· · · , Ocl3

}, where l1, l2, l3 represents the length of corresponding sequence, respectively.
Other parts of the sentence will be masked.

Figure 3. The example of local context focus mechanism, which shows the context-focused process
between different tokens.

For local context attention, we calculate the score between each token and other tokens
in parallel, and multiply the score with corresponding value feature. In local context, we
apply multi-head self-attention (MHSA) to highlight the features that are beneficial to the
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task. The specific calculation method can be seen in (3)∼(6) and (11). Finally, we can get
the local concerned context representation m:

m = MHSA(shead ⊕ crel ⊕ stail) (12)

3.6. Relation Extraction

In this section, we complete RE task. Based on m from Section 3.5, we also divide
it into three parts mhead, mctx, mtail as well. We use a layer of full connection to classify
relations in candidate entity pairs. Due to different lengths of the above three pieces of
information, we need to aggregate them so that they can have a fixed length. Here, we use
max pooling to aggregate each part, and concatenate them as a whole representation. In
addition, we also need span width feature w of two entities. Then, we will get

mloc = MaxPool(mhead)⊕MaxPool(mctx)⊕MaxPool(mtail) (13)

m′ = mloc ⊕ whead ⊕ wtail (14)

Pr = sigmoid(Wr ×m′ + br) (15)

Since there may be multiple relations between two entities, we regard our RE task
as a multi-label binary classification problem. From (15), each pair of candidate entities
will generate probabilities corresponding to all the predefined relations, and then we set a
threshold to filter out the results with low confidence.

3.7. Model Training

We employ BERT as our pre-trained language model, and its parameters will be
fine-tuned during training. Since the joint model contains two tasks, the loss function will
be designed as the sum of the two task losses.

Both parts of the loss function, use the form of cross entropy as follows:

L = −∑
i∈S

ye
i logPe

i − ∑
i∈S′

∑
j∈S′

yr
ijlogPr

ij(i 6= j) (16)

The first part is the loss calculated from classifying all candidate spans, and the second
part is obtained by classifying relations from candidate entity pairs.

4. Experiments
4.1. Datasets and Experimental Settings

We conduct experiments on two relation extraction datasets and achieve significant
improvements on both corpora.

The first dataset is Conll04 [51], which contains sentences with annotated name entities
and relations from news articles. We follow the processing method of the dataset in [40]
and split the data into training set, validation set, and test set. The test set consists of
288 sentences. The training set and validation set contain 1153 sentences in total, and we
use 20% of them for validation. For Conll04, it defines four entity types (Person, Organization,
Location, and Other) and five relation categories (Live-in, Work-for, OrgBased-in, Kill, and
Located-in).

The second dataset is SciERC [52], which contains 500 scientific abstracts that come
from 12 AI conference/workshop proceedings in four AI communities. We process the
dataset according to [52]. There are 551 sentences for the test set, and 1861 and 275 sentences
for the training and validation sets, respectively. For SciERC, it defines six entity types
(Method, Metric, Task, Material, Generic, and Other-ScientificTerm) and seven relation types
(Feature-of, Used-for, Compare, Part-of, Hyponym-Of, Conjunction, and Evaluate-for).

Some statistical data of the two datasets are shown in Table 1.
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Table 1. Statistics of experimental datasets.

Conll04 SciERC

Entity types 4 6
Relation types 5 7
Training tuples 1283 3219

Test tuples 422 974

In our experiments, we measure NER and RE performance by computing precision,
recall, and F-measure score on the test set. To evaluate the experimental results, we adopted
the standard formula to calculate the scores as (17)–(19):

Precision =
correct positive predict

all samples predicted as positive
(17)

Recall =
correct positive predict

all positive samples
(18)

F1 =
2× Precision× Recall

Precision + Recall
(19)

Following previous works, for Conll04, we report both micro average and macro
average F1 score. For micro-F1, we calculate the metric globally by counting the total true
positives, false negatives, and false positives. For macro-F1, we calculate the metric for each
label, and get their unweighted mean. A relation is correct if its type and corresponding
two entities are all correct and an entity is considered correct if its span and type are both
right. For SciERC, we report micro-F1 score as previous works and, in the RE task, we do
not consider whether the entity type is correct.

In this work, we employ BERT as our pre-trained model, and its parameters will be
fine-tuned during training. For the Conll04 dataset, we will adopt BERT-base-cased from
HuggingFace’s Transformers [53]. In addition, for SciERC, the SciBERT [54] model will be
adopted, which is trained on papers from the corpus of semanticsholar.org specifically. For
the acquisition of syntactic features, we use the Stanford dependency parser of the Stanford
CoreNLP toolkit [55] to generate dependency structures. We train the model with a learning
rate of 5× 10−5, and adopt the Adam optimizer with weight decay as 0.01, using a linear
warmup schedule. The dimension of width embedding is 25, and the batch size is set to 2.
The contextual embedding size from BERT is 768, and the threshold for filtering relations is
0.55. For all layers with multi-head self-attention, the number of heads is 8, and we use half
of the heads to focus on syntactic features. In addition, for span pruning, we limit spans to
a max length of 10. All of the hyper-parameters are tuned on the validation set.

4.2. Overall Performance Comparison

Table 2 demonstrates the overall experimental results. For our joint model, we report
both named entity recognition and relation extraction task performance on the test dataset.
By applying syntax-informed self-attention mechanism with the LCA pruning method
and local context focus mechanism, we observe that our model outperforms all listed
joint models and achieves significant improvements on relation extraction tasks. For
Conll04, we find that our model outperforms the previous state-of-the-art model [14] by
1.70 micro-F1 and 1.61 macro-F1. To evaluate the generalizability of our method, we also
train and evaluate the model on the SciERC dataset. For SciERC, we find that our model
has 1.67 micro-F1 more than previous state-of-the-art work. In addition, our proposed
model improves upon other models in both precision and recall. All results demonstrate
that our model is very effective in joint entity and relation extraction tasks.
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Table 2. Comparison of our model with other previous state-of-the-art models. Due to some previous works that use
different evaluation calculation metrics, we will indicate the specific calculation method in the table.

Entity Relation

Dataset Model Precision Recall F1 Precision Recall F1

Conll04

Table-filling * [36] 81.20 80.20 80.70 76.00 50.90 61.00
Multi-head Selector ‡ [10] 83.75 84.06 83.90 63.75 60.43 62.04
Global Optimization † [41] - - 85.60 - - 67.80
Multi-turn QA † [47] 89.00 86.60 87.80 69.20 68.20 68.90
SpERT †/‡ [13] 88.25/85.78 89.64/86.84 88.94/86.25 73.04/74.75 70.00/71.52 71.47/72.87
Our Model †/‡ 88.05/85.29 90.6/87.36 89.31/86.29 75.38 / 76.46 71.09 / 72.64 73.17 / 74.48

SciERC

SciIE † [52] 67.20 61.50 64.20 47.60 33.50 39.30
DyGIE † [45] - - 65.20 - - 41.60
DyGIE++ † [46] - - 67.50 - - 48.40
SpERT † [13] 70.87 69.79 70.33 53.40 48.54 50.84
Our Model † 69.65 71.10 70.37 55.28 50.00 52.51

Metrics: micro-average = †, macro-average = ‡, not stated = *.

4.3. Analysis of the Pruning Effect of Syntax Trees

Syntactic features are beneficial for RE tasks because it can capture dependencies
between different components of a sentence and usually expresses as tree structure. When
we focus on extracting the semantic relationship between two entities in a sentence, some
irrelevant information in the dependency tree may interfere with our analysis. Therefore,
we choose several different methods for pruning the syntax tree to remove irrelevant
information as much as possible. For details about the implementation, see Section 3.4.

The comparison results are shown in Tables 3 and 4. We find that, for both Conll04
and SciERC, the LCA method shows better performance than ALL and SDP. Intuitively,
retaining the entire tree may keep too much irrelevant information, and keeping only the
shortest dependency path will be too aggressive for removing information. Therefore,
using the LCA method can retain effective features more reasonably. Our experiments
have also verified this.

Table 3. Comparison of different pruning methods on the Conll04 validation dataset.

Dataset Pruning Method Relation F1

Conll04 †/‡
ALL 71.84/73.13
SDP 72.64/73.58
LCA 74.66/76.13

Note: we show both micro-average (†) and macro-average (‡) F1 to evaluate relation extraction performance
following previous experimental settings.

Table 4. Comparison of different pruning methods on the SciERC validation dataset.

Dataset Pruning Method Relation F1

SciERC †
ALL 47.53
SDP 46.77
LCA 51.35

Note: we show micro-average (†) F1 to evaluate relation extraction performance following previous
experimental settings.

4.4. Ablation Tests

In this section, we conduct ablation tests on Conll04 and SciERC validation datasets
reported in Tables 5 and 6 to analyze the effectiveness of different components of our
proposed model. We test three variants of the model as follows:
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• All Model: Use the complete model proposed above for testing;
• Local Context Focus: Remove the local attention module for context, and then explore

its contribution to overall performance improvement of the model;
• Syntactic Feature Fusion: Remove syntactic features from the multi-head self-attention

module and then analyze its contribution.

When we remove the local context focus mechanism, the performance of the relation
extraction task decreases for both datasets. It contributes 1.39 micro-F1 and 1.44 macro-
F1 for Conll04, and 2.45 micro-F1 for SciERC. For the global context, we find that the
performance of relation extraction becomes worse if we remove all syntactic heads. It
contributes 2.59 micro-F1 and 2.84 macro-F1 for Conll04, and 1.34 micro-F1 for SciERC.

All results described above demonstrate that using part of the heads to focus on
syntactic feature is effective. In addition, the pruned syntax tree is an important feature
for RE tasks. In addition, by attending to the semantic information of local context, it is
possible to exploit more contextual features for the RE task.

Table 5. Ablation test on the Conll04 validation dataset.

Dataset Settings Precision Recall Relation F1

Conll04 †/‡
All model 77.85/79.00 71.72/73.72 74.66/76.13
- Local context focus 75.54/76.28 71.14/73.45 73.27/74.69
- Syntactic feature fusion 75.08/75.65 66.76/68.81 70.68/71.85

Note: we show both micro-average (†) and macro-average (‡) F1 to evaluate relation extraction performance
following previous experimental settings.

Table 6. Ablation test on the SciERC validation dataset.

Dataset Settings Precision Recall Relation F1

SciERC †
All model 55.03 48.13 51.35
- Local context focus 51.72 46.37 48.9
- Syntactic feature fusion 53.42 42.86 47.56

Note: we show micro-average (†) F1 to evaluate relation extraction performance following previous experimen-
tal settings.

5. Discussion

In this section, we evaluate the prediction results of our proposed model and select
several representative samples to discuss advantages and shortcomings of our model. In
these cases, the blue part is the correct result, and the red one is wrong. The content in the
lower right corner of the right parenthesis denotes “entity pair number-left (L)/right (R)
entity-relationship”.

Case 1 (Effect of syntactic feature):

• Without syntactic feature: Ambassador Miller is also scheduled to meet with Crimean
Deputy [Yevhen Saburov]E1-L-Work for and [[Black Sea Fleet]E2-R-Work for]E1-R-Work for Commander
[Eduard Baltin]E2-L-Work for.

• With syntactic feature: Ambassador Miller is also scheduled to meet with Crimean
Deputy Yevhen Saburov and [Black Sea Fleet]E1-R-Work forCommander [Eduard Baltin]E1-L-Work for.

Case 1 represents a kind of situation where the prediction of a relation between two
entities is related based on corresponding entity types, but in fact they are not related in the
sentence. We draw a pruned syntax tree of the example by the LCA method illustrated in
Figure 4. The subtree in the bottom right corner represents the LCA tree corresponding to
the two entities with correct results. For “Black Sea Fleet”, we see that “Eduard Baltin” has a
direct modified relationship with it, but “Yevhen Saburov” does not. From the dependency
tree, we can obtain a structural modified relationship between entities, which has a positive
impact on relation extraction performance. In addition, it is easy to find out that, if we
adopt the SDP method, “Commander” will be off the tree. However, “Commander” has
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strong instructions for extracting the relation “Work-for”. Therefore, the LCA method can
keep more important information.

Figure 4. Pruned syntax tree of the example, the underlined parts represent entities information.

Case 2 (Effect of local context focus):

• Without local context focus: “If they tell us to get out, we get out,” said [Lutie Dyson
]E1-L-Live in, 62, who with her husband and about 65 others took shelter in a school in
[Lake Charles]E1-R-Live in.

• With local context focus: “If they tell us to get out, we get out,” said [Lutie Dyson
]E1-L-Live in, 62, who with her husband and about 65 others took shelter in a school in
[Lake Charles]E1-R-Live in.

Case 2 represents a kind of situation where the sentence contains clue words. Although
previous work like [13] has proved that extracting local context is superior to the global
context for the task, it still lacks in-depth learning of contextual features in local context. In
the sentence, we can easily find that the phrase “took shelter in” is an important clue for
relation extraction. When we add local focus layer, the model can classify the relation as
“Live-in” correctly, but if we do not add this layer and simply use a pooling method over
local context to align feature dimensions, the model cannot identify corresponding relations.

Case 3 (Negative sample):

• Requires simple semantic inferring : [Oswald]E1-L-Kill was captured in the theater on
22 November 1963, only a few hours after [Kennedy]E1-R-Kill was shot to death on a
Dallas street.

Case 3 is a negative example, indicating that there are no straightforward clue words
to indicate that there is a relationship “Kill” between entities “Oswald” and “Kennedy”.
However, by reading the context, the two events “Kennedy was killed” and “Oswald was
arrested” are logically causally connected, and there should be a relationship "Kill" between
the two entities.

Although our method makes the model achieve better performance on relation ex-
traction tasks, it is obvious that our model lacks sufficient linguistic inference abilities.
From Case 3, it can be found that semantic relational reasoning is an important issue
because it allows our model to extract knowledge facts from the text more comprehensively.
In addition, the relational reasoning problem usually involves the semantic synthesis of
multiple sentences.

In this research field, Ref. [56] proposed a dataset for document-level relation extrac-
tion tasks, and summarized several types of relational reasoning like logical, coreference,
common sense, and so on. Recently, many works like [57,58] have begun to tackle the
problem of cross-sentence relational reasoning, which is an important research direction in
the future.
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6. Conclusions and Future Work

Enabling machines with cognitive and logical capabilities will be a hot topic in future
research, and the knowledge graph will be the “brain” of intelligent applications. The
entity and relation extraction task is an important step in constructing knowledge graphs,
and comprehensively and accurately extracting knowledge facts from texts has important
research and economic value.

In this paper, we propose a model to extract entities and relations from unstructured
text, which incorporates syntax-informed multi-head self-attention and a local context
focus mechanism in end-to-end framework. In order to integrate syntactic features into
a span-based joint extraction model, combined with the observation that the capability
of many attention heads in the multi-head attention mechanism is not fully exploited,
we propose to employ part of the heads to focus on syntactic parents of each token from
dependency trees with different pruning methods to fuse syntactic and semantic features.
In addition, we apply a local focus mechanism on entity pairs and corresponding context
to get richer contextual features from the local context. Based on pre-trained BERT, results
from the experiments on Conll04 and SciERC datasets confirmed that our model achieves
significant improvements compared to strong competitors. In addition, we find that using
the LCA method to prune a syntax tree in the syntax-informed multi-head self-attention
mechanism has the greatest impact on the relation extraction task.

In addition, there are some limitations of this work worthy of further discussion.
At present, our model can only extract knowledge facts on sentence-level. However, in
fact, a large number of knowledge facts are expressed in multiple sentences. In future, we
plan to study how to improve the accuracy of document-level relation extraction tasks. In
addition, some semantic relationships need to be inferred by reading and synthesizing
multiple sentences in context. Letting the model have powerful linguistic inference ability
will be the highlight of our future research.
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