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Abstract: Groins are one of the popular manmade structures to modify the hydraulic flow and
sediment response in river training. The spacing between groins is a critical consideration to balance
the channel-depth and the cost of construction, which is generally determined by the backflow formed
downstream from groins. A series of experiments were conducted using Particle Image Velocimetry
(PIV) to observe the influence of groin spacing on the backflow pattern of two bilateral groins. The
spacing between groins has significant effect on the behavior of the large-scale recirculation cell
behind groins. The magnitude of the wake flow induced by a groin was similar to that induced by
another groin on the other side, but the flow direction is opposite. The spanwise velocity near the
groin tip dictates the recirculation zone width behind the groins due to the strong links between
the spanwise velocity and the contraction ratio of channel cross-sections between groins. Based on
previous studies and present experimental results, quantitative empirical relationships are proposed
to calculate the recirculation zone length behind groins alternately placed at different spacing along
riverbanks. This study provides better understanding and a robust formula to assess the backflow
extent of alternate groins and identify the optimum groins array configuration.

Keywords: groin; backflow; spacing; PIV

1. Introduction

Groins, also termed spur dikes, have been used widely to protect coastlines and
riverbanks from scour and erosion for centuries. They are typically built perpendicularly or
at an oblique angle to the bank so that the flow is kept away from the bank [1]. Installing the
groins, the laterally confined flow attains a sufficiently high velocity to rectify a navigable
river [2]. Due to the blockage effect of the groin, a complex three-dimensional turbulent
flow pattern is generated near the structure, resulting in local high velocity-gradient and
sediment movement [3]. The flow field in vicinity of groins is a visual indicator of the
turbulent flow characteristic and plays a key role in the understanding of hydrodynamics
induced by the groin [4,5]. The emerged and impermeable groin is the most common type
of groin used in river regulation. The flow field around such a kind of groin can be divided
into two subzones due to flow separation from the groin tip: the recirculation zone with
a large-scale vortex downstream of the groin and the main stream with contraction and
diffusion by the protrusion of the groin (see Figure 1 for detail).

Previous studies have examined the two-dimensional (2D) flow fields around a single
groin, the simplest layout, to interpret the mechanism of groin-induced turbulent flow.
Most scholars focus on the flow separation from the groin tip [6], back water upstream
of the groin [7], dead-water zones in the mixing layer [8], water surface oscillation [9]
and the recirculation zone downstream [10,11], as shown in Figure 1. Among issues
above, the large-scale recirculation zone of the groin downstream is the hottest topic
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discussed due to its key role on the local scour near the structure. The earliest report on
the recirculation zone of a thin plate groin was from Francis et al. [12], which presented
the structure of the recirculation zone behind the groin and preliminarily investigated the
average length and maximum width of the recirculation zone but lacked flow measurement.
Rajaratnam and Nwachukwu [13] further experimentally observed the velocity profiles
near a thin-plate groin and the recirculation zone downstream. They stated that the length
of this recirculation is about 12 the times groin length. Subsequently, Schmidt et al. [14],
Ettema and Muste [3], and Duan [15] also conducted a series of physical experiments
to simulate recirculating flow varied by different impact factors, i.e., Froude number,
approaching velocity and model scale. Their experimental data show that the downstream
recirculation length varied from 7 to 16.6 times the length of the groin and suggested that
downstream channel training is the key in controlling the recirculation length in natural
rivers. These early experimental investigations gave a robust basis for the follow-up study
of the recirculation zone induced by a groin-like structure, in particular providing validated
data for numerical simulation. Considerable efforts have been devoted to numerical
simulation of flow around a single groin with the rapid development of computation
technology, presenting more detailed information regarding flow field structure around a
single groin [16–22].
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Figure 1. Schematic sketch of flow separation from a groin (Top view).

The flow within the groin field is virtually stagnant and has a permanent open con-
nection with the main stream, resulting in a continuous exchange of mass and momentum
between the groin field and main stream [23]. Using the planar velocity measurement with
Particle Image Velocimetry (PIV), Weitbrecht and Jirka [24] conducted an experimental
work of the flow patterns around two groins and the mass exchange processes between the
recirculation zone and the main stream. The exchange process was found to be governed
by the 2D flow structure generated at the groin tip, which grows in the horizontal direction
mainly between two groins because the flow is very shallow. Based on flume experiments
and field measurements, Sukhodolov et al. [25] found that the recirculating flow patterns
in the groin fields depend mainly on the ratio between groin length and groin field length.
The aspect ratio of 0.5 is the critical value at which the flow pattern changes from one-vortex
to two-vortex in the groin fields. Subsequently, more details regarding vortex flow in groin
fields were experimentally investigated by Uijttewaal [26]. By increasing the distance
between groins further, the flow pattern on the downstream side of the groin field changes
while, on the upstream side, the primary and secondary vortices remain qualitatively the
same [26]. More flow details near river groins were further experimentally investigated by
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Yossef and de Vriend [27] for emergent and submerged groins. The flow circulation within
the emerged groin field is largely driven by the main stream via momentum exchange
through the interfacial mixing layer, while the flow in the submerged groin field does not
show the same circulation pattern as that in the emerged groin field.

A three-dimensional (3D) view of the flow and turbulent structures is necessary for
better understanding the hydrodynamics and particular features of groin-induced flow
patterns, particularly concerning the shallow flow associated with low-land rivers [28].
The shallow water depth implies that the horizontal distribution of flow velocities is
strongly influenced by the local depth, curvature bed roughness, and the presence of
obstacles such as groins. Due to the complexities, the 3D flow in shallow fluids is predicted
generally by high-resolution experiment instruments and validated numerical models for
large temporal and spatial scales. Using Stereoscopic Particle Image Velocimetry (SPIV),
Akkermans et al. [29] measured the horizontal flow velocities around a dipolar vortex
generated by a single magnet with pulsed forcing in a shallow fluid layer. The flow
exhibits significant 3D features from the patches of downward flow in the vortex cores.
Following that, Cieślik et al. [30] investigated the interaction of a shallow-layer vortex
dipolar with a lateral wall, and observed that the influence of the wall on the vertical
motion inside the dipolar vortex becomes stronger with decreasing water depths via
SPIV measurement and numerical simulation. Van Heijst and Clercx [31] reviewed the
research work on complicated vortices evolving in shallow fluid layers, and suggested
the importance of vertical secondary flows on the surface of primary horizontal motion.
Furthermore, Akkermans et al. [32] noticed that the discrepancy of the 3D vortex structure
occurred possibly in two-layer and single-layer fluids, and substantiated that 3D vortex
structures and their evolution are resembled in both fluids via experimental and numerical
simulations.

The influence of a single groin is apparently limited in altering the geometry or flow
dynamics of the river channel. In actual practice, groins exert influences on the river system
usually in the form of groups, i.e., groin groups, to systematically reshape the river channel.
The spatial layout of a groin group is an important factor to realign the river channel
and improve the navigation condition, including ipsilateral and bilateral layouts. The
ipsilateral layout is several groins deployed on one side in order to regulate the riverbank
or coastline. Based on laboratory experiments, McCoy et al. [33], Ahmed et al. [34] studied
the flow patterns around an ipsilateral groin pair, focusing on the impact of groin length
and distance between groins. Their results indicated that the effective distance between
two groins ranges from three to four times the groin length. Uijttewaal [10] examined the
flow patterns induced by groin groups with different types, i.e., permeable, impermeable
and inclined crest groins, and chiefly observed the vortex shedding and recirculation in
the groin field. Installing more groins may prolong the regulating length of the river
and cause more a complicated turbulent flow pattern, but this is difficult to measure via
laboratory experiment. Employing a numerical model validated by experimental data,
the complex recirculating flow inside multiple groins field was successfully captured by
McCoy et al. [35], Fang et al. [36], Koutrouveli et al. [37] and Ning et al. [38]. The simulated
results show that the center of the downstream recirculation zone moves towards the groin
as groin length increases, and the recirculation zone between groins increased with the
spacing between two neighboring groins.

Contrary to the ipsilateral layout, groin groups constructed on both sides of a river
is a so-called bilateral layout. The bilateral layout of groin groups is generally performed
in two forms, i.e., the alternate layout and symmetrical layout, which depends on the
relative spacing between groins on both sides. The spacing between groins is a crucial
consideration to retain an appropriate channel depth and cost-effective construction. The
open-channel flow with groins in the alternate layout was experimentally investigated
by Gu and Ikeda [39]. The experimental results show that the spacing between groins
has a significant effect on the location of the reattachment point and maximum velocity
downstream, leading to change the scale of the recirculation zone formed behind groins.
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Further, Cao et al. [40] proposed the spacing threshold of two adjacent groins, which is the
spacing when the lateral distribution of velocities adjacent to two groin sections becomes
coincides, and compared the velocity distribution of two groins with the ipsilateral layout
and alternate layout via numerical simulation. It shows that the spacing threshold of
alternate groins is smaller than that of ipsilateral groins. Following that, a contrastive
analysis between the hydraulic performances of groins placed ipsilaterally and alternately
was carried out by Krishna et al. [41], focusing on water-level fluctuation, velocity dis-
tribution and bed patterns around groins. From the results, the alternate arrangement
of groins showed a greater increase in water levels and velocities upstream. In terms of
flow field characteristic of symmetrical groins, the recirculation zone width induced by
groins is highly sensitive to the length of groins, especially the length of the groin placed in
middle [42]. Both the recirculation width and length of symmetrical groins at downstream
increased with decrease in the cross-section of the main flow, and the average recirculation
width and length were 0.4 and 8 times the groin length, respectively [43].

The alternate groins layout was widely used on training large rivers, such as the Mis-
sissippi River [44–46], Rhine River [47–49], Yellow River [50,51] and Yangtze River [52–54].
Due to the asymmetric layout, there were significant differences in flow properties between
ipsilateral groins and alternate groins. According to previous research [55,56], the extension
of the horizontal vortex downstream of a groin can be used as a criterion for selecting the
suitable spacing between groins. In spite of all this extensive research, it is still difficult to
make a direct estimation of the backflow scope behind groins deployed at both riverbanks.
For instance, even for a single groin, the surrounding 3-D turbulent flow change is very
complex, not to mention the accumulative interaction with the integrated groin group
in a natural river system. Moreover, some questions remain to be answered: how do
the backflows generated by alternate groins affect each other? Is there a critical spacing
between groins that maximizes or minimizes the respective recirculation zones behind
groins? How do they differ from each other in the velocity distribution?

To answer these questions, further research is needed to investigate the backflow
interaction mechanism of bilateral groins. From these perspectives, a groin pair, i.e., the
smallest unit of a groin group, was adopted to study the river training and regulating effect
of the groin group via a series of laboratory flume experiments. The novelties of this study
include: (1) two bilateral groins with various spacing were experimentally investigated for
their backflow pattern, which was first characterized by the variation process of backflow
scale by critical spacing; (2) the quantitative relations of the recirculation zone length and
spacing between bilateral groins were established, indicating the influence mechanism
of the opposite groin on backflow behavior; (3) spanwise velocity located at the shear
layer zone near the groin tip was determined to play a leading role in the width of the
downstream recirculation zone; (4) the vorticity distribution with different spacing between
groins was calculated and compared with the variation trend of backflow length.

The paper is organized as follows: the experimental setup and measurement technique
are introduced in Section 2; the experimental results of a groin pair with various spacing are
presented in Section 3, including horizontal flow patterns, velocity along the cross-section
through the groin tip, and vorticity distribution; the effect of backflow patterns of Groin
B on the recirculation zone behind Groin A, formulas of recirculation length behind a
single groin and alternating groins are discussed in Section 4; finally, the conclusions are
summarized in Section 5.

2. Material and Methods
2.1. Experimental Set-Up and Test Conditions

The experiments were carried out in the recirculating current flume of the Hydrody-
namic Laboratory at Shanghai Ocean University. The current flume is 6.0 m long, 0.45 m
wide and 0.55 m deep, as shown in Figure 2. The flow rate ranges from 0.1 to 100 m3/h.
The flume sidewalls and bottom are transparent tempered glass with metal frames to
facilitate PIV measurements. The effect of bottom friction is negligible due to the smooth
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glass surface. Honeycomb steel plates are installed at the inlet and outlet to minimize
eddy currents. A tailgate at the outlet of the flume is used to retain the flow depth. The
longitudinal slope of the flume is 0. In present experiment, the discharge and depth of the
flow were constant. The inlet discharge was controlled by a computer. The water depth
was adjusted using a butterfly tailgate located at the downstream outlet of the flume to
maintain the flow depth constant. In present experiment, inlet discharge was set to 25 m3/h
and water depth was set at 0.137 m to keep the groin just emerged. The Reynold number is
approximately 366,273.
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rectangular blocks).

Two identical groin models with a dimension of 0.05 m (length) × 0.05 m (width) ×
0.15 m (height) were composed of plexiglass and installed on both vertical walls of the
flume. The structure length was less than 1/3 of the flume width; therefore, they were
taken as short groins. The two groins were labelled Groin A and B. Groin A was fixed and
Groin B could be moved on the opposite bank to create a variety of array configurations.
For example, by moving groin B along the flume side wall upstream or downstream, the
streamwise spacing (x) between two groins was changed to form a variety of alternate
layouts (x 6= 0). When the two groins were placed transverse parallel at both banks, a
symmetrical layout (x = 0) was created. A schematic diagram of two groins with various
positions for Groin B is shown in Figure 3. During the experiments, the inlet flow rate, the
water depth at the tailgate and the position of Groin A remained unchanged.



Appl. Sci. 2021, 11, 1486 6 of 27Appl. Sci. 2021, 11, 1486 6 of 27 
 

 

(a) 

 

(b) 

Figure 3. Different groin configuration scenarios. (a) Top view; (b) side view. 

2.2. Particle Image Velocimetry (PIV) Measurements 

The flow velocity was measured using a two-dimensional PIV system (TSI, USA), 

which is a whole-flow-field and non-intrusive laser optical measurement technique for 

research and diagnostics into flow. It provides instantaneous velocity vector measure-

ments in a cross-section of the flow. The PIV system mainly includes tracer particles, a 

laser generator, image acquisition, synchronizer and image-processing software, see Fig-

ure 2 for detail. PIV systems measure velocity by determining particle displacement over 

a precisely selected time using a double-pulsed laser technique. A laser light sheet illumi-

nates a plane in the flow, and the positions of particles (naturally present or added to the 

flow to have a sufficient number of tracers) in that plane are recorded using a digital cam-

era. A short time (micro or milliseconds) later, a second pulse illuminates the same plane, 

creating a second set of particle images. From these sets of images, PIV analysis algorithms 

obtain the particle displacements for the imaged region to give the velocity information 

at thousands of locations—quickly, easily, reliably. Flow properties such as the vorticity 

and strain rates are obtained. Mean velocity, turbulence intensity, and higher order statis-

tics are also obtained. 

In recent years, given the marked improved accuracy and visualization of PIV meas-

urements, PIV has become a popular tool for examining complex and chaotic structure-

induced flow patterns. Xu et al. [57] studied a swirling flow combined with a vibrating 

wall in conical pipes by 2D PIV. Zhang et al. [58] used PIV, observing the turbulence per-

formance of combining the honeycomb with the screens in a small open circulating flume. 

Under two filling rates and three baffle positions, Sterczyńska and Jakubowski [59] ap-

plied the PIV technique to monitor the cone-accumulating flow for a whirlpool tank in 

A

current

B7 B8 B9 B10 B11 B12B2 B3 B4 B5 B6

Groin B moving upstream                                      Groin B moving downstream

15 cm

25 cm

35 cm

45 cm

vy

B13B1

55 cmy

x

5cm

B8 B9 B10 B11 B12B2 B3 B4 B5 B6 B13B1 A

z

x

current

Groin B moving upstream                                      Groin B moving downstream

A

current

B7 B8 B9 B10 B11 B12B2 B3 B4 B5 B6

Groin B moving upstream                                      Groin B moving downstream

15 cm

25 cm

35 cm

45 cm

vy

B13B1

55 cmy

x

5cm

B8 B9 B10 B11 B12B2 B3 B4 B5 B6 B13B1 A

z

x

current

Groin B moving upstream                                      Groin B moving downstream

Figure 3. Different groin configuration scenarios. (a) Top view; (b) side view.

2.2. Particle Image Velocimetry (PIV) Measurements

The flow velocity was measured using a two-dimensional PIV system (TSI, USA),
which is a whole-flow-field and non-intrusive laser optical measurement technique for
research and diagnostics into flow. It provides instantaneous velocity vector measurements
in a cross-section of the flow. The PIV system mainly includes tracer particles, a laser
generator, image acquisition, synchronizer and image-processing software, see Figure 2 for
detail. PIV systems measure velocity by determining particle displacement over a precisely
selected time using a double-pulsed laser technique. A laser light sheet illuminates a plane
in the flow, and the positions of particles (naturally present or added to the flow to have a
sufficient number of tracers) in that plane are recorded using a digital camera. A short time
(micro or milliseconds) later, a second pulse illuminates the same plane, creating a second
set of particle images. From these sets of images, PIV analysis algorithms obtain the particle
displacements for the imaged region to give the velocity information at thousands of
locations—quickly, easily, reliably. Flow properties such as the vorticity and strain rates are
obtained. Mean velocity, turbulence intensity, and higher order statistics are also obtained.

In recent years, given the marked improved accuracy and visualization of PIV measure-
ments, PIV has become a popular tool for examining complex and chaotic structure-induced
flow patterns. Xu et al. [57] studied a swirling flow combined with a vibrating wall in
conical pipes by 2D PIV. Zhang et al. [58] used PIV, observing the turbulence performance
of combining the honeycomb with the screens in a small open circulating flume. Under
two filling rates and three baffle positions, Sterczyńska and Jakubowski [59] applied the
PIV technique to monitor the cone-accumulating flow for a whirlpool tank in rotational
motion. Based on previous work, the improvement of flow conditions in a whirlpool with a
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modified bottom is further proposed by Sterczyńska et al. [60] using PIV measurements. In
the research mentioned above, PIV is utilized to study the complicated flow structures by
rigid structures with a range of hydraulic properties. As shown with these few examples,
PIV is a great and universal tool with which to investigate turbulent flow.

The choice material and size of tracer particles are key components of PIV measure-
ments. In this experiment, polyvinyl chloride (PVC-6500) micro-powders with a diameter
of 50 µm, which have excellent flow-tracking and stable chemical properties, were used as
the tracer particle. The high-resolution 2048 × 2048-pixel CCD (Charge Coupled Device)
camera was used to continuously capture 300 instantaneous particle images at the fre-
quency of 4.83Hz, which is the optimum value of the synchronization between camera and
laser by a digital delay pulse generator. The test section was illuminated by a double pulsed
Nd: YAG laser with a pulse intensity of 25mJ focused on a sheet of 2-m width. The model
of the laser pulse synchronizer is 610036. The flow field measurement was performed with
a horizontal region situated at 0.05 m above the flume bottom. The time-averaged flow
fields over a 0.05-s interval were processed using the Insight 4G software PIV system. The
PIV images were taken over an area of 380 mm (length) × 370 mm (width), which resulted
in 3969 vectors (63 × 63) over the measured area. The measurement uncertainty was less
than 0.005 pixels based on the particle diameter and particle density.

3. Results
3.1. Horizontal Flow Patterns
3.1.1. Flow Fields of a Single Groin and Symmetrical Groins

Time-averaged horizontal flow fields of a single and two symmetrical groins on the
same horizontal plane (z/H = 0.05 m, where z is the height of velocity profile captured
and H is the experimental water depth) are shown in Figure 4. In the flow field of a
single groin, nearly stagnant flow with the lowest velocity appeared in the lee of Groin A
due to the blockage effect of the groin and strong backflow was generated downstream
from the stagnant flow, which eventually caused a large-scale recirculation zone. The
downstream recirculation zone formed behind a groin was subdivided into three main
zones, i.e., shear layer, backflow, and reattachment zone. Velocity differences are evident
between the mainstream and the backflow behind Groin A; therefore, the original smooth
flow pattern became chaotic due to the strong shear stress within the mixing layer at
the interface of the mainstream and backflow. Figure 4a also shows the time-averaged
reattachment point, where the separated flow reattaches to the flume wall on the right side
of the groin, and the velocity vector is as often in the upstream direction (recirculation) as
in the downstream direction (main flow). The time-averaged velocity of the reattachment
point is approximately zero. The streamline from the groin tip to the reattachment point
forms a recirculation zone containing a large-scale inner vortex, as depicted in Figure 5. In
this study, the distance from the reattachment point to the groin wall (the side of facing
downstream) is defined as the length of the recirculation zone formed behind the groin, i.e.,
backflow length; the maximum width of the recirculation zone is the backflow width. The
observed backflow length was over five times the length of a single groin. On one hand,
the mainstream velocity significantly increases from the groin tip to the opposite bank due
to the decreased cross-section caused by protrusion of the groin, with a velocity gradient
rapidly increasing near the groin tip, resulting in the shear layer zone (0.089 m/s ≥ vxy ≥
0.030 m/s). On the other hand, the velocity behind the groin rapidly decayed, resulting in
a low-velocity recirculation zone.

Figure 4b shows the horizontal flow field of two symmetrical single groins installed in
both banks. Because the cross-section of main flow was further contracted by two groins,
the velocity of the main flow increased more than that of a single groin. Another large-scale
recirculation zone was formed behind Groin B. Due to the symmetrical arrangement of
two identical groins, the two recirculation zones behind the groins were also symmetrically
distributed, with identical inner vortical structures rotating in the opposite direction. The
cross-section of main stream is narrowed down and the velocity profile from the groin tip
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is reshaped by two recirculation zones, which would have significant effects on scouring
in the main channel of a real-world river. The result is consistent with the study of
Cuong et al. [42], which simply examined the impacts of groin length on flow fields around
groin groups in a symmetrical configuration using Flow-3D software.
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Figure 4. Time-averaged velocity distribution and streamlines of (a) a single Groin A and (b) two symmetrical Groins A
and B: the color indicates the velocity magnitude.
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Figure 5. Schematic diagram of streamlines and observed points of velocities on the cross-section through the groin tip
for the single groin (solid line) and symmetrical groins (dotted line), in which bmax indicates the backflow width and L
represents backflow length (top view).

3.1.2. Flow Fields of Two Alternating Groins with Various Spacing

Figure 6 shows the time-averaged horizontal streamlines behind Groin A that are
affected by Groin B located at the opposite bank with 5-, 15-, 25-, 35-, 45-, and 55-cm
spacings upstream and downstream from Groin A. When Groin B is upstream from Groin
A, the flow reattachment point of Groin A moves further downstream with increasing
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spacing between groins, as shown in the left column of Figure 6. Likewise, the flow fields
near Groin A with Groin B downstream, shown in the right column of Figure 6, indicate
that the recirculation zone behind Groin A is significantly smaller than that with Groin B
upstream. As a consequence, a smaller low-velocity zone was formed behind Groin A.

To quantify the evolution of backflow patterns behind Groin A with different spacings
between the two groins, the main characteristic parameters of the recirculation zone behind
Groin A are calculated and are listed in Table 1 for all test cases. The length and width
of the recirculation zone are normalized by groin length b, as L/b and B/b, respectively.
The width of the recirculation zone was expected to increase with increasing recirculation
length. In the case of Groin B upstream from Groin A, the recirculation zone behind Groin
A becomes larger than that without Groin B (namely Case 14, a single groin). The longest
recirculation zone behind Groin A occurred during Case 5, where Groin B was located
0.15 m upstream from Groin A; the backflow streamwise length was over 50% more than
that behind the single groin during Case 14. In contrast, when Groin B was deployed
downstream from Groin A, the backflow size behind Groin A was smaller than that of a
single groin. The recirculation zone behind Groin A reached a minimum when Groin B
was 0.15 m downstream from Groin A (Case 9), where the recirculation length was more
than 30% less than that behind a single groin. These results indicate that an upstream
alternating Groin B promotes the development of a recirculation zone behind Groin A,
whereas a downstream alternating Groin B inhibits the generation and propagation of
reversing flow induced by Groin A.

The normalized length and width of the recirculation zone behind Groin A are shown
in Figure 7. The variation of recirculation zone length can be divided into three subzones.
First, Cases 1–5 are classified as upstream far-field. As Groin B moves toward Groin A, the
main channel becomes narrower; therefore, the velocity is larger and the low-velocity zone
at Groin B is expanded. The recirculation zone behind Groin A is lengthened from 0.314 to
0.384 m, about 20%. Second, Cases 6–8 are classified as the upstream and downstream near-
field and symmetrical layout. The width of the channel between the groins was narrowed
remarkably in these three cases, and the low-velocity zone near the groins reached the
maximum for the symmetrical groin layout. The main channel was separated by groin tips
and the fluid stream spread rapidly after bypassing Groin B due to fluid inertia, which
significantly inhibited the backflow induced by Groin A. As a result, the recirculation
zone behind Groin A was shortened from 0.35 to 0.17 m, about 50%. Third, Cases 10–13
are categorized as the downstream far-fields. As Groin B moves downstream far away
from Groin A, the main channel next to Groin A was narrowed less and the low-velocity
area at the opposite bank also became smaller than the other two subzones. Thus, the
upstream fluid was mainly affected by the incoming flow. In this subzone, the length of the
recirculation zone gradually increases again from 0.187 to 0.236 m, about 20%, which was
similar to that for cases 1–5. In downstream far-field cases, the flow reattachment point
behind Groin A moves further downstream with increasing spacing between groins, except
for case 13, which was almost same as that of case 7, case 14 and the experimental results
observed by Gu and Ikeda [39].

Two fitted curves of recirculation zone length for cases 1–5 and 9–13 in Figure 8 were
presented for the relationship between the spacing of alternating groins and recirculation
behind groin A with a correlation coefficient R2 over 0.96. The result also suggests that as
Groin B moves upstream and downstream from Groin A, the magnitude of impact Groin
B has is similar to that on the wake flow behind Groin A; however, the flow direction
is opposite.
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Figure 6. Time-averaged horizontal streamlines and velocity distribution of alternate groins configuration with Groin B at
the opposite bank at 5 to 55 cm upstream (left column) and downstream (right column) from Groin A.
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Table 1. Experimental results of the horizontal recirculation zone behind Groin A for different cases.

Case
Spacing
between

Groins/x (m)

Recirculation Zone Behind the Fixed Groin A
FeatureLength/L

(m)
Width/W

(m)
Normalized
Length (L/b)

Normalized Width
(W/b)

1 −0.55 0.314 0.073 6.276 1.465

Groin B moving
upstream

(alternate layout)

2 −0.45 0.325 0.077 6.506 1.534
3 −0.35 0.345 0.078 6.903 1.552
4 −0.25 0.355 0.081 7.063 1.616
5 −0.15 0.384 0.082 7.683 1.630
6 −0.05 0.350 0.075 6.999 1.504

7 0.00 0.245 0.063 4.905 1.265 Symmetrical groins
(both banks)

8 0.05 0.170 0.056 3.395 1.121

Groin B moving
downstream

(alternate layout)

9 0.15 0.160 0.057 3.193 1.149
10 0.25 0.187 0.060 3.745 1.194
11 0.35 0.212 0.064 4.234 1.276
12 0.45 0.226 0.067 4.526 1.344
13 0.55 0.236 0.067 4.721 1.334

14 — — 0.250 0.066 5.002 1.329 Single Groin A
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3.2. Velocity along Cross-Section through Groin Tip and Its Influence on Recirculation Zone

The flow field near a groin has a dominant effect on the backflow pattern behind the
groin. Because the velocity near the groin tip is directly associated with the downstream
turbulent intensity and the streamwise propagation of recirculating flow. Therefore, the
time-averaged streamwise and spanwise velocity components at 19 points evenly dis-
tributed along the cross-section of the groin tip were extracted to examine their influence
on the downstream recirculation. The schematic of observed points at the cross-section
of a single groin is plotted in Figure 5; the positions of velocity observation points in the
other cases of alternating groins are the same, except with only 17 points extracted for the
symmetrical groins.

Figure 9 shows the time-averaged streamwise velocity component (i.e., x-velocity, vx)
of each observed point on the cross-section of Groin A. The streamwise velocity at points
1–3 nearest the groin tip and points 16–19 nearest the opposite bank varied markedly;
however, at points 4–15 in the middle of the main channel it was hardly changed. The
streamwise velocity reached the maximum near the fourth point in front of the groin, except
for Case 7 (symmetrical groins), where the maximum velocity appears at the fifteenth point
due to the other groin symmetrically deployed at the opposite bank, see Figure 9b. Overall,
the variation time-averaged streamwise velocities at points 1–3 were similar to each other,
i.e., the velocity linearly increased from point 1 to 3 due to the strong shear stress near the
groin wall. However, the streamwise velocity at points 16–19 decreased and the variation
of each case varied notably, which implies that streamwise velocity at the opposite bank
is not simply affected by the contacted section of groin but also by the flume wall. The
streamwise velocity represents the water flux through the cross-section of the main channel,
and plays a leading role on the flow structure near Groin A and further alters the backflow
induced by the groin.

The averaged streamwise velocity of points 16–19 (denoted as vx,16–19) for each case
and the length of the recirculation zone are correspondingly presented in Figure 10, in
which the negative value of spacing between groins represents Groin B located upstream of
Groin A. It is obvious that vx,16–19 had completely different properties with various locations
of Groin B. When Groin B was located in the upstream far-field and moves towards Groin
A (Cases 1–5), with shorter spacing between groins, the streamwise velocity gradually
decreased because the upstream cross-section of Groin A contracted continuously, so that
the length of the recirculation zone behind Groin A progressively increased. In particular,
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the minimum of vx,16–19 and the maximum of backflow length appeared in Case 5, in which
the spacing between groins was 0.15 m. When Groin B was deployed in the near-field
(Cases 6–8) since groins too close to one another will prevent flow reattachment, keeping
the shear stress between groins rather low, the change of streamwise velocity varied and
the backflow length rapidly decreased the in above three cases. As Groin B was placed in
the downstream far-field (Cases 9–13), vx,16–19 and recirculation length gently increased
again because the narrowed cross-section was gradually wider with Groin B away from
Groin A.
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Figure 11 shows the relationship between time-averaged spanwise velocity (i.e., y-
velocity, vy) at points 1–3, 4–15 and 16–19 along the cross-section of Groin A and the
width of recirculation zone. It was found that the time-averaged spanwise velocity on the
cross-section through Groin A tip relates approximately linearly to the recirculation zone
width. The linear relationship between vy at points 1–3 and recirculation zone width has a
coefficient of determination R2 of 0.96. The R2 between the recirculation zone width and vy
at points 4–15 reaches 0.95. The velocity distributed on the fitted line of points 1–3 were
closer to each other than that of other points. In other words, the linear relationship works
the best between vy at points 1–3 and the width of recirculation zone, which implies that
correctly representing the spanwise velocity nearest the groin tip is the most important
factor in determining the recirculation zone width.
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The relationship between the width and length of the recirculation zone formed behind
Groin A is shown in Figure 12, with the fitting accuracy R2 of 0.96. It is known that the
spanwise velocity at points 1–3 nearest the groin tip has a significant effect on the width of
the recirculation zone (see Figure 11), which in turn affects the length of the recirculation
zone (see Figure 12). In other words, the influence of Groin B on the flow structure around
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Groin A is mainly manifested in the degree of river reach shrinkage and spanwise velocity
change near the tip of Groin A.
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3.3. Vorticity Distribution and Its Influence on Recirculating Flow

Based on the measured data, the vertical vorticity (i.e., z-component of vorticity, Ωz)
component is calculated using the following equation,

Ωz =
∂vy

∂x
− ∂vx

∂y
(1)

where vx is the velocity in the streamwise, x-direction; vy is the velocity in the spanwise,
y-direction; and Ωz is vertical rotational strength of the recirculating flow. The vorticity
distribution plays a leading role in the research of recirculating flow, particularly the flow
behind some rigid structures such as groins [36].

Figure 13 shows the vertical vorticity (magnitude indicated by colors) distributed in
the horizontal measured plane for one single groin and two symmetrical groins. The maxi-
mum vertical vorticity occurred near the groin tip, as illustrated in Figure 13a. The observed
vertical vorticity pattern of a single groin is consistent with the previous numerical results
from Duan [15]. The vertical vorticity Ωz generated by a single groin is manifested as the
negative vertical vorticity Ωz downstream, which originates from the groin tip and is con-
centrated within the mixing layer zone. Interestingly, as Groin B was symmetrically placed
at the opposite bank to Groin A, the maximum positive vertical vorticity was induced by
Groin B, where flow in the vicinity of the Groin A tip was dominated by high negative
vertical vorticity along the recirculation zone, see Figure 13b. Since the propagation of
negative vertical vorticity induced by Groin A was blocked at the transverse direction,
two high-vorticity zones with similar size but opposite orientation symmetrically showed
along the mixing layer zone behind Groins A and B. The velocity gradient in the mixing
layer greatly increased due to the contraction of main flow by two symmetrical groins;
as a result, the high-vorticity zones at both banks were extended further longitudinally
compared to that of a single groin.

Figure 14 shows the vertical vorticity distribution of two alternating groins with
various spacing between groins, downstream from Groin A. The vorticity fields also
display distributions similar to the recirculation zone behind Groin A shown in Figure 5 for
different test cases. High vorticity appeared at the mixing layer at the interface between the
mainstream and recirculation zones. When Groin B was upstream of Groin A, the extent of
high-vorticity was larger compared to that of Groin B downstream of Groin A. In addition,
when Groin B was downstream of Groin A, the advection and diffusion of vorticity induced
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by Groin A was hindered by the three-dimensional flow patterns over Groin B. Therefore,
a smaller high-vorticity zone was formed behind Groin A and it skewed more to the flume
wall, which impeded the formation of large-scale recirculation downstream of Groin A.
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Figure 13. Vertical vorticity in the horizontal plane for (a) single groin, (b) two symmetrical groins.

Furthermore, the vertical vorticity flux (Ez) is introduced to describe the spatially
integrated scalar value of Ωz and the bulk effect of vertical vorticity on the downstream
recirculation zone, defined as:

Ez =
x

Ωzdxdy =
x

(
∂vy

∂x
− ∂vx

∂y
)dxdy (2)

where the integration area is the whole horizontal plane measured by the PIV system.
The vertical vorticity flux through the whole horizontal plane measured by the PIV is

calculated from Equation (2) and plotted in Figure 15, which also shows the recirculation
zone length for different cases. The vertical vorticity flux Ez vs. recirculation zone length
displays a consistent variation trend for different test cases. The vertical vorticity flux Ez
increases with increasing recirculation zone length, resulting in more dissipation of flow
energy. The variation of Ez vs. recirculation zone length displays three distinct subzones’
response to the position of Groin B relative to Groin A, i.e., increase in the upstream far-
field, decrease in the near field, followed by increase in the downstream far-field. The
relationship between vertical vorticity flux and recirculation zone length in each subzone is
shown in Figure 16. When Groin B is located upstream far-field of Groin A, the recirculation
zone length behind Groin A increases at the fastest rate with increasing vertical vorticity
flux. When Groin B is in the downstream far-field of Groin A, the recirculation zone length
behind Groin A increases at the slowest rate with increasing vertical vorticity flux. The
change rate of recirculation zone length is between the two above if Groin B is placed in
the up- or down-stream near-field of Groin A. In summary, the accumulation effect of
the vertical vorticity flux near Groin A is at its maximum when Groin B is located in the
upstream far-field from Groin A.
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Figure 14. Vertical vorticity in the horizontal planes for alternating groin configuration with Groin B at 5 to 55 cm upstream
(left column) and downstream (right column) from Groin A.
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As Groin B approaches Groin A on the upstream side, the advection and diffusion of
vorticity induced by Groin A in the horizontal plane are enhanced and the extent of high
vertical vorticity flux area increases, resulting in a larger recirculation zone. In case 7, i.e.,
symmetrical groins, a critical threshold appears in the extension of vertical vorticity flux
produced by Groin A both in transverse and longitudinal directions, which demonstrates
that the transverse extension of vertical vorticity is strengthened whereas the longitudinal
propagation of vertical vorticity is weakened significantly. It follows that the high-vorticity
zone shrank, leading to a shorter recirculation zone behind Groin A. When Groin B is
0.15 m downstream of Groin A, the streamwise extension of the vertical vorticity induced
by Groin A is inhibited the most by Groin B so that the length of the recirculation zone
behind Groin A drops to the minimum value of 0.16 m (see Table 1). When the groins are
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further apart, downstream Groin B promotes the increase in vertical vorticity near Groin A,
therefore promoting the development of the recirculation zone behind groin A. Although
the vertical vorticity induced by Groin A is a nonlinear function of the Groin B distance
from Groin A, the variation rate of vertical vorticity flux and the recirculation zone length
induced by Groin A remains almost constant.

4. Discussion
4.1. Effect of Backflow Patterns of Groin B on Recirculation Zone Behind Groin A

The flow interaction between bilateral groins determines the contraction extent of the
main channel by groins with different spacing, which further influences the downstream
backflow affected by the streamline curvature. It implies that the deformation of streamlines
passing groins is important to the development of the recirculation zone behind Groin A.
When Groin B is placed upstream of Groin A, the outward normal direction of flow at the
end of the recirculation zone induced by Groin B points toward Groin A and the convex
recirculation zone behind Groin A concurrently (see Figure 17a). It can be interpreted as the
flow pointing towards the rear of Groin B along the section in the outward normal direction,
which provides additional momentum to downstream recirculating flow induced by Groin
A, resulting in a larger velocity component pointing to the opposite river bank. With
Groin B approaching Groin A, the width of the section along the outward normal direction
decreases, but the current velocity on the section increases correspondingly to conserve
mass, especially the velocity component in the transverse direction (i.e., spanwise velocity)
because the angle between the outward normal direction and the flow direction become
larger. As previously mentioned in Section 3.2, the spanwise velocity near the groin tip has
a positive effect on the scale of the recirculation zone formed behind Groin A (see Figure 11),
so that the laterally confined flow promotes the development of backflow behind Groin
A. However, if Groin B is nearly symmetrical with Groin A on both banks, the outward
normal direction of flow along the recirculation behind Groin B is no longer pointing to
Groin A but to the downstream backflow of Groin A, as shown in Figure 17b. Eventually,
the longitudinal propagation of the recirculation zone is limited, and the reattachment
point moved towards Groin A.
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Figure 17. Schematic diagram of the influence of Groin B on the backflow behind Groin A in different cases, (a) Groin B
in the upstream far-field of Groin A, (b) Groin B in the upstream near-field of Groin A, (c) Groin B in the downstream
near-field of Groin A, (d) Groin B in the downstream far-field of Groin A.
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Conversely, when Groin B is located in the downstream near-field of Groin A, the
velocity distribution at the cross-section of Groin A would be shifted by the separating
flow in front of Groin B, which is caused by the upstream corner vortex due to the blockage
of Groin B. The outward normal direction of flow at the upstream part of the recirculation
zone behind Groin B accordingly points to Groin A and the downstream recirculating
flow induced by Groin A, see Figure 17c. With the joint actions of the flow at the front
and rear of Groin B, more flow energy is dissipated near the tip of Groin A, where the
maximum turbulent intensity appeared. Consequently, the spanwise velocity near the groin
tip decreases further, and thus, the recirculation length of Groin A becomes smaller due to
the dissipation of turbulent mixing energy. When groins are further apart (over 0.15 m), the
angle between the downstream direction and current direction becomes smaller, leading
to the angular momentum of mean flow increasing along the outward normal direction
of recirculating flow induced by Groin B. Similar phenomena were observed by Gu and
Ikeda [39] for groins in alternate layout. The front streamlines of separating flow induced
by Groin B become gradually skewed and almost parallel to the rear streamlines of the
recirculation zone behind Groin A. The outward normal direction of the front streamline
along the recirculation zone of Groin B mainly points to backflow behind Groin A, resulting
in more momentum concentrated in the recirculation zone (see Figure 17d). Thus, the
spanwise velocity along the outward normal direction of streamline increases and transfers
more kinetic energy to enhance the development of backflow behind Groin A.

4.2. Formula of Recirculation Zone Length Behind a Single Groin

Based on the energy equation, Dou et al. [61] considered the contraction ratio of the
cross-section through a single groin and used the momentum conservation equation of
separating flow. They proposed a hypothesis for the surface gradient of the mainstream and
the turbulence shear stress of the boundary between mainstream and backflow. The formula
for evaluating the recirculation zone length behind a single groin arranged perpendicular
to the river bank was derived through integration of the governing equation, such that,

ln
B

B− bx
= −[A1(1−

x
L
)

2
+ A2(1−

x
L
)− L

C2
0 H

(1− x
L
)− 2A3

3
(1− 3x

2L
+

x3

2L3 )
L
ba

(3)

where C0 is the dimensionless Chezy formula and C0 = C√
g ; H is the water depth, which

does not change much generally, and therefore the main water depth or the tailgate water
depth is not affected by the groin and can be taken as constant; A1, A2 and A3 are variable
coefficients. The detailed definition of each parameter in Equation (3) is shown in Figure 18.
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Figure 18. Schematic diagram of the recirculation zone behind a single groin.

Although the backflow pattern of Groin A is affected by Groin B on the opposite bank,
the recirculation zone remained intact as a whole due to the thickness of short groins being
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less than a third of the flume width. The scale of the downstream recirculation zone was
influenced by both the constriction ratio of the cross-section through groins and spanwise
velocity in front of the groin tip. According to the statistical results listed in Table 1, the
length of recirculation zone for a single Groin A (Case 14), which is 0.25 m, is close to that
of symmetrical groins (Case 7) and Groin B deployed 0.55 m downstream (Case 13). In
addition, the averaged spanwise velocity of observed points distributed nearest to the groin
tip are also similar to each other in the above three cases. Hence, based on the empirical
formula regarding the recirculation length of a single groin [61], using the experimental
data, a re-calibration was conducted for the relevant variables. The parametric relationship
between two alternate groins and one single groin was established for the groin-induced
recirculation zone.

In the parameter pre-calibration, three stochastic points on the boundary line of the
recirculation zone behind a single groin were chosen, extracting x and y coordinates,
respectively. The coordinates of each point were substituted into Equation (3), which
established three equations correspondingly. A1, A2 and A3 were determined by solving
the equations. Meanwhile, one more point was extracted from the boundary line of the
recirculation zone, and then the x coordinate of the point and solved parameters A1, A2
and A3 were substituted into Equation (4). Accordingly, the basic formula of downstream
recirculation length (L′a) for a single groin was obtained as follows:

L′a =
C2

0 Hba

0.223C2
0 H + ba

(1 + ln
B

B− ba
) (4)

4.3. Formula of Recirculation Zone Length Behind Alternating Groins

As previously analyzed in Section 3.1, there are three subzones for the variation of
backflow length behind Groin A with the various spacing between groins, i.e., upstream
far-field (Cases 1–5), near-field (Cases 6–8) and downstream far-field (Cases 9–13), as a
result, the calculation of the backflow length behind Groin A can also be divided into three
subzones.

When Groin B is on the opposite bank and upstream/downstream far-field of Groin
A, the influence of Groin B on the backflow length behind Groin A can be represented by
the relative contraction ratio of cross-section (δb), and given as:

δb = (
B

|x|+ B
bb)/B (5)

The total contraction ratio of the cross-section in front of Groin A due to Groins A and
B (δab) is given as:

δab = (ba +
B

|x|+ B
bb)/B (6)

Thus, the passing ratio of main flow through the cross-section is given as:

δ = 1− δab = 1− (ba +
B

|x|+ B
bb)/B (7)

When Groin B is in the near-field of Groin A, the relative contraction ratio of Groin B
to Groin A (δb) can be expressed as:

δb= (
B− x

B
bb)/B (8)

The total contraction ratio of the cross-section in front of Groin A from Groins A and
B (δab) becomes:

δab = (ba +
B− x

B
bb)/B (9)
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The current crossing capacity of a river section (δ) becomes:

δ = 1− δab = 1− (ba +
B− x

B
bb)/B (10)

In Equations (5)–(10), B is river width, ba and bb are the lengths of Groins A and B,
respectively, x is the longitudinal spacing between Groins B and A (the x value is negative
and positive responding to the location of groin B upstream and downstream from Groin
A, respectively). According to the variation process in Figure 6, a linear relationship
between recirculation zone length and spacing of groins can be observed (see Figure 7),
indicating that linearity exists with the contraction ratio of a cross-section through groins.
The contraction ratio comprehensively reflects the influence of the opposite Groin B on
the flow structure around the Groin A, especially the spanwise velocity in the vicinity and
rear of Groin A. Hence, the relationship between the backflow length of Groin A under
the impact of Groin B (La) and the backflow length of a single groin (L′a) can be given
as follows:

La

L′a
= f (

δ

δ′a
) (11)

where

δ′a =
(B− ba)

B
(12)

When Groin B is in the upstream far-field of Groin A, the relationship diagram of
La/L′a ~ δ/δ′a is drawn by experimental data; the result is shown in Figure 19.
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groin A.

According to the linear fitting formula in Figure 19, Equation (11) can be written as:

La

L′a
= −36.609(

δ

δ′a
) + 37.456 (13)

Furthermore, Equation (4) is substituted into Equation (13), and the length of recircu-
lation zone behind Groin A can be obtained as:

La =

[
−36.609(

δ

δ′a
) + 37.456

]
C2

0 Hba

0.223C2
0 H + ba

(1 + ln
B

B− ba
) (14)

When Groin B is in the near-field of Groin A, the relationship diagram of La/L′a ~
δ/δ′a is plotted in Figure 20.
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According to the linear fitting formula in Figure 20, Equation (11) can be written as:

La

L′a
= −25.948(

δ

δ′a
) + 23.724 (15)

Furthermore, Equation (4) is substituted into Equation (15), and the length of recircu-
lation zone behind Groin A can be obtained as:

La =

[
−25.948(

δ

δ′a
) + 23.724

]
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0 Hba

0.223C2
0 H + ba

(1 + ln
B
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When Groin B is at downstream far field of Groin A, the relationship diagram of
La/L′a ~ δ/δ′a is presented in Figure 21.
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Based on the linear fitting formula in Figure 21, Equation (11) can be written as:

La

L′a
= 41.596(

δ

δ′a
)− 40.175 (17)
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Furthermore, substituting Equation (4) into Equation (17), the corresponding length
of the recirculation zone behind Groin A can be obtained as follows:

La =

[
41.596(

δ

δ′a
)− 40.175

]
C2

0 Hba

0.223C2
0 H + ba

(1 + ln
B

B− ba
) (18)

Consequently, when groins were arranged in an alternating layout on both river-banks,
the length of the recirculation zone behind the single groin affected by another groin on
the opposite bank can be assessed using the following equations for various longitudinal
spacing between groins (x):

La =



[
−36.609( δ

δ′a
) + 37.456

]
C2

0 Hba

0.223C2
0 H+ba

(1 + ln B
B−ba

), (x ≤ −0.15 m)[
−25.948( δ

δ′a
) + 23.724

]
C2

0 Hba

0.223C2
0 H+ba

(1 + ln B
B−ba

), (−0.15 m < x < 0.15 m)[
41.596( δ

δ′a
)− 40.175

]
C2

0 Hba

0.223C2
0 H+ba

(1 + ln B
B−ba

), (x ≥ 0.15 m)

(19)

5. Conclusions

This study experimentally investigated the backflow patterns around a groin pair
deployed at both banks with different spacing using PIV measurements and compared
with the backflow pattern of a single groin.

For the short groin models used in the present experiment, the length and width
of the recirculation zone behind a single groin are approximately 5 and 1.3 times the
groin length, respectively. When two groins are symmetrically installed at both banks, the
contraction caused by the groins increases the velocity in the main channel through the
groin tips. As a result, the recirculation zone of symmetrical groins is slightly shorter than
that of a single groin. When two groins are placed alternately, the backflow pattern behind
Groin A presents three variation trends responding to the location of Groin B, which is
characterized by a critical spacing equal to the groin length, i.e., 5 cm in the present study.
Specifically, with the increase in spacing between groins over 5 cm, an upstream alternating
Groin B promotes the development of the recirculation zone behind Groin A, whereas a
downstream alternating Groin B inhibits the generation and propagation of reversing flow
induced by Groin A. It implies that the threshold behavior of backflow patterns depends
on the ratio of spacing between two groins to groin length in the alternate layout of short
groins. For the short groin used in the study, the threshold value of the ratio is one.

Spanwise velocity near the groin tip, which is also located in the shear layer zone
(0.089 m/s ≥ vxy ≥ 0.030 m/s), was fitted as linearly related to the width of recirculation
zone via correlation analysis. The spanwise velocity has a dominant effect on the width of
the downstream recirculation zone from the angular performance of streamline curvature.
Additionally, the variation of groin-induced vorticity and recirculation zone length remains
almost constant with different spacing between groins.

Based on momentum conservation, considering and correcting the contraction ratio of
cross-section between groins at both banks, dimensionless empirical formulas estimating
the recirculation zone length of alternating groins are, respectively, derived corresponding
to different spacing between groins. The coefficient of determination R2 is over 0.99. It
implies the results from the updated empirical formula can be considered conservative,
first-order estimates of the recirculation length formed behind short groins placed in an
alternating configuration.

This study enriches the knowledge on backflow features of two alternating groins
with various spacing, which provides a scientific reference to assess the cumulative effect
of a groin group in a natural river system. In addition, these findings will be useful for
cost-effective configuration of short groins at both riverbanks with respect to optimizing
navigation and flood prevention.
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