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Abstract: As the display industry continues to advance, various new materials are being developed
for utilizing microtechnology and nanotechnology in display panels. Among these, transparent
materials have been widely applied to the internal wiring of displays and flexible substrates, owing
to their high optical transmittance, isotropy, and anisotropy. Thus, measurement of the thermo-
physical properties of various transparent materials is important. This study measured thermal
conductivity by selecting quartz, a transparent isotropic material, and sapphire glass, a transparent
anisotropic material, as measurement target materials using a rear-side photothermal deflection
method. Measurements were made via a three-dimensional unsteady heat conduction equation, to
which complex transformation was applied and numerically analyzed using COMSOL Multiphysics.
Phase delays for a pump beam and a probe beam for a relative position were derived through a
deflection analysis. From the derived phase delays between the numerical analysis and experimental
result with optical alignment, the absolute and relative errors of quartz were appropriately confirmed
to be 0.069 W/m-K and 5%, respectively, while those of the sapphire glass were likewise confirmed
to be 0.55 W/m-K and 1.5%, respectively.

Keywords: thermal conductivity; photothermal effect; optical alignment rear-side deflection; anisotropic

1. Introduction

With the advancement of the display industry in recent years, a wide variety of new
materials are being developed for use in microtechnology and nanotechnology in display
panels. A great deal of research on the internal wiring of transparent displays is being
performed to increase screen scale and improve visibility [1]. Specifically, research on trans-
parent electrodes and flexible substrates is showing active progress [2]. Since transparent
materials with high optical transmittance generally tend to have low electrical conductivity
in the internal wiring of the display, extensive research on anisotropic materials whose
optical transmittance and electrical conductivity vary with crystal orientation is being con-
ducted [3]. Therefore, accurate information on the thermophysical properties of transparent
materials is necessary for the production of an efficient and flexible display and display
panel. However, not only is the thermophysical information insufficient, but existing
measurement methods cannot often be applied due to the characteristics of transparent
materials [4].

The measurement of thermophysical properties is primarily conducted via analysis of
the temperature change of the material using a heat input. The measurement of thermo-
physical properties can be categorized as either contact or non-contact according to the heat
input and temperature measurement methods. The applications and limitations of contact
and non-contact thermophysical measurement technologies are summarized in Table 1
below [5–14]. The contact method inputs heat and measures temperature via direct contact
with the materials, resulting in a relatively large error due to the contact resistance. Further-
more, in cases where devices and materials requiring airtightness are used as measurement
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targets, it is difficult to attach a sensor. Particularly, materials with low electrical conduc-
tivity may yield inaccurate measurements for the DC (Direct Current) heating method or
be damaged during the measurement process. In contrast, non-contact methods have the
advantages of low contact resistance, easy sensor attachment, and low material damage
compared to the contact methods. Research on various non-contact methods has been
conducted to explore such advantages. Among these methods, a thermophysical property
measurement scheme using the photothermal effect is the most advanced, with measure-
ment reliability demonstrated by the studies of Salazar [15], Spear [16], Murphy [17],
Jackson [18,19], and Bertolotti [20,21].

Table 1. Limitations of contact and non-contact thermophysical property measurement technologies.

Method Limitation

Contact

DC heating [5–7] Conductive materials only
Pulse heating [8–10] Conductive materials only

Laser calorimetry [11] Large amount of heat loss
3ωMethod [12] Complexity damage of specimen

Non-Contact

Photo Acoustic [11] Low accuracy

Laser Flash [13,14] Damage of specimen and limitation
of shape/size

Photothermal radiometry [11] Problem of emissivity factor

Photothermal reflection [11] Standardization of roughness on
surface of specimen

Photothermal displacement [11] Surface treatment of specimen
Photothermal deflection [11] Increase of S/N

This scheme using the photothermal effect consists of a pump beam for the heat
input and a probe beam for the temperature change measurement. It is subdivided into a
displacement method, a mirage deflection method, and a collinear method according to
the characteristics of the target materials and the alignment states of the pump beam and
the probe beam, as shown in Figure 1.
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The photothermal displacement method was established by Olmstead et al. [22] with
one-dimensional and three-dimensional theoretical analyses for surface temperature and
thermoelastic deformation conducted by Opsal [23,24] and Jeon [25] et al. A thermal
diffusion coefficient was experimentally measured by Lee [22] and Jeon [23]. Photothermal
mirage deflection is a measurement method for mono-layer isotropic materials, established
by Salazar et al. [15]. Measurement of thermophysical properties for mono-layer anisotropic
materials was conducted by Jeon et al. [26,27]. For the photothermal collinear deflection
method, research on materials with mono-layer/multi-layer structures was conducted
by Salazar [28,29], Spear [16,30], and Kim et al. [31]. The photothermal effect is used
to measure thermophysical properties by thermoelastically deforming a specimen via
periodically modulated heating, changing the refractive index of an air layer or that of the
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specimen’s interior. The displacement and mirage deflection method utilize thermoelastic
deformation and change in the refractive index of the air layer, making them suitable for
opaque metal materials that can sufficiently absorb the energy of the pump beam. In the
case of the displacement and mirage deflection method, the probe and pump beams are
irradiated at the same side of the air-layer. Therefore, the part of the reflected pump beam
can be detected by the sensor and may cause an error. Conversely, the collinear deflection
method determines thermophysical properties by using the change in the refractive index
of the air layer and the change in thermoelastic deformation inside the specimen, making it
a suitable measurement method for transparent materials [16].

As shown in Figure 1c, the collinear deflection method uses the change in both the
refractive indices and thermoelastic deformation by irradiating the probe beam horizontal
to the pump beam to measure the thermophysical properties of materials with low absorp-
tivity (high optical transmittance) of the pump beam energy. Furthermore, this method
has the limitation of generating a phase delay error because of mutual laser interference
where the pump beam and the probe beam intersect. Moreover, in the case of the collinear
method, a part of the pump beam can transmit and arrive at the sensor. Although the pump
beam is blocked by a bandwidth filter that is equipped in front of the sensor, the pump
beam cannot be completely filtered; it causes an error for the phase delay measurement [31].
As stated above, because materials with high optical transmittance generally tend to have
low thermal conductivity, it is difficult to secure the necessary change in the refractive
index for measurements.

To overcome such a limitation, a light absorption thin film comprised of copper and
having a thickness of 20 µm was applied for energy absorption of the pump beam, and
the probe beam was irradiated parallel to the rear side of the specimen. Through this
mechanism, mutual interference between the two laser beams can be avoided. In this
study, the measurement using the rear-side photothermal deflection method was carried
out to determine whether thermal conductivity can be measured for a transparent isotropic
material (quartz) and anisotropic material (sapphire glass). Since copper has a high optical
absorption coefficient, a film with a thickness of 20 µm can sufficiently absorb the energy of
the pump beam. This means that the thermophysical properties can be measured through
the light absorption film regardless of the optical characteristics of the target materials. A
three-dimensional unsteady heat conduction equation was used to calculate phase delay.
This equation was applied to a double-layered structure, which included both the thin light
absorption film and the target material. The calculated phase delays were compared with
the phase delay signal measured from the experimental through optical alignment.

2. Background Theory and Methods
2.1. Rear-Side Photothermal Deflection Method

The photothermal effect describes the phenomenon by which optical energy is con-
verted into thermal energy. The energy level of a material’s surface is increased by collision
with photons. The rear-side photothermal deflection method is configured to overcome
the limitations of conventional technologies. As shown in Figure 2, the specimen consists
of two layers: the thin light absorption film and the target materials. The probe beam
was adapted to pass through an air layer at the rear part of the specimen to avoid mutual
interference between the pump and probe beam. The light film sufficiently absorbs the
energy of the pump beam regardless of the optical and thermal characteristics of the target
materials. This was achieved by using copper, which is known to have an optical absorp-
tion coefficient of 6.1310× 105 cm−1 [32]. Using Equation (1), the optical absorption length
was determined to be as short as 16.31 nm, implying that the entire energy of the pump
beam could be absorbed by the surface of the metal film. Furthermore, all the absorbed
energy was converted to heat. The conduction causes a periodic temperature gradient in
the target materials and in the layers of air at the top and bottom. When the probe beam
passes through the temperature gradient of the bottom air layer of the specimen, deflection
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is generated accordingly. The deflection angle (Φ) for the orientation of the irradiating
probe beam can be expressed by Equation (2) below.

L =
1
λ

(1)

Φ =
∫

path

1
n

(
∂n
∂T

)
∇nT(x, y, z, t)ds (2)

Here, n denotes the refractive index, ∂n/∂T the temperature coefficient of the refractive
index, and ∇nT the temperature gradient perpendicular to the path of the probe beam.
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Figure 2. (a) Schematic diagram of a rear-side photothermal deflection method; (b) an example of
phase difference derivation.

Since the method uses a pump beam modulated on a regular cycle, the temperature
gradient of the bottom part of the specimen has repeating increases (heating) and decreases
(cooling) according to the period of the pump beam. A temporal delay is generated between
the bottom temperature gradient and the pump beam according to the thermophysical
properties of the target materials. As a result, the deflection period of the probe beam
through the bottom temperature gradient is delayed in comparison to the period of the
pump beam, as illustrated in Figure 2. This is called a phase delay. The phase delay
increases as the relative position between the pump beam and probe beam increases, which
is dependent on the thermophysical properties of the materials. The thermal conductivity
of the target materials can be derived by analyzing the phase delay according to the relative
position between the pump beam and probe beam to the x-axis when using this principle.

2.2. Temperature Distribution and Phase Delay Analysis

The phase delay between the pump beam and probe beam was measured exper-
imentally by the rear-side photothermal deflection method. Temperature distribution
information is required to obtain the phase delay through theoretical analysis. To acquire
this information, we performed a numerical analysis of a three-dimensional unsteady
heat conduction equation with periodic thermal sources shown in Equation (3). Since
the increase in specimen temperature due to the pump beam was small, the effects of
convection and radiation generated on the front and rear surfaces of the specimen were
ignored [33]. Figure 3 shows a schematic diagram including the target materials with the
thin light absorption film. The axis perpendicular to the surface of the specimen was set
to be the z-axis. Regions 0 and 3 are the air layer around the specimen, which are regions
with insufficient optical absorption. Region 1 represents the thin light absorption film and
region 2 holds the target materials.

∇2Ti −
1
αi

∂Ti
∂t

= −Qi
ki

(i = front air [0], light absorption thin film [1], target matarial [2], rear air [3]) (3)

Q1(x, y, z, t) =
λ1P0(1− R1)

4πa2 e−
(x2+y2)

a2 −λ1z
[1 + cos(ωt)] (4)
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Q2(x, y, z, t) =
λ2P0(1− R1)(1− R2)

4πa2 e−
(x2+y2)

a2 −λ2(z−L1)−λ1L1 [1 + cos(ωt)] = 0 (5)

P1 = P0(1− R1) (6)

P2 = P0(1− R1)(1− R2) (7)
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Figure 3. Schematic of rear-side photothermal deflection method.

Q1(x, y, z, t) and Q2(x, y, z, t) represent the heat fluxes of regions 1 and 2, respectively,
while λ1 and λ2 denote the optical absorption coefficients of the respective regions. R1 and
R2 represent the reflexibility of the boundary between regions 0 and 1 and the boundary
between regions 1 and 2, respectively. Since the heat flux of the laser is absorbed entirely by
the light absorption film, the heat flux of region 2 can be regarded as 0. Equations (8)–(11)
summarizes the equations by substituting the heat flux of the region where the optical
absorption occurs.

∇2T0 −
1
α0

∂T0

∂t
= −Q0

k0
= 0 (8)

∇2T1 −
1
α1

∂T1

∂t
= −Q1

k1
= − λ1P1

4πk1a2 e−
r2

a2−λ1z
[1 + cos(ωt)] (9)

∇2T2 −
1
α2

∂T2

∂t
= −Q2

k2
= 0 (10)

∇2T3 −
1
α3

∂T3

∂t
= −Q3

k3
= 0 (11)

As shown in Equations (12)–(14), boundary conditions with the same temperature
and heat flux are applied to the boundaries of each region.

T0|z=0 = T1|z=0 q0|z=0 = q1|z=0 (12)

T1|z=L1
= T2|z=L1

q1|z=L1
= q2|z=L2

(13)

T2|z=L1+L2
= T3|z=L1+L2

q2|z=L1+L2
= q3|z=L1+L2

(14)

q2 = −
(

k11
∂T
∂x

+ k22
∂T
∂y

+ k33
∂T
∂z

)
(15)

qi = −ki
∂T
∂x

(i = 0, 1, 2) (16)
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To determine an unsteady heat conduction equation with periodic heat flux to a
steady state, complex transformation is applied to Equation (8) using Equation (17), thereby
converting it into Equations (18)–(20).

T(x, y, z, t) = T̃(x, y, z)eiωt (17)

k1

(
∂2T̃1

∂x2 +
∂2T̃1

∂y2 +
∂2T̃1

∂z2

)
− iωρ1cp,1T̃1 = − P1

4πa2 e−
(x2+y2)

a2 −λ1z (18)

k11
∂2T̃2
∂x2 + k22

∂2T̃2
∂y2 + k33

∂2T̃2
∂z2 + (k12 + k21)

∂2T̃2
∂x∂y + (k13 + k31)

∂2T̃2
∂x∂z

+(k23 + k32)
∂2T̃2
∂y∂z = iωρ2cp,2T̃2 − P2

4πa2 e−
(x2+y2)

a2 −λ2(z−L1)−λ1L1
(19)

ki

(
∂2T̃i
∂x2 +

∂2T̃i
∂y2 +

∂2T̃i
∂z2

)
− iωρicp,iT̃i = 0 (i = 0, 3) (20)

The deflection analysis of the probe beam was performed using the temperature
gradient for the path of the probe beam, as described in Equations (1) and (2). Since it
is difficult to understand exactly the main crystal orientation of the anisotropic material,
a conversion process is needed to make the crystalline coordinates of the anisotropic
material consistent with those of an experimental apparatus. Equation (21) was employed
to match the crystalline coordinates used in the numerical analysis and the coordinates of
the experimental device. When the main crystal orientation of the anisotropic material is
known, the effective thermal conductivity coefficient is derived as shown in Figure 4b and
Equation (22).
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x = X cos θ + Y sin θ
y = Y cos θ + X sin θ
z = Z

(21)

k1x2 + k2y2 + k3z2 = 1k = k1 cos2 θ + k2 cos2 ϕ + k3 cos2 σ (22)

where k11, k22 and k33 are the main thermal conductivity for each main crystal direction,
and θ, ϕ, and σ are the direction cosines for the x-, y-, and z-axis, respectively.

The deflection analysis of the probe beam was conducted using Equation (23), with the
beam oriented perpendicular to the specimen and using the temperature gradient derived
from numerical analysis after matching the coordinates. The change in the refractive index
was generated due to the temperature gradient and refractive index of air.

Φ =
1
n3

(
∂n3

∂T3

)∫ ∞

−∞

∂T3

∂z
dx (23)
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Since the deflection analysis result contains complex numbers, the phase delay (ψ)
between the probe and pump beam can be expressed as in Equation (24).

ψ = tan−1
(

Im(Φ)

Re(Φ)

)
(24)

2.3. Numerical Verification

The three-dimensional unsteady heat conduction equation, shown in Equations (18)–
(20), was set as a governing equation. It was analyzed in a three-dimensional orthogonal
coordinate system as shown in Figure 5, using COMSOL Multiphysics 5.2, a commercial
numerical analysis program. The specimen in the numerical analysis model was 25 mm
long and 25 mm wide, containing the thin light absorption film with a thickness of 20 µm
and a measurement target material with a thickness of 250 µm. The numerical analysis was
conducted by using the boundary conditions mentioned in Equations (12)–(14) as the input.
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Table 2 presents the results of the mesh dependency evaluation. The value of the
phase delay was calculated at the coordinates x = 0, y = 0, and z = −150 µm, and was
confirmed to converge at approximately four million meshes. In this study, the value of the
phase delay was derived using approximately 6250 thousand meshes.

Table 2. Mesh dependency evaluation.

Number of Mesh Phase Delay (◦)

125,375 145.6057
784,036 147.5570

1,434,175 148.1252
2,873,162 148.0972
4,000,894 147.5738
6,254,729 147.5345
7,345,315 147.5596
8,732,682 147.5505

The relative position phase delay results of the numerical analysis were verified
through cross-validation with the same quantity as derived from the theoretical analysis
conducted by Jeon et al. [27]. The surface temperature of the pure material combined
with the single copper layer was compared with the value calculated when inputting
the material properties of copper (as shown in Table 3) for the light absorption film and
target material. Comparison of the analytical and numerical results, as shown in Figure 6,
demonstrated that the temperature distribution tendencies relative to the position were
99.84% consistent with each other using the least-squares method.
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Table 3. Input material properties used for analysis model verification (copper and air).

Copper [34] Air [35]

Density(kg/m3) 8930 1.161
Specific Heat(J/kg-K) 385 1007

Thermal Conductivity(W/m-K) 385 0.0263
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2.4. Algorithm for Determining Thermal Conductivity

The thermal conductivity in the rear-side photothermal deflection method can be
examined by comparing the phase delay values from the numerical analysis (measured by
inputting a random thermal conductivity) and those from the experiment at various relative
positions. When the difference between the numerical results and experimental results are
minimal, the thermal conductivity value from the numerical analysis is designated as the
thermal conductivity of the measurement target material. Representative methods include
a phase gradient method, a zero-crossing method, and a phase curve method. This study
used a thermal conductivity determination algorithm based on the phase curve method, as
shown in Figure 7.
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3. Experimental Investigation
3.1. Specimens for Experiment

The aim of this study was to use the rear-side photothermal deflection method to
measure the thermal conductivity of high-optical transmittance transparent materials.
Quartz and sapphire glass were selected as the target materials, being respectively isotropic
and anisotropic. The target materials were measured in conjunction with a 20 µm-thick
copper light absorption film on their surface, added through electroplating. Since the
thermophysical properties of the light-absorbing thin-film need to be exactly known to
derive the phase delay through numerical analysis, its composition was analyzed using
X-ray fluorescence (XRF) of ZSX Primus from Rigaku. The light absorption film was
confirmed to have a copper content of 99.95% or more, as shown in Table 4. Through
composition analysis, the thermophysical properties of the light absorption thin film were
set to match those of copper used in the numerical analysis, as shown in Table 3.

Table 4. Results of analysis of the composition of light absorption thin film.

Material Rate (Mass%)

Cu 99.9461
S 0.0223
P 0.0316

The quartz and sapphire glass were selected as reference transparent materials to
verify the rear-side photothermal deflection method. Furthermore, the thermal properties
of quartz and sapphire glass, the targets for the measurement of the thermal conductivity,
are summarized in Table 5. The target materials have a wafer shape with a thickness of 250
µm and a diameter of 50.8 mm. The product of COMA Technology Co., Ltd. in Republic of
Korea was used for quartz, and MTIKorea’s a-plane was used for sapphire glass.

Table 5. Properties of materials used in the experiment.

Thermal Conductivity
(W/m-K)

Specific Heat
(J/kg-◦C)

Density
(kg/m3)

Quartz 1.4 710 2650

Sapphire glass
k11 36.1

761 3980k22 27.1
k33 36.1

3.2. Experimental Apparatus

Figure 8 shows a schematic diagram of the experimental apparatus and optical ar-
rangement. The pump beam was a continuous-wave, diode-pumped solid-state (DPSS)
source with a 532 nm wavelength laser in Gaussian distribution, owned by Sprout-G. For
implementing periodic heating, a sine-wave modulated frequency was formed using a
mechanical chopper of Stanford Research Systems (SRS). In addition, a New port He–Ne
laser with 633 nm wavelength and 5 mW intensity was used as the probe beam. The
relative position between the pump beam and the probe beam was adjusted every 100 µm
using a Newport M-TS50DC.5 motorized-stage. The phase difference of the probe beam
generated by the temperature gradient of the air layer was measured using a Hamamatsu
Photonics C100443-01 photoelectric position sensor. The phase delay was derived using the
deflection angle of the probe beam, measured in the position sensor and an AMETEK 7270
DSP lock-in amplifier with respect to the modulated frequency of the mechanical chopper.
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The detailed alignments of the specimen, pump beam, and probe beam are illustrated
in Figure 3, and the intensity of the pump beam, the diameter of the pump beam, the
height of the probe beam, the relative position between the pump and probe beam, and the
modulated frequency of the pump beam were set as shown in Table 6. The thermophysical
measurement technique using the photothermal effect cannot use a section between 0
mm and 0.15 mm owing to the interference between the pump and the probe beam [31].
However, because the technique used in this study has no interference owing to the
characteristics of the optical alignment, it can use the entire section between 0 mm and 0.6
mm to obtain the phase delay. After obtaining approximately 300 results for 30 s in one
relative position, the phase delay used an arithmetic mean of the data as a representative
value with a 95% confidence level.

Table 6. Optical Conditions used in the experiment.

Condition Value

Intensity of pump beam (W) 1
Radius of pump beam (µm) 75

Distance to probe beam from rear side surface (µm) 150
Relative position (mm) 0 to 0.6 (interval 0.1)

Modulated frequency (Hz) 20

4. Results

Figure 9a shows that there is a clear maximum point in the coefficient of determination,
both in measurements of the phase delay according to the relative position of quartz and
the measurements through numerical analysis. The same thermal conductivity used for
the numerical analysis was set as the thermal conductivity of the measurement target
material. The resulting measurements of the designated thermal conductivity along with
the experimental delay results are shown in Figure 9b. The phase delay measurement used
the mean of the 300 result values measured for 30 s with an interval of 0.1 s in each relative
position, with a 95% confidence level. The phase delay of the point of each graph was
used the three repeated measurements to the average value, and the standard deviation us
represented through an error bar. As mentioned previously, the rear-side mirage deflection
method, applying a light absorption thin film, physically prevented mutual interference
between the pump and the probe beam, as compared to the collinear deflection method [31],
which is one of the existing measurement methods for transparent materials. Thus, the
relative position at 0 mm can be accurately measured for the phase delay signal. That is
typically applied to quartz and sapphire glass as shown in the figures.

Upon comparing the experimental results with the reference value of the thermal
conductivity of the target materials shown in Table 5, the absolute error was confirmed to
be 0.069 W/m-K, as shown in Table 7.
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Table 7. Result of thermal conductivity determination for quartz.

Thermal Conductivity
Reference Value

(W/m-K)

Thermal Conductivity
Experimental Value

(W/m-K)

Absolute Error
(W/m-K)

Relative Error
(%)

Quartz 1.4 1.331 0.069 5

Figure 10 shows that there is a clear maximum point of the coefficient of determination
through comparison of the measured phase delay results at a relative position according to
the crystal orientation of sapphire glass and the phase delay calculated through numerical
analysis with the material properties shown in Table 5. The thermal conductivity to the
maximum coefficient of determination input into the numerical analysis was designated as
the thermal conductivity of the measurement target material. The phase delay measurement
was conducted at crystal orientations between 0◦ and 90◦ with an interval of 30◦.
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Upon comparing the experimental results with the reference values of the thermal
conductivity of sapphire glass shown in Table 5, the maximum absolute error was confirmed
to be 0.25 W/m-K. The results of the thermal conductivity determination according to the
crystal orientations (θ = 0◦, 30◦, 60◦, 90◦) of sapphire glass as the transparent anisotropic
material are summarized in Figure 11 and Table 8.
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Table 8. Result thermal conductivity determination according to the crystal orientation of sapphire glass.

Crystal Orientation
(◦)

Thermal Conductivity
Reference Value

(W/m-K)

Thermal Conductivity
Experimental Value

(W/m-K)

Absolute Error
(W/m-K)

Relative Error
(%)

0 27.10 26.87 0.23 0.8
30 29.40 29.33 0.07 0.2
60 33.85 34.06 0.21 0.6
90 36.10 36.65 0.55 1.5

5. Conclusions

This study aimed to measure the thermal conductivity of transparent materials by
using the rear-side photothermal deflection method, selecting quartz as a transparent
isotropic material and sapphire glass as a transparent anisotropic material. The existing
methods were incapable of measuring the thermal conductivity of the transparent material
with a low absorption rate or were limited in using the conventional photothermal effect
with a large error. However, this study significantly improved the limitations, and the
results were obtained as follows:

1. By applying the phase delay derived through the numerical analysis of quartz and
the phase delay measured through the optical alignment to the thermal conductivity
determination algorithm, the absolute error and the relative error of the thermal
conductivity were derived to be 0.2 W/m-K and 5%, respectively.

2. For sapphire glass, which is an orthogonal anisotropic material, valid thermal con-
ductivity for crystal orientations of 0◦, 30◦, 60◦, and 90◦ was derived and confirmed
from the theoretical value. The sapphire glass used for the measurement is a plane
having k11, k22, and k33, respectively known to be 36.1 W/m-K, 27.1 W/m-K, and
36.1 W/m-K.

3. As a result of determining the thermal conductivity by applying the phase delay
derived through the experiment with respect to each crystal orientation of sapphire
glass and the phase delay measured through the numerical analysis of the thermal
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conductivity determination algorithm, the maximum absolute error and relative error
were derived to be 0.55 W/m-K and 1.5%, respectively.

4. The limitation of anisotropic materials is that they must be measured in a situation
where the main crystal orientation can be known. This limitation may be overcome
in the future by experimentally developing a mechanism that can determine this
information.
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