Listener-Position and Orientation Dependency of Auditory Perception in an Enclosed Space: Elicitation of Salient Attributes
Abstract
:Featured Application
Abstract
1. Introduction
1.1. Background
1.2. Multi-Dimensionality of Spatial Attributes
1.3. Research Aim
2. Experimental Design
2.1. General Methodology
2.1.1. Repertory Grid Technique
2.1.2. In-Situ and Laboratory Experiments
2.2. In-Situ Experiment
2.2.1. Physical Setup
2.2.2. Subjects
2.2.3. Test Protocol
2.3. Laboratory Experiments
2.3.1. Stimuli Creation
2.3.2. Physical Setup
2.3.3. Subjects
2.3.4. Test Protocol
3. Results
3.1. Verbal Protocol Analysis (VPA)
3.2. Cluster Analysis
3.2.1. In-Situ Experiment Results
3.2.2. Lab Experiment Result: Raw Data Clustering
3.2.3. Lab Experiment Result: Saliency Based on Audibility Testing
4. Discussion
4.1. Lab Experiment Validity
4.2. Listening Positions and Head Orientations
4.3. Elicited Constructs
4.3.1. Perceived Source Loudness and Distance
4.3.2. Multi-Dimensionality of Apparent Source Width (ASW)
4.3.3. Multi-Dimensionality of Listener Envelopment (LEV)
4.3.4. Timbre of Reverberation and Echo
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Hawkes, R.J.; Douglas, H. Subjective Acoustic Experience in Concert Auditoria. Acta Acust. United Acust. 1971, 24, 235–250. [Google Scholar]
- Blauert, J.; Lindemann, W. Auditory Spaciousness: Some Further Psychoacoustic Analyses. J. Acoust. Soc. Am. 1986, 80, 533–542. [Google Scholar] [CrossRef]
- Barron, M. Subjective Study of British Symphony Concert Halls. Subj. Study Br. Symph. Concert Halls 1988, 66, 1–14. [Google Scholar]
- Barron, M.; Marshall, A.H. Spatial Impression Due to Early Lateral Reflections in Concert Halls: The Derivation of a Physical Measure. J. Sound Vib. 1981, 77, 211–232. [Google Scholar] [CrossRef]
- de Keet, V.W. The Influence of Early Lateral Reflections on the Spatial Impression. In Proceedings of the 6th International Congress on Acoustics, Tokyo, Japan, 21–28 August 1968. [Google Scholar]
- Morimoto, M.; Posselt, C. Contribution of Reverberation to Auditory Spaciousness in Concert Halls. J. Acoust. Soc. Jpn. E 1989, 10, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Bradley, J.S.; Soulodre, G.A.; Popplewell, N. Pilot Study of Simulated Spaciousness. J. Acoust. Soc. Am. 1993, 93, 2283. [Google Scholar] [CrossRef] [Green Version]
- Bradley, J.S.; Soulodre, G.A. The Influence of Late Arriving Energy on Spatial Impression. J. Acoust. Soc. Am. 1995, 97, 2263–2271. [Google Scholar] [CrossRef] [Green Version]
- Hidaka, T.; Beranek, L.L.; Okano, T. Interaural Cross-correlation, Lateral Fraction, and Low- and High-frequency Sound Levels as Measures of Acoustical Quality in Concert Halls. J. Acoust. Soc. Am. 1995, 98, 988–1007. [Google Scholar] [CrossRef]
- Rumsey, F. Spatial Quality Evaluation for Reproduced Sound: Terminology, Meaning, and a Scene-Based Paradigm. J. Audio Eng. Soc. 2002, 50, 651–666. [Google Scholar]
- Lokki, T.; Pätynen, J.; Kuusinen, A.; Vertanen, H.; Tervo, S. Concert Hall Acoustics Assessment with Individually Elicited Attributes. J. Acoust. Soc. Am. 2011, 130, 835–849. [Google Scholar] [CrossRef]
- Lokki, T.; Pätynen, J.; Kuusinen, A.; Tervo, S. Disentangling Preference Ratings of Concert Hall Acoustics Using Subjective Sensory Profiles. J. Acoust. Soc. Am. 2012, 132, 3148–3161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lokki, T.; Pätynen, J.; Kuusinen, A.; Tervo, S. Concert Hall Acoustics: Repertoire, Listening Position, and Individual Taste of the Listeners Influence the Qualitative Attributes and Preferences. J. Acoust. Soc. Am. 2016, 140, 551–562. [Google Scholar] [CrossRef]
- Kuusinen, A.; Pätynen, J.; Tervo, S.; Lokki, T. Relationships between Preference Ratings, Sensory Profiles, and Acoustical Measurements in Concert Halls. J. Acoust. Soc. Am. 2014, 135, 239–250. [Google Scholar] [CrossRef]
- Weinzierl, S.; Lepa, S.; Ackermann, D. A Measuring Instrument for the Auditory Perception of Rooms: The Room Acoustical Quality Inventory (RAQI). J. Acoust. Soc. Am. 2018, 144, 1245–1257. [Google Scholar] [CrossRef] [Green Version]
- Schneiderwind, C.; Neidhardt, A. Perceptual Differences of Position Dependent Room Acoustics in a Small Conference Room. In Proceedings of the International Symposium on Room Acoustics; Nederlands Akoestisch Genootschap, Amsterdam, The Netherlands, 15–17 September 2019. [Google Scholar]
- Pedersen, T.H.; Zacharov, N. The Development of a Sound Wheel for Reproduced Sound; Audio Engineering Society: New York, NY, USA, 2015. [Google Scholar]
- Zacharov, N.; Pedersen, T.H. Spatial Sound Attributes—Development of a Common Lexicon; Audio Engineering Society: New York, NY, USA, 2015. [Google Scholar]
- Mason, R.; Kim, C.; Brookes, T. Perception of Head-Position-Dependent Variations in Interaural Cross-Correlation Coefficient. In Proceedings of the Audio Engineering Society Preprint, Munich, Germany, 7–10 May 2009; Volume 7729. [Google Scholar]
- Lee, H. Apparent Source Width and Listener Envelopment in Relation to Source-Listener Distance; Audio Engineering Society: New York, NY, USA, 2013. [Google Scholar]
- Stone, H.; Sidel, J.; Oliver, S.; Woolsey, A.; Singleton, R.C. Sensory Evaluation by Quantitative Descriptive Analysis. In Descriptive Sensory Analysis in Practice; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2004; pp. 23–34. ISBN 978-0-470-38503-6. [Google Scholar]
- Meilgaard, M.C.; Carr, B.T.; Civille, G.V. Sensory Evaluation Techniques, 4th ed.; CRC Press: Boca Raton, FL, USA, 2006; ISBN 978-0-8493-3839-7. [Google Scholar]
- Delarue, J.; Sieffermann, J.-M. Sensory Mapping Using Flash Profile. Comparison with a Conventional Descriptive Method for the Evaluation of the Flavour of Fruit Dairy Products. Food Qual. Prefer. 2004, 15, 383–392. [Google Scholar] [CrossRef]
- Lorho, G. Individual Vocabulary Profiling of Spatial Enhancement Systems for Stereo Headphone Reproduction; Audio Engineering Society: New York, NY, USA, 2005. [Google Scholar]
- Kelly, G.A. The Psychology of Personal Constructs; Norton: New York, NY, USA, 1955. [Google Scholar]
- Berg, J. Identification of Quality Attributes of Spatial Audio by Repertory Grid Technique. J. Audio Eng. Soc. 2006, 54, 15. [Google Scholar]
- McArthur, A.; Sandler, M.; Stewart, R. Perception of Mismatched Auditory Distance—Cinematic VR; Audio Engineering Society: New York, NY, USA, 2018. [Google Scholar]
- Hansen, V.; Munch, G. Making Recordings for Simulation Tests in the Archimedes Project. J. Audio Eng. Soc. 1991, 39, 768–774. [Google Scholar]
- Farina, A. Simultaneous Measurement of Impulse Response and Distortion with a Swept-Sine Technique; Audio Engineering Society: New York, NY, USA, 2000. [Google Scholar]
- Johnson, D.; Harker, A.; Lee, H. HAART: A New Impulse Response Toolbox for Spatial Audio Research; Audio Engineering Society: New York, NY, USA, 2015. [Google Scholar]
- Bacila, B.I.; Lee, H. 360° Binaural Room Impulse Response (BRIR) Database for 6DOF Spatial Perception Research; Audio Engineering Society: New York, NY, USA, 2019. [Google Scholar]
- Pöntynen, H.; Salminen, N.H. Resolving Front-Back Ambiguity with Head Rotation: The Role of Level Dynamics. Hear. Res. 2019, 377, 196–207. [Google Scholar] [CrossRef]
- Pulkki, V. Virtual Sound Source Positioning Using Vector Base Amplitude Panning. J. Audio Eng. Soc. 1997, 45, 456–466. [Google Scholar]
- Romanov, M.; Berghold, P.; Frank, M.; Rudrich, D.; Zaunschirm, M.; Zotter, F. Implementation and Evaluation of a Low-Cost Headtracker for Binaural Synthesis; Audio Engineering Society: New York, NY, USA, 2017. [Google Scholar]
- ITU-R BS.1116-3. Methods for the Subjective Assessment of Small Impairments in Audio Systems; International Telecommunications Union: Geneva, Switzerland, 2015. [Google Scholar]
- Samoylenko, E.; McAdams, S.; Nosulenko, V. Systematic Analysis of Verbalizations Produced in Comparing Musical Timbres. Int. J. Psychol. 1996, 31, 255–278. [Google Scholar] [CrossRef]
- McArthur, A.; Sandler, M.; Stewart, R. Accuracy of Perceived Distance in VR Using Verbal Descriptors; Audio Engineering Society: New York, NY, USA, 2019. [Google Scholar]
- Zacharov, N.; Koivuniemi, K. Unravelling the Perception of Spatial Sound Reproduction: Language Development, Verbal Protocol Analysis and Listener Training; Audio Engineering Society: New York, NY, USA, 2001. [Google Scholar]
- Heckmann, M. OpenRepGrid: An R package for the analysis of repertory grids. R Package Version 0.1 2014, 9. [Google Scholar] [CrossRef]
- Ward, J.H. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Lavandier, C. Validation Perceptive d’un Modèle Objectif de Caractérisation de La Qualité Acoustique Des Salles. Ph.D. Thesis, University of Le Mans, Le Mans, France, 1989. [Google Scholar]
- Griesinger, D. The Psychoacoustics of Apparent Source Width, Spaciousness and Envelopment in Performance Spaces. Acta Acust. 1997, 83, 721–731. [Google Scholar]
- Zahorik, P.; Wightman, F.L. Loudness Constancy with Varying Sound Source Distance. Nat. Neurosci. 2001, 4, 78–83. [Google Scholar] [CrossRef]
- Kearney, G.; Gorzel, M.; Rice, H.; Boland, F. Distance Perception in Interactive Virtual Acoustic Environments Using First and Higher Order Ambisonic Sound Fields. Acta Acust. United Acust. 2012, 98, 61–71. [Google Scholar] [CrossRef]
- Kolarik, A.J.; Moore, B.C.J.; Zahorik, P.; Cirstea, S.; Pardhan, S. Auditory Distance Perception in Humans: A Review of Cues, Development, Neuronal Bases, and Effects of Sensory Loss. Atten. Percept. Psychophys. 2016, 78, 373–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van de Par, S.; Kohlrausch, A. Dependence of Binaural Masking Level Differences on Center Frequency, Masker Bandwidth, and Interaural Parameters. J. Acoust. Soc. Am. 1999, 106, 1940–1947. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Schlieper, R.; Peissig, J. The Role of Reverberation and Magnitude Spectra of Direct Parts in Contralateral and Ipsilateral Ear Signals on Perceived Externalization. Appl. Sci. 2019, 9, 460. [Google Scholar] [CrossRef] [Green Version]
- Bradley, J.S. Comparison of Concert Hall Measurements of Spatial Impression. J. Acoust. Soc. Am. 1994, 96, 3525–3535. [Google Scholar] [CrossRef] [Green Version]
- ISO 3382-1. Acoustics—Measurement of Room Acoustic Parameters—Part 1: Performance Spaces; International Standard Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Marshall, A.H.; Barron, M. Spatial Responsiveness in Concert Halls and the Origins of Spatial Impression. Appl. Acoust. 2001, 62, 91–108. [Google Scholar] [CrossRef]
- Morimoto, M.; Ueda, K.; Kiyama, M. Effects of Frequency Characteristics of the Degree of Interaural Cross-Correlation and Sound Pressure Level on the Auditory Source Width. Acta Acust. United Acust. 1995, 81, 20–25. [Google Scholar]
- Barron, M. Measured Early Lateral Energy Fractions in Concert Halls and Opera Houses. J. Sound Vib. 2000, 232, 79–100. [Google Scholar] [CrossRef]
- Beranek, L. Concert Halls and Opera Houses: Music, Acoustics, and Architecture, 2nd ed.; Springer: New York, NY, USA, 2004; ISBN 978-0-387-95524-7. [Google Scholar]
- Lee, D.; Cabrera, D.; Martens, W.L. The Effect of Loudness on the Reverberance of Music: Reverberance Prediction Using Loudness Models. J. Acoust. Soc. Am. 2012, 131, 1194–1205. [Google Scholar] [CrossRef]
- Kahle, E. Room Acoustical Quality of Concert Halls: Perceptual Factors and Acoustic Criteria—Return from Experience. Build. Acoust. 2013, 20, 265–282. [Google Scholar] [CrossRef]
- Green, E.; Kahle, E.; Berrier, V.; Carayol, E. Beyond 80ms: The Subjective Effects of Sound Energy Arriving Shortly After the “Early” Sound Period; Universitätsbibliothek der RWTH Aachen: Aachen, Germany, 2019. [Google Scholar]
- Freyman, R.L.; Helfer, K.S.; McCall, D.D.; Clifton, R.K. The Role of Perceived Spatial Separation in the Unmasking of Speech. J. Acoust. Soc. Am. 1999, 106, 3578–3588. [Google Scholar] [CrossRef] [Green Version]
(a) In-Situ Experiment | |||||
Feature | Number | % | dfe/afe | Number | % |
Descriptive (dfe) | 55 | 98.2 | umd | 21 | 37.5 |
pmd | 34 | 60.7 | |||
Attitudinal (afe) | 1 | 1.8 | emv | 1 | 1.8 |
ntl | 0 | 0 | |||
(b) Lab Experiment | |||||
Feature | Number | % | dfe/afe | Number | % |
Descriptive (dfe) | 96 | 98 | umd | 49 | 50 |
pmd | 47 | 48 | |||
Attitudinal (afe) | 2 | 2 | emv | 2 | 2 |
ntl | 0 | 0 |
Cluster | Attribute |
---|---|
1.1 | Source width/spread |
1.2 | Reverb/Echo direction (Front/Side) |
2 | Echo perception and direction/Source width/Envelopment |
3.1 | Envelopment |
3.2 | Environment size/Source distance/Reverb level |
3.3 | Reverb spread/Envelopment/Reverb level |
4.1 | Source/reverb focus/diffuseness/clarity |
4.2 | Source Level |
4.3 | Reverb Spread/Source clarity/Environment depth |
5 | Envelopment/Reverb spread/Reverb direction |
Cluster | Attribute |
---|---|
1 | Reverb spread, Envelopment, Reverb direction |
2 | Reverb/Echo direction |
3.1 | Direct sound (level, clarity, timbre) |
3.2 | Source width, Early reflections, Reverb spread |
4.1 | Perceived distance to source/source clarity, source spread |
4.2 | Reverb level |
5.1 | Envelopment, Reverb timbre, Room size perception |
5.2 | Source level, General timbre, Envelopment |
5.3 | Early reflections direction, perceived source distance/level, room timbre |
6.1 | Perceived reverb loudness, reverb direction |
6.2 | Envelopment, source width, source clarity |
7 | Echo direction, source spread, source loudness, reverb spread |
Attribute | No. of Occurrences | % | Audibility Means | % | Audibility Index |
Quiet/Loud—Direct Sound | 6 | 75.00 | 78.75 | 78.75 | 76.88 |
More/Less—Listener Envelopment | 7 | 87.50 | 63.43 | 63.43 | 75.46 |
Wide/Narrow—Apparent Source Width | 6 | 75.00 | 66.00 | 66.00 | 70.50 |
Narrow/Wide—Reverb Spread | 6 | 75.00 | 47.00 | 47.00 | 61.00 |
Close/Far—Source Distance | 2 | 25.00 | 85.50 | 85.50 | 55.25 |
Quiet/Loud—Reverb | 5 | 62.50 | 46.05 | 46.05 | 54.28 |
Central/Lateral—Echoes | 3 | 37.50 | 71.00 | 71.00 | 54.25 |
Central/Lateral—Reverb | 3 | 37.50 | 63.50 | 63.50 | 50.50 |
Bright/Dull—Reverb | 1 | 12.50 | 88.00 | 88.00 | 50.25 |
Bright/Dull—Echoes | 1 | 12.50 | 88.00 | 88.00 | 50.25 |
Long/Short—Pre-Delay | 2 | 25.00 | 68.00 | 68.00 | 46.50 |
Audible/Inaudible—Echoes | 3 | 37.50 | 55.33 | 55.33 | 46.42 |
Boomy/Less-boomy—Reverb | 2 | 25.00 | 63.00 | 63.00 | 44.00 |
Pleasant/Unpleasant—Listener Envelopment | 1 | 12.50 | 75.00 | 75.00 | 43.75 |
High/Low—Clarity | 3 | 37.50 | 49.83 | 49.83 | 43.67 |
High/Low—D/R Ratio | 2 | 25.00 | 60.00 | 60.00 | 42.50 |
Bright/Dull—Source | 1 | 12.50 | 67.00 | 67.00 | 39.75 |
Front/Back—Reverb | 2 | 25.00 | 52.00 | 52.00 | 38.50 |
Narrow/Wide—Environmental Width | 1 | 12.50 | 62.00 | 62.00 | 37.25 |
Shallow/Deep—Environmental Depth | 2 | 25.00 | 49.50 | 49.50 | 37.25 |
Large/Small—Space | 1 | 12.50 | 62.00 | 62.00 | 37.25 |
Clear/Muddy—Source | 2 | 25.00 | 48.00 | 48.00 | 36.50 |
Long/Short—Reverb Time | 2 | 25.00 | 43.50 | 43.50 | 34.25 |
Sharp/Diffused—Direct Sound | 1 | 12.50 | 55.00 | 55.00 | 33.75 |
Narrow/Wide—Vertical Source Width | 1 | 12.50 | 55.00 | 55.00 | 33.75 |
More/Less—Vertical Reverb Spread | 1 | 12.50 | 55.00 | 55.00 | 33.75 |
High/Low—Source Elevation | 1 | 12.50 | 55.00 | 55.00 | 33.75 |
More/Less—Top Reflections | 1 | 12.50 | 54.00 | 54.00 | 33.25 |
Cold/Warm—Reverb | 1 | 12.50 | 37.00 | 37.00 | 24.75 |
More/Less—Rumble | 1 | 12.50 | 35.00 | 35.00 | 23.75 |
More/Less—Hollow | 1 | 12.50 | 29.00 | 29.00 | 20.75 |
Front/Back—Echoes | 1 | 12.50 | 25.00 | 25.00 | 18.75 |
Attribute | Definition | End Labels |
---|---|---|
Perceived Source Loudness | The point-source loudness perceived at different locations | Quiet-Loud |
Listener Envelopment | The feeling of being surrounded by the reverberant field | Less-More |
Apparent Source Width | The perceived impression of width given by the sound source fused with the early reflections | Narrow-Wide |
Apparent Reverb Width | The perceived impression of width given by the late reverberant field | Narrow-Wide |
Apparent Source Distance | The perceived distance between the listener and the sound source | Close-Far |
Perceived Reverb Loudness | The reverb loudness perceived at different locations | Quiet-Loud |
Echo Direction | The perceived direction of arrival for echoes | Central-Lateral |
Reverb Direction | The perceived direction of arrival for reverberation | Central-Lateral |
Reverb Brightness | The timbral characteristics of reverberation depending on the level of high frequencies | Bright-Dull |
Echo Brightness | The timbral characteristics of echoes depending on the level of high frequencies | Bright-Dull |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Băcilă, B.I.; Lee, H. Listener-Position and Orientation Dependency of Auditory Perception in an Enclosed Space: Elicitation of Salient Attributes. Appl. Sci. 2021, 11, 1570. https://doi.org/10.3390/app11041570
Băcilă BI, Lee H. Listener-Position and Orientation Dependency of Auditory Perception in an Enclosed Space: Elicitation of Salient Attributes. Applied Sciences. 2021; 11(4):1570. https://doi.org/10.3390/app11041570
Chicago/Turabian StyleBăcilă, Bogdan Ioan, and Hyunkook Lee. 2021. "Listener-Position and Orientation Dependency of Auditory Perception in an Enclosed Space: Elicitation of Salient Attributes" Applied Sciences 11, no. 4: 1570. https://doi.org/10.3390/app11041570
APA StyleBăcilă, B. I., & Lee, H. (2021). Listener-Position and Orientation Dependency of Auditory Perception in an Enclosed Space: Elicitation of Salient Attributes. Applied Sciences, 11(4), 1570. https://doi.org/10.3390/app11041570