Novel Hydroxyapatite Beads for the Adsorption of Radionuclides from Decommissioned Nuclear Power Plant Sites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.1.1. Chemicals and Materials
2.1.2. Preparation of Porous HdA Beads
2.2. Adsorption Experiments
2.3. Analytical Methods
2.3.1. Material Characterization
2.3.2. Adsorption Data Analysis
3. Results and Discussion
3.1. Physico-Chemical Properties of the Prepared b-HdA
3.2. Adsorption Isotherms
3.3. Thermodynamic Study
3.4. Adsorption Kinetics
3.5. Comparability and Selectivity of the b-HdA in a Multi-Ionic System
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Imam, D.M.; Moussa, S.I.; Attallah, M.F. Sorption behavior of some radionuclides using prepared adsorbent of hydroxyapatite from biomass waste material. J. Radioanal. Nucl. Chem. 2019, 319, 997–1012. [Google Scholar] [CrossRef]
- Smičiklas, I.; Sljivic-Ivanovic, M. Radioactive Contamination of the Soil: Assessments of Pollutants Mobility with Implication to Remediation Strategies. In Soil Contamination—Current Consequences and Further Solutions, 1st ed.; Laramendy, M.L., Soloneski, S., Eds.; IntechOpen: London, UK, 2016. [Google Scholar]
- Venkatesan, S.; Hassan, M.U.; Ryu, H.J. Adsorption and immobilization of radioactive ionic-corrosion-products using magnetic hydroxyapatite and cold-sintering for nuclear waste management applications. J. Nucl. Mater. 2019, 514, 40–49. [Google Scholar] [CrossRef]
- Leyssens, L.; Vinck, B.; Van Der Straeten, C.; Wuyts, F.; Maes, L. Cobalt toxicity in humans—A review of the potential sources and systemic health effects. Toxicology 2017, 387, 43–56. [Google Scholar] [CrossRef] [PubMed]
- El-Zakla, T.; Yakout, S.; Rizk, M.; Lasheen, Y.; Gad, H. Removal of Cobalt-60 and Caesium-134 Ions from Contaminated Solutions by Sorption Using Activated Carbon. Adsorp. Sci. Technol. 2011, 29, 331–344. [Google Scholar] [CrossRef] [Green Version]
- Handley-Sidhu, S.; Mullan, T.K.; Grail, Q.; Albadarneh, M.; Ohnuki, T.; Macaskie, L.E. Influence of pH, competing ions, and salinity on the sorption of strontium and cobalt onto biogenic hydroxyapatite. Sci. Rep. 2016, 6, 23361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alkhadra, M.A.; Conforti, K.M.; Gao, T.; Tian, H.; Bazant, M.Z. Continuous Separation of Radionuclides from Contaminated Water by Shock Electrodialysis. Environ. Sci. Technol. 2020, 54, 527–536. [Google Scholar] [CrossRef]
- Bolisetty, S.; Coray, N.M.; Palika, A.; Prenosil, G.A.; Mezzenga, R. Amyloid hybrid membranes for removal of clinical and nuclear radioactive wastewater. Environ. Sci. Wat. Res. 2020, 6, 3249–3254. [Google Scholar] [CrossRef]
- Tran, T.N.; Kim, D.-G.; Ko, S.-O. Adsorption Mechanisms of Manganese (II) Ions onto Acid-treated Activated Carbon. KSCE J. Civ. Eng. 2018, 22, 3772–3782. [Google Scholar] [CrossRef]
- Do, Q.C.; Kim, M.-S.; Kim, D.; Ko, S.-O.; Kang, S. Sustainable harvesting of aqueous phase fatty acids by expanded graphite and isopropyl alcohol. Int. J. Hydrog. Energy 2016, 41, 21780–21786. [Google Scholar] [CrossRef]
- Magnacca, G.; Neves Dos Santos, F.; Sadraei, R. Bio-based Substances from Compost as Reactant and Active Phase for Selective Capture of Cationic Pollutants From Waste Water. Front. Chem. 2020, 8, 550. [Google Scholar] [CrossRef]
- Ibrahim, M.; Labaki, M.; Giraudon, J.-M.; Lamonier, J.-F. Hydroxyapatite, a multifunctional material for air, water and soil pollution control: A review. J. Hazard. Mater. 2020, 383, 121139. [Google Scholar] [CrossRef]
- Fihri, A.; Len, C.; Varma, R.S.; Solhy, A. Hydroxyapatite: A review of syntheses, structure and applications in heterogeneous catalysis. Coord. Chem. Rev. 2017, 347, 48–76. [Google Scholar] [CrossRef]
- Kamieniak, J.; Kelly, P.J.; Banks, C.E.; Doyle, A.M. Mechanical, pH and Thermal Stability of Mesoporous Hydroxyapatite. J. Inorg. Organomet. Polym. Mater. 2018, 28, 84–91. [Google Scholar] [CrossRef] [Green Version]
- Cawthray, J.F.; Creagh, A.L.; Haynes, C.A.; Orvig, C. Ion Exchange in Hydroxyapatite with Lanthanides. Inorg. Chem. 2015, 54, 1440–1445. [Google Scholar] [CrossRef] [PubMed]
- Diallo-Garcia, S.; Osman, M.B.; Krafft, J.-M.; Casale, S.; Thomas, C.; Kubo, J.; Costentin, G. Identification of Surface Basic Sites and Acid–Base Pairs of Hydroxyapatite. J. Phys. Chem. C 2014, 118, 12744–12757. [Google Scholar] [CrossRef]
- Wang, X.; Wang, G.; Marchetti, A.; Wu, L.; Wu, L.; Guan, Y. Preparation of porous hydroxyapatite and its application in Pb ions effective removal. AIP Adv. 2019, 9, 025123. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Chen, D.; Kong, L.; Tsang, D.C.W.; Su, M. Rapid and effective removal of uranium (VI) from aqueous solution by facile synthesized hierarchical hollow hydroxyapatite microspheres. J. Hazard. Mater. 2019, 371, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Smičiklas, I.; Dimović, S.; Plećaš, I.; Mitrić, M. Removal of Co2+ from aqueous solutions by hydroxyapatite. Water Res. 2006, 40, 2267–2274. [Google Scholar] [CrossRef]
- Ferri, M.; Campisi, S.; Gervasini, A. Nickel and cobalt adsorption on hydroxyapatite: A study for the de-metalation of electronic industrial wastewaters. Adsorption 2019, 25, 649–660. [Google Scholar] [CrossRef]
- Kadouche, S.; Lounici, H.; Benaoumeur, K.; Drouiche, N.; Hadioui, M.; Sharrock, P. Enhancement of Sedimentation Velocity of Heavy Metals Loaded Hydroxyapatite Using Chitosan Extracted from Shrimp Waste. J. Polym. Environ. 2012, 20, 848–857. [Google Scholar] [CrossRef]
- Descamps, M.; Hornez, J.C.; Leriche, A. Manufacture of hydroxyapatite beads for medical applications. J. Eur. Ceram. Soc. 2009, 29, 369–375. [Google Scholar] [CrossRef]
- Sopyan, I.; Mel, M.; Ramesh, S.; Khalid, K.A. Porous hydroxyapatite for artificial bone applications. Sci. Technol. Adv. Mater. 2007, 8, 116–123. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, C.C.; Barrias, C.C.; Barbosa, M.A. Preparation and characterisation of calcium-phosphate porous microspheres with a uniform size for biomedical applications. J. Mater. Sci. Mater. Med. 2006, 17, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Nijhawan, A.; Butler, E.C.; Sabatini, D.A. Macroporous hydroxyapatite ceramic beads for fluoride removal from drinking water. J. Chem. Technol. Biotechnol. 2017, 92, 1868–1875. [Google Scholar] [CrossRef]
- Nijhawan, A.; Butler Elizabeth, C.; Sabatini David, A. Hydroxyapatite Ceramic Adsorbents: Effect of Pore Size, Regeneration, and Selectivity for Fluoride. J. Environ. Eng. 2018, 144, 04018117. [Google Scholar] [CrossRef]
- Le, D.T.; Le, T.P.T.; Do, H.T.; Vo, H.T.; Pham, N.T.; Nguyen, T.T.; Cao, H.T.; Nguyen, P.T.; Dinh, T.M.T.; Le, H.V.; et al. Fabrication of Porous Hydroxyapatite Granules as an Effective Adsorbent for the Removal of Aqueous Pb(II) Ions. J. Chem. 2019, 2019, 8620181. [Google Scholar] [CrossRef]
- Choy, K.K.H.; McKay, G.; Porter, J.F. Sorption of acid dyes from effluents using activated carbon. Resour. Conserv. Recycl. 1999, 27, 57–71. [Google Scholar] [CrossRef]
- Tran, T.N.; Kim, D.-G.; Ko, S.-O. Encapsulation of biogenic manganese oxide and Pseudomonas putida MnB1 for removing 17 α-ethinylestradiol from aquatic environments. J. Water Process. Eng. 2020, 37, 101423. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef] [PubMed]
- Do, Q.C.; Choi, S.; Kim, H.; Kang, S. Adsorption of Lead and Nickel on to Expanded Graphite Decorated with Manganese Oxide Nanoparticles. Appl. Sci. 2019, 9, 5375. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.-W.; Choi, N.-C.; Lee, S.-J.; Kim, D.-J. Novel three-stage kinetic model for aqueous benzene adsorption on activated carbon. J. Colloid Interface Sci. 2007, 314, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Largitte, L.; Pasquier, R. A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chem. Eng. Res. Des. 2016, 109, 495–504. [Google Scholar] [CrossRef]
- Gao, M.; Wang, W.; Yang, H.; Ye, B.-C. Hydrothermal synthesis of hierarchical hollow hydroxyapatite microspheres with excellent fluoride adsorption property. Microporous Mesoporous Mater. 2019, 289, 109620. [Google Scholar] [CrossRef]
- Sing, K.S.W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Provisional). Pure Appl. Chem. 1982, 54, 2201–2218. [Google Scholar] [CrossRef]
- Dubois, I.E.; Holgersson, S.; Allard, S.; Malmström, M.E. Dependency of BET surface area on particle size for some granitic minerals. Proc. Radiochim. Acta 2011, 1, 75–82. [Google Scholar] [CrossRef]
- Aruna, S.T.; Kulkarni, S.; Chakraborty, M.; Kumar, S.S.; Balaji, N.; Mandal, C. A comparative study on the synthesis and properties of suspension and solution precursor plasma sprayed hydroxyapatite coatings. Ceram. Int. 2017, 43, 9715–9722. [Google Scholar] [CrossRef]
- Nayak, B.; Samant, A.; Patel, R.; Misra, P.K. Comprehensive Understanding of the Kinetics and Mechanism of Fluoride Removal over a Potent Nanocrystalline Hydroxyapatite Surface. ACS Omega 2017, 2, 8118–8128. [Google Scholar] [CrossRef] [Green Version]
- Kang, I.-G.; Park, C.-I.; Lee, H.; Kim, H.-E.; Lee, S.-M. Hydroxyapatite Microspheres as an Additive to Enhance Radiopacity, Biocompatibility, and Osteoconductivity of Poly(methyl methacrylate) Bone Cement. Materials 2018, 11, 258. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Cocoletzi, H.; Salinas, R.A.; Águila-Almanza, E.; Rubio-Rosas, E.; Chai, W.S.; Chew, K.W.; Mariscal-Hernández, C.; Show, P.L. Natural hydroxyapatite from fishbone waste for the rapid adsorption of heavy metals of aqueous effluent. Environ. Technol. Innov. 2020, 20, 101109. [Google Scholar] [CrossRef]
- Mourabet, M.; El Rhilassi, A.; El Boujaady, H.; Bennani-Ziatni, M.; El Hamri, R.; Taitai, A. Removal of fluoride from aqueous solution by adsorption on hydroxyapatite (HAp) using response surface methodology. J. Saudi Chem. Soc. 2015, 19, 603–615. [Google Scholar] [CrossRef] [Green Version]
- Barka, N.; Qourzal, S.; Assabbane, A.; Nounah, A.; AÎT-Ichou, Y. Adsorption of Disperse Blue SBL dye by synthesized poorly crystalline hydroxyapatite. J. Environ. Sci. 2008, 20, 1268–1272. [Google Scholar] [CrossRef]
- Skwarek, E.; Janusz, W.; Sternik, D. The influence of the hydroxyapatite synthesis method on the electrochemical, surface and adsorption properties of hydroxyapatite. Adsorp. Sci. Technol. 2017, 35, 507–518. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.-G.; Nhung, T.T.; Ko, S.-O. Enhanced adsorption of heavy metals with biogenic manganese oxide immobilized on zeolite. KSCE J. Civ. Eng. 2016, 20, 2189–2196. [Google Scholar] [CrossRef]
- Sulaymon, A.H.; Abid, B.A.; Al-Najar, J.A. Removal of lead copper chromium and cobalt ions onto granular activated carbon in batch and fixed-bed adsorbers. Chem. Eng. J. 2009, 155, 647–653. [Google Scholar] [CrossRef]
- Rodríguez, A.; Sáez, P.; Díez, E.; Gómez, J.M.; García, J.; Bernabé, I. Highly efficient low-cost zeolite for cobalt removal from aqueous solutions: Characterization and performance. Environ. Prog. Sustain. Energy 2019, 38, S352–S365. [Google Scholar] [CrossRef]
- Wakamura, M.; Kandori, K.; Ishikawa, T. Surface structure and composition of calcium hydroxyapatites substituted with Al(III), La(III) and Fe(III) ions. Colloid. Surf. A. Physicochem. Eng. Asp. 2000, 164, 297–305. [Google Scholar] [CrossRef]
- Khalili, F.I.; Khalifa, A.a.; Al-Banna, G. Removal of uranium(VI) and thorium(IV) by insolubilized humic acid originated from Azraq soil in Jordan. J. Radioanal. Nucl. Chem. 2017, 311, 1375–1392. [Google Scholar] [CrossRef]
Material | BET Surface Area (m2/g) | Pore Volume (cm3/g) a | Mean Pore Size (nm) | Adsorption Capacity of Co(II) (mg/g) b |
---|---|---|---|---|
p-HdA | 67.14 | 0.27 | 16.22 | 14.07 |
b-HdA | 34.91 | 0.18 | 22.73 | 7.73 |
Isotherms | Parameters | Temperature (K) | |||
---|---|---|---|---|---|
293 | 303 | 313 | |||
Langmuir | qmax | (mg/g) | 4.91 | 6.10 | 6.41 |
K | (L/mg) | 0.40 | 0.44 | 1.12 | |
R2 | 0.99 | 0.99 | 0.98 | ||
Freundlich | KF | (mg/g (L/mg)1/n) | 1.35 | 1.76 | 2.84 |
1/n | 0.51 | 0.50 | 0.41 | ||
R2 | 0.99 | 0.99 | 0.99 | ||
Sips | qmax | (mg/g) | 7.73 | 10.38 | 11.35 |
Ks | (1/mg) | 0.20 | 0.19 | 0.42 | |
ns | 0.74 | 0.68 | 0.61 | ||
R2 | 0.99 | 0.99 | 0.99 | ||
Tempkin | bT | (kJ/mol) | 3.69 | 3.11 | 2.89 |
AT | (L/mg) | 16.20 | 18.88 | 48.53 | |
R2 | 0.88 | 0.88 | 0.92 |
Adsorbent | BET Surface Area (m2/g) | pH | Temperature (K) | qmax (mg/g) | Reference |
---|---|---|---|---|---|
Eggshell p-HdA | 11.84 | 4.5 | 398 | 3.41 | [1] |
Commercial p-HdA | 21.0 | 6.0 | 298 | 14.0 | [6] |
Biogenic p-HdA | 94.0 | 6.0 | 298 | 62.0 | [6] |
Synthetic p-HdA | 67.0 | 5.0 | 293 | 20.9 | [19] |
Synthetic p-HdA | 100.5 | 4.0 | 303 | 22.4 | [20] |
Activated carbon | 603.0 | 6.0 | 303 | 1.19 | [45] |
Clinoptilolite | 20.0 | 5.5 | 298 | 2.1 | [46] |
p-HdA | 67.14 | 7.0 | 293 | 14.07 | This study |
b-HdA | 34.91 | 7.0 | 293 | 7.73 | This study |
Temperature (K) | K0 | ΔG0 (kJ/mol) | ΔS0 (kJ/mol·K) | ΔH0 (kJ/mol) |
---|---|---|---|---|
293 | 1.56 | −1.08 | 0.20 | 58.72 |
303 | 2.24 | −2.03 | ||
313 | 7.33 | −5.18 |
Models | Parameters | Value | |
---|---|---|---|
Pseudo-first-order | qe | (mg/g) | 2.87 |
k1 | (1/h) | 0.13 | |
R2 | 0.98 | ||
Pseudo-second-order | qe | (mg/g) | 3.69 |
k2 | (g/mg h) | 0.15 | |
R2 | 0.99 | ||
Three-stage | ξ1 | 0.07 | |
ξ2 | 0.93 | ||
α | (1/h) | 0.59 | |
β | 0.89 | ||
γ | 0.09 | ||
Intra-particle diffusion | kid | (mg/g h0.5) | 1.4 |
R2 | 0.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, T.N.; Kim, J.; Park, J.-S.; Chung, Y.; Han, J.; Oh, S.; Kang, S. Novel Hydroxyapatite Beads for the Adsorption of Radionuclides from Decommissioned Nuclear Power Plant Sites. Appl. Sci. 2021, 11, 1746. https://doi.org/10.3390/app11041746
Tran TN, Kim J, Park J-S, Chung Y, Han J, Oh S, Kang S. Novel Hydroxyapatite Beads for the Adsorption of Radionuclides from Decommissioned Nuclear Power Plant Sites. Applied Sciences. 2021; 11(4):1746. https://doi.org/10.3390/app11041746
Chicago/Turabian StyleTran, Thi Nhung, Junho Kim, Joo-Sung Park, Youngkun Chung, Jaemun Han, Seungjun Oh, and Seoktae Kang. 2021. "Novel Hydroxyapatite Beads for the Adsorption of Radionuclides from Decommissioned Nuclear Power Plant Sites" Applied Sciences 11, no. 4: 1746. https://doi.org/10.3390/app11041746
APA StyleTran, T. N., Kim, J., Park, J. -S., Chung, Y., Han, J., Oh, S., & Kang, S. (2021). Novel Hydroxyapatite Beads for the Adsorption of Radionuclides from Decommissioned Nuclear Power Plant Sites. Applied Sciences, 11(4), 1746. https://doi.org/10.3390/app11041746