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Abstract: Functional films with hydrophobic, oleophobic, anti-fouling, anti-icing, anti-bacterial and
low reflectance properties can be produced by patterning nano- or micro-structures on films via nano
imprint lithography. Here, an omni-phobic surface showing both hydrophobicity and oleophobicity
was obtained without chemical surface treatment by increasing the surface roughness and deforming
the pattern morphology using only nano imprint lithography and the oxygen-inhibited curing
properties of polyurethane acrylate (PUA) resin. A tulip-shaped pattern imprinting process was
designed in which microscale patterns were fabricated using a porous polydimethylsiloxane (PDMS)
mold with high oxygen transmission. During ultraviolet (UV) curing, a curing inhibiting layer was
formed by reaction with oxygen. Next, a PDMS pad was used for the pressurized curing of the curing
inhibition layer to modify the micro scale structures. Finally, final curing of the deformed pattern was
performed using ultra high-power UV light. The deformation of the pattern into tulip-like shapes
with increased surface roughness was confirmed by microscopy, and contact angle measurement
was performed to confirm omni-phobicity. The final cured imprinted samples showed water and
oil contact angles reaching 169.2◦ and 115◦, respectively; thus, the omni-phobic surface could be
demonstrated by a tulip-shaped pattern imprinting process.

Keywords: nano-imprint lithography; omni-phobicity; oxygen transmission; curing inhibition;
deformation; tulip-shaped pattern

1. Introduction

Functional films that realize characteristics appearing in nano- and micro-scale pat-
terns have been fabricated biomimetically [1–12]. Two representative processes for fine
patterning are photolithography and soft lithography. Although photolithography allows
excellent dimensional accuracy, it is limited in the size and surface curvature of the structure
that can be manufactured and the process is expensive. On the other hand, soft lithography
has the advantage of being able to nano-scale a structure, a simple process with a low
process cost. In this paper, micro-sized structures were patterned on a substrate using ultra-
violet (UV) nano-imprint lithography among soft lithography. Among the materials used
in the UV nano-imprint lithography process, polyurethane acrylate (PUA) resins include
radical polymerization resins containing acrylate as the main component and cation poly-
merization resins containing epoxy as the main component. Radical polymerization resins
have a property of inhibiting UV curing by generating an inert material (I-R-O-O) when
reacting with oxygen. This characteristic deteriorates the mechanical properties of fine
structures manufactured with the correct dimensions. Therefore, studies have investigated
optical curing mechanisms that either block oxygen or are not affected by oxygen [13–15].
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However, a recent study reported the use of curing inhibition characteristics to trans-
form micro-scale line patterns. When PUA was imprinted using a porous polydimethyl-
siloxane (PDMS) mold, oxygen inherent in the mold cavity or penetrating the mold diffused
into the resin, thus inhibiting ultraviolet (UV) curing. This produced partially cured struc-
tures with Bingham plastic behaviors; the partially cured structures deformed under the
application of pressure exceeding the yield stress [16].

In this paper, a tulip-shaped pattern imprinting process was designed to fabricate
an omni-phobic surface with hydrophobicity and oleophobicity by referring to the ideas
of the preceding study, and hydrophobicity and oleophobicity were confirmed through
static contact angle measurement [17,18]. Previously, chemical surface treatment processes
such as etching [19–25] and deposition/coating [26–34] were used as a process to fabricate
hydrophobic/oleophobic surfaces, but chemicals that are not good for the human body or
the environment, such as fluorine, were used. In contrast, the tulip-shaped pattern imprint-
ing process proposed in this paper has the advantages of not using chemicals harmful to
humans and the environment and being able to perform the process in minutes by inducing
micro-pattern deformations based on UV nano-imprint lithography. Furthermore, when
applying the Roll-to-Roll process, it is possible to fabricate a large-area omni-phobic surface.

2. Process Design and Experiments
2.1. Design of The Tulip-Shaped Pattern Imprinting Process

The tulip-shaped pattern imprinting process is designed to produce an omni-phobic
surface, as shown in Figure 1. The designed imprint process comprises six steps focusing on
three UV curing processes. In the first to third steps of the process, PUA resin (MINS-311RM,
Minuta Tech, Osan-si, Korea) is applied to a polyethylene terephthalate (PET) film in the
same manner as that used for nano-imprinting. The PUA resin is then imprinted with a
micro-scale pattern by sequentially applying pressure and UV curing. In the process, PDMS
(RT 623, WACKER, Munich, Germany) is used as the mold material; this yields a partially
cured layer from the inherent and permeated oxygen that reacts with the resin surface.
The depth of the partially cured layer is affected by the UV irradiation energy; for equal
process times, lower UV energies yield deeper partially cured layers. As a result, significant
deformation occurs during pressurized UV curing in the fourth step of the process. This
deformation increases the diameter of the upper end of the pattern, decreases the diameter
and height of the lower end, and increases the surface roughness of the upper surface of the
pattern. The deformed pattern has a tulip shape, and the hydrophobicity and oleophobicity
of the surface are improved by the air pocket effects and increased roughness [17,19,27,35–41].
In the final step, the process is completed by final curing using ultra high-power UV to
improve the wear resistance and omni-phobicity of the tulip structure.
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2.2. Determination of PDMS Combination Ratio

The process designed to fabricate omni-phobic surfaces relied on a porous PDMS
mold that permitted the PUA resin to react with oxygen during UV curing. The PDMS used
in the study was manufactured by adding a curing agent for crosslinking and an oil-based
silicone plasticizer (softening agent) to regulate the viscosity of the silicone rubber fluid
(base). The material properties such as viscosity, hardness, elastic modulus and oxygen
transmission rate varied according to the combination ratio of these materials. In order
to allow pattern deformation during imprinting, a series of experiments was conducted
to optimize the oxygen transmission rate of the PDMS. Five PDMS pad samples were
prepared according to the combination ratios shown in Table 1.

Table 1. Combination ratios of PDMS samples.

Sample Base (wt %) Curing Agent (wt %) Softening Agent (wt %)

#A 76.1 10.9 13
#B 78.3 8.7 13
#C 79.7 7.3 13
#D 75 8.3 16.7
#E 72 8 20

The samples were manufactured by applying a mixed PDMS solution on a 4 inch bare
silicon wafer and pressurizing it by placing a PET film on top of it. Thermal curing was
performed for 4 h in an oven at 60 ◦C. For final curing, the thickness of the samples was
measured as 100 ± 10 µm.

The oxygen transmission rates were measured for 2 h using the manufactured samples
and an OX-TRAN instrument (Mocon Inc., Minneapolis, MN, USA). As shown in Figure 2,
the measurements confirm that the concentration of oxygen is increased by 22.5% from that
obtained with the PET film (12.628 cm3/cm2) to 15.467 cm3/cm2 at the combination ratio
of 75:8.3:16.7 (wt %/base–curing agent–softening agent).
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Figure 2. Oxygen transmission rate according to combination ratio of polydimethylsiloxane (PDMS).

2.3. Comparison of Micro-Pattern Morphology Before and After Experiments

To fabricate omni-phobic surfaces, experiments were performed by designing a pro-
cess wherein hydrophobicity and oleophobicity would be achieved by increasing the
deformation and roughness of the surface patterning via a follow-up treatment of the
curing-inhibited PUA resin. As the main variable for the experiment, the UV irradiation
energy was chosen. Figure 3 shows the scanning electron microscopy (SEM) images to
analyze the pattern morphology change before and after the experiments.
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pattern morphology before experiments. (h–j) Hexagonal wall-pillar array pattern morphology after experiments; UV
irradiation energy: (h) 150 mJ, (i) 180 mJ, (j) 300 mJ.

Observing the deformed pillar pattern, the diameter of the lower part of the pattern
shown in Figure 3c was increased from the minimum of 6.35 µm to the maximum of 8.20 µm
by irradiation with 150 mJ UV energy, as shown in the conceptual diagram. The diameter
before the deformation was 10 µm; this was reduced by 1.8–3.65 µm. The diameter of the
upper part was increased from 11.1 µm to 12.6 µm, indicating an increase reaching 2.6 µm.
In addition, the height of the pillar was measured as 15.7 µm to 17.1 µm, reduced by
2.9–4.3 µm from the original height of 20 µm. Furthermore, irregularities of 480 nm–2.4 µm
in height were generated on the upper surfaces of the pillars, thus changing the nano-
and micro-scale roughness. Contact angle measurements were performed using Smart
Drop equipment (FEMTOBIOMED Inc., Seongnam-si, Korea) to verify hydrophobicity,
with results as shown in Figure 4. The volume of fluid in contact angle testing was set to
10 µL. The measurement was repeated at five random points on the patterned region of the
film. An excellent contact angle corresponding to hydrophobicity of at least 155.9◦ and a
maximum of 166.0◦ was confirmed.
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For the pattern irradiated with 180 mJ UV energy (Figure 3d), there was a reduction
of 0.74–1.53 µm in the diameter of the lower part, from the minimum of 8.47 µm to the
maximum of 9.26 µm. The diameter of the upper part was increased by up to 1.2 µm
from 10.4 µm to 11.2 µm, and the height was decreased by up to 1.3 µm from 17.2 µm
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to 18.7 µm. The maximum height of irregularities occurring on the upper surface of the
pattern was 824 nm. The contact angle measured using the corresponding imprint sample
was 150.6◦–166.3◦, confirming hydrophobicity.

For the pattern deformed by irradiation with 300 mJ UV energy (Figure 3e), the diam-
eters of the top and bottom were measured as 9.79–9.92 µm and 9.66–9.79 µm, respectively,
while the height increased from 18.6 µm to 20.1 µm. The measured diameter below the
design dimension of 10 µm was considered an experimental error that occurred during
imprinting. The difference between the top and bottom points was approximately 0.2 µm,
and the degree of deformation was insignificant compared to those of the patterns shown
in Figure 3c,d, so it is considered that hard curing occurred with no pattern deformation.
The contact angle measurement of sample C shows the maximum of 112.5◦, confirming
that the deformation and roughness of the pattern affects the degree of hydrophobicity.

When reviewing the results of applying the same experimental processes to the
wall-pillar structure, Figure 3h showing the structure irradiated at 150 mJ indicates that
nanoscale bumps form on the top of the pillars while the width of the lower parts is
significantly reduced compared to that of the upper part of the wall, forming an inverted
triangle. In Figure 3i, increased roughness is observed on the upper surface, but no shape
change is observed; in Figure 3j, no changes in the pattern can be seen. For the samples
in Figure 3h,i,j, the measured contact angles were 153.1◦–165.2◦, 150.3◦–161.6◦ and 139.7◦–
147.7◦, respectively. In the wall-pillar pattern, as with the pillar pattern, lower irradiation
energy within the curing range corresponds to greater deformation and roughness of the
pattern, with contact angles of ≥160◦ indicating hydrophobicity.

2.4. Micro-Pattern Deformation Mechanism

The mechanism of micro-pattern deformation before and after the tulip-shaped pattern
imprinting experiments with UV irradiation energy as a variable was analyzed based on
the SEM images in Figure 3, as shown in Figure 5. When the imprint process is performed
using a PDMS mold that can permeate or contain oxygen as it has a porous structure and a
PUA resin that inhibits curing when reacted with oxygen, a partially cured layer is formed
on the surface of the PUA resin that reacts with oxygen. The resulting partially cured
layer is greatly affected by UV energy irradiated for curing. Additionally, an omni-phobic
surface is fabricated by causing deformation of the partially cured layer and an increase in
surface roughness through post-processes such as pressurization and after-curing.

2.5. Final Curing Process for Improving Durability of Micro-Pattern

For an omni-phobic surface achieved via the imprinting process, a pattern with poor
durability may lose omni-phobicity under small external forces. Therefore, an additional
process for improving durability after pattern imprinting is necessary. Final curing pro-
cesses for durability enhancement are common when using UV curable resin. These
processes promote the polymerization reaction to form polymers from the monomers and
oligomers remaining in the resin after the imprinting process.

The imprint sample shown in Figure 3h was irradiated by UV energy at 630 mJ for
30 s and observed by SEM to check for pattern deformation occurring in final curing. The
contact angle was also measured to check the omni-phobicity. The results are shown in
Figure 6.

A comparison of the SEM images obtained before and after the final curing can be seen
in Figure 3h or Figure 6a,b, respectively, showing that the edge of the wall is rugged, with
bumps of 411 nm to 1.44 µm high on the tops of the pillars indicating nano- and micro-scale
roughness changes. Bumps at the top and corners of the walls were increased in roughness
by approximately 1 µm. Such deformation is due to excessive final curing. Monomers and
oligomers are liquid at steady state (1 atm and 25 ◦C) and become polymerized (solidified)
under intense UV energy. As the monomers and oligomers become solid polymers, they
change in density, which may induce pattern deformation.
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Figure 6. Micro-pattern deformation and improvement of omni-phobicity after final curing pro-cess; contact angle:
(a) 50 µm, (b) 10 µm, (c) 160.3◦ ± 9.56◦, (d) 105.9◦ ± 7.92◦.

The contact angle was measured using the final cured sample, as shown in
Figure 6c,d. Deionized (DI) water was used for confirming hydrophobicity and olive
oil was used for confirming oleophobicity. The final curing sample showed hydrophobicity
and oleophobicity of 150.2◦–169.2◦ and 100.9◦–115◦, respectively.

3. Conclusions

To fabricate an omni-phobic surface by an imprint process, a tulip-shaped pattern im-
printing process using a porous PDMS mold was designed, based on the curing inhibition
characteristics of PUA resin that arise with reaction with oxygen. To summarize the results
of the omni-phobic surface fabrication experiment with the designed process, when a pillar
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pattern was irradiated with 150 mJ UV energy, the diameter of the lower part of the pillars
was decreased by 1.8–3.65 µm. In addition, the diameter of the upper part was increased
by up to 2.6 µm, and the height of the pattern was reduced by 2.9–4.3 µm. Irregularities of
480 nm to 2.4 µm in height were generated nonuniformly on the upper flat surfaces of the
pillars, thereby increasing the surface roughness. The deformed pattern showed improved
air pocket effects by the increased roughness, concave bottom part and shape change of
the wide top part, with hydrophobicity indicated by contact angles reaching 166◦. The
process was also applied to a wall-pillar pattern designed to increase the durability and air
pocket effects of the pattern. The post-cured imprint sample showed hydrophobicity and
oleophobicity with water and oil contact angles reaching 169.2◦ and 115◦, respectively. We
thus successfully fabricated omni-phobic surface.
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