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Abstract: A coupled model has been developed to simulate groundwater flow in fractured karst
systems according to the complex geological and karst hydrogeological conditions of the dam site,
where a 3D mathematical model based on Boussinesq equation was used to describe the movement of
groundwater flow in fractured medium, and a 1D conduit model for karst medium. The model was
solved with the continuous hydraulic heads at the common boundaries. The hydraulic conductivities
of karst medium were determined by geometrical parameters and flux of pipes. Furthermore,
the permeability parameters for fractured medium were calibrated by the measured and calculated
groundwater levels. The calibrated model was employed to predict the variation of groundwater flow
field and leakage from the karst pipes and underground powerhouse during the reservoir operation.
The simulated results showed that the groundwater level of the powerhouse had decreased by about
2–5 m. The water level of conveyance pipeline had risen by 10–20 m, and the water level on both
banks had risen by 15–25 m. The leakage of karst conduits for impervious failure was larger than
that for normal seepage control. In addition, the leakage of the powerhouse was estimated to be
about 1000–3000 m3/d, and the seepage control of karst pipes had little influence on the leakage of
underground powerhouse.

Keywords: coupled model; fractured karst aquifer; karst pipes; hydraulic conductivity; leakage analysis

1. Introduction

Many water conservancy and hydropower projects are located in fractured karst areas.
The existence of karst pipes is a serious threat to the normal storage of reservoirs. The
fractured karst media are usually divided into three basic types: pores and micro-fissures in
rocks matrix, mesoscale fissures, and karst pipes and faults [1–5]. Pores, micro-fissures, and
mesoscale fissures often account for the main part of the porosity of karst media, but their
permeabilities are far less than those of karst pipes and faults. Therefore, these pores or
fractures play a major role in water storage, where groundwater flow follows Darcy’s law.
However, karst pipes play a role in water conduction in the movement of groundwater;
the groundwater flow follows non-Darcy’s law or non-linear flow owing to faster flow
velocity [6–9].

Due to the complexity of groundwater flow in fractured karst aquifer, the numerical
simulation method is an effective tool for studying the process of groundwater flow [10–12].
In the past few decades, a variety of numerical simulation methods for studying ground-
water flow have been developed. Many experts and scholars have explored models that
simulate groundwater flow in karst media [13–16]. Wu and Malenica et al. [17,18] de-
veloped a generalized discrete-continuum model to simulate ground water flow in the
karst aquifers, which took into account both quick conduit flow and diffusive fissure
flow. Bauer et al. [19,20] built a hybrid continuum-discrete pipe flow model (CAVE) to
study the effects of the coupling of two flow systems on the types and duration of early
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karstification for different boundary conditions. Huang et al. [21,22] developed a cou-
pling model based on the non-overlapping domain decomposition method to simulate
the groundwater flow in fractured bedrock areas. Kaufmann et al. [23] used the finite
element method to study the flow evolution in a fractured, porous karst aquifer on a
two-dimensional mesh of irregularly spaced nodal points. Chang et al. [24] developed a
coupled groundwater model CE (CFPv2 + ERCH), consisting of a simple reservoir model
generating the recharge source function, assuming the concept of an epikarst horizon
(ERCH) with CFPv2. It was a discrete conduit-continuum groundwater flow model of the
phreatic karst aquifer. Among these numerical modeling methods, the coupling model is
the most commonly used [25]. The coupled-continuum pipe-flow (CCPF) model is a dual
flow system consisting of a matrix representing the bulk mass of permeable limestone and
a conduit system representing the karst conduit network. The flow exchange between the
two systems is controlled by differences of hydraulic heads, the hydraulic conductivity,
and the geometric setting [26,27]. For the karst pipe, its hydraulic conductivity plays an
important role in simulating groundwater flow. How to accurately describe the diversion
capacity of groundwater flow is the focus and difficulty of many experts and scholars.
Warren and Root [28]; Narasimhan [29]; Lei [30]; and de Rooij [31] coupled the fractured
medium and the karst pipes by the exchange flow rate between two flow systems. The
exchange flow rate was proportional to the difference of hydraulic heads in the fractured
and pipe systems. Chen and Teutsch et al. [32,33] investigated the validity of the CCPF
model for flow in a karst aquifer. Giese et al. [34–37] applied large-scale tests to solve
the problem of hydraulic parameter evaluation scale caused by significant differences in
hydraulic parameters of karst aquifers. However, most of these research methods un-
derestimated the permeability of karst pipelines and did not consider the hydrodynamic
process in the pipeline clearly. The description of water flow characteristics was relatively
vague. Aiming at this phenomenon, Chen et al. [38] proposed the concept of equivalent
hydraulic conductivity. In addition, the expression of equivalent hydraulic conductivity
(EHC) was derived for the different flow conditions of non-Darcy flow. The non-Darcy
flow was coupled into the model of karstic triple void media.

It is worth noting that these coupling models mainly regard karst pipelines as one-
dimensional models. Actually, the strikes of these pipes may not align with the global
coordinate system [39–41]. Therefore, the main purpose of this paper is to derive the
expression of the hydraulic conductivity tensors for karst pipes based on the equivalent
hydraulic conductivity from Chen [38]. Then, the model of karst pipe with the hydraulic
conductivity tensors was coupled into the continuous media model that consisted of pores,
micro-fissures, and mesoscale fissures. The calibrated coupling model was applied to
simulate the groundwater flow in fractured karst systems.

2. Studied Site
2.1. Location

Maling Water Conservancy Project is located in the middle reaches of Mabie River in
Xingyi City, Guizhou Province. The river is a large tributary of the Xijiang River system on
the left bank of Nanpan River in the Pearl River Basin (Figure 1).

Its length is 142.5 km with a drop of 1462 m and drainage area of 2886 km2. This
project is 3 km from Maling Town downstream, 16 km from Xingyi City, and 318 km
from Guiyang City. The reservoir is a kind of karst canyon. The elevation of the dam
is 90 m with a total reservoir capacity of 1.282 × 108 m3 and regulating storage capacity
of 1.072 × 108 m3. The project is located in the south of Yunnan-Guizhou Plateau and its
topography is high in the north and low in the south. The highest elevation in the north is
about 1600 m. It is gradually descending to the height of 1100–1200 m in the dam site. The
main tasks of the project are a comprehensive utilization for water supply and irrigation in
urban and rural areas, and power generation. The yearly average temperature is 16.3 ◦C
with a maximum temperature of 36.5 ◦C and a minimum temperature of −4.7 ◦C. The
annual average rainfall and evaporation are 1437.6 mm and 1512.6 mm, respectively.
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Figure 1. Location of study area.

2.2. Hydrogeological Conditions

There are mainly three layers of medium-thick limestone in the dam site with the
stratigraphic symbols of T2g3-2-1, T2g3-2-2, and T2g3-2-3 (Figure 2). The total thickness
is 103.4 m. The underlying strata are medium-thick limestone interbedded with thin-
bedded shale (T2g3-1-2). In addition, the overlying strata are medium-thick limestone with
mudstone shale (T2g3-3) with a thickness of 33.6 m and thick dolomite with dolomitic
limestone (T2g3-4).

(1) Permeability analysis of rock mass

The permeability of rock mass is closely related to its weathering integrity. Rock mass
in weathering and unloading zones around the valley has good permeability. It decreases
obviously with the increase of rock mass integrity (Table 1). The Lu values in Table 1
are obtained by water pressure test, which is defined as the inflow rate per meter in unit
time, when the maximum pressure of the test section is 1 MPa. The test was proposed
by M.L. Ngeon from France in 1933 to estimate the necessity of grouting in rock mass of
dam foundation.

Table 1. Percentage of Lu values for different weathering zones (%).

Weathered Zones 5–10 Lu 1–5 Lu <1 Lu

Weak weathered zone 28 4 6
Slightly weathered zone 44 13 6

Intact rock mass 28 83 88
Weak weathered zone 28 4 6

Lu is equivalent to 10−5 cm/s.
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Because of the different lithology in the dam site, the development of karst is different,
which constitutes a multi-level aquifer system. For example, the T2g2 layer belongs to
relative aquiclude. The T2g3-1-1, T2g3-1-2, and T2g3-3 layers are the fractured weak permeable
layers. The T2g3-2-1, T2g3-2-2, and T2g3-2-3 are the moderate permeable layers in karst-
fractured systems. In addition, T2g3-4 is the strong karst permeable layer. Therefore,
the permeability of rock mass has heterogeneous anisotropy and is controlled by karst
development, weathering, and fragmentation degree of rock mass. The zones with high
permeability are mainly distributed in three geological bodies: (1) Strong and fractured
dissolution weathering zone near the surface; these zones were disclosed in the adits PD-4,
PD-12, and PD-13 in the left bank and PD-9 and PD-10 in the right bank (We edited the
adits found in the study area as PD-1, PD-2..., PD-N). Serious dripping occurred in these
zones. (2) Karst pipe and corrosion fracture zones; serious dripping was found in the
section of 53.2–55.3 m in the adit PD-10 and 53.3–57.5 m in the adit PD-11. (3) Fractured and
bedding dissolution zones; there are the dripping phenomenon in the section of 74.3–74.7
m in the adit PD-9 and 43–49 m in the adit PD-10.

Owing to the influences of weathering and unloading, the permeability of rock mass
decreases obviously with the increase of burial depth of rock mass (Table 2). At the depth
of 0–60 m, the permeability of local rock mass is moderate. About 120 m below the surface,
the rock mass is basically impermeable (Lu < 1).

Table 2. Percentage of Lu values for different burial depths (%).

Burial Depth (m) 5–10 Lu 1–5 Lu <1 Lu

20 13 45 42
40 2 66 32
60 1 66 33
80 0 75 25

100 0 59 41
120 0 29 71

>120 0 0 100

1 Lu is equivalent to 10−5 cm/s.
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(2) Types of aquifers

The groundwater types in the study area are mainly pore water in loose accumulation
layer, fractured water, and fractured karst groundwater. Pore water mainly distributes
in shallow surfaces and gullies. The permeability of fractured and karst groundwater
is different due to the lithological difference of each aquifer. Karst is widely distributed
in carbonate area. Waterfalls and sinkholes can be seen everywhere. Therefore, there
are many springs in reservoir areas, and groundwater resources are abundant. However,
in mudstone and shale areas, springs are less exposed and karst is not developed. The
permeability of each formation is shown in Table 3.

Table 3. Permeability statistics of different strata.

Stratigraphic
Age

Stratigraphic
Symbol

Stratigraphic
Thickness (m) Lithology Permeability of Rock Mass

Paleogene E2l >220 Conglomerate and sandstone Moderate

Triassic

T2g4 >150 Dolomitic limestone Strong
T2g3 570 Marl and argillaceous dolomite Moderate
T2g2 120 Mudstone and dolomite interbedding Relative impermeability

T2g1-2 80 Argillaceous dolomite Weak karst permeable layer
T2g1-1 240 Limestone and dolomitic limestone Strong karst permeable layer
T1yn2 50 Mudstone with limestone Relative impermeability
T1yn1 284 Muddy limestone Strong

T1f 625 Marlite Impermeable layer

Permian

P2c 2.5–20 Limestone Strong
P2l2 234 Sandstone with clay Impermeable layer
P2l1 38 Bioclastic limestone Strong
P1m 318–544 Bioclastic limestone Strong

(3) Recharge and discharge of groundwater

The groundwater level in the dam site is greatly affected by rainfall. If the rainfall is
large, the groundwater level is high, and the level ranges from 3 m to 20 m. According
to the relationship between the groundwater level of boreholes and the river level, the
groundwater hydraulic gradient is calculated. On the left bank, hydraulic gradient is
0.33 for borehole ZK-l0, 0.16 for borehole ZK-23, and 0.18 for borehole ZK-28. On the
right bank, hydraulic gradient is 0.47 for borehole ZK-l6, 0.33 for borehole ZK-22, and
0.27 for borehole ZK-27. So, the gradient is smaller on the valley slopes, but larger on the
bank slopes. In the riverbed, the levels are influenced by deep circulation conditions of
groundwater, and confined water appears in many places. For example, groundwater
tables are 982.75 m for ZK-18, 954.96 m for ZK-19, 956.15 m for ZK-20, and 982.45 m
for ZK-24. They are 2.96–30.75 m above the river level. Therefore, the groundwater
levels on both banks are higher than that of the river, and groundwater recharges to
the river water. Field investigation shows that most springs have larger discharge in
rainy season and smaller discharge in dry season. It shows that groundwater is mainly
recharged by rainfall. According to the groundwater levels on the both banks, there exists
groundwater watershed in the dam site. The outcrop of all springs is higher than the river
level. Therefore, the groundwater is discharged to the river in the study area under the
natural conditions (Figure 3).

(4) Hydrogeological characteristics of karst

The karst development is controlled by lithology and structure in the study area.
In all pure dolomite and limestone, karst development is relatively strong. For example,
sinkholes Kl7, K18, K19, and Longdang karst pipes on the left bank are mainly developed in
thick massive limestone T2g3-6. However, the karst development is weak in the heavier
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argillaceous layers of T2g3-3 and T2g3-2-2. There is only a small amount of micro-dissolution.
Also, the development directions of Nos. 1 and 5 karst pipes on the left bank and Nos.
2 and 4 karst pipes on the right bank in dam site are controlled by strata. The development
of karst pipes is shown in Table 4. Furthermore, the elevation of Karst development has
obvious zonation. The sinkholes Kl7, K18, and K19 are developed at 1100–1120 m. The
springs g1 and g11 are mainly distributed at 960–980 m on the left bank. On the right bank,
the karst development is concentrated at three elevations of 1050–1070 m, 1010–1020 m,
and 960–980 m.
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Table 4. Characteristics of karst pipe at dam site.

Number of
Karst Pipeline Location

Export Elevation
of Karst Pipeline

(m)

Length of
Karst Pipe (m)

Export Flow of
Karst Pipeline

(m3/s)

Characteristics of Karst
Pipeline

1 Left bank 983.70 2000 0.005 Development along the strike of
strata T2g3-1-1

2 Right bank 1014.37 600 0.030 Development along the strike of
strata T2g3-2-1

3 Right bank 980.31 150 0.020 Development along the layer
surface of strata T2g3-6

4 Right bank 973.63 600 0.00002 Development along the layer
surface of strata T2g3-1-1

5 Left bank 958.50 1000 0.015 Development along the layer
surface of strata T2g3-6

Because of the particularity of karst development, each layer of karst is connected
with each other. The lower karst develops along the upper karst. The outlet K4 of karst pipe
No. 2 has been suspended 60 m above the water level of the present river. With the down
cutting of valleys and the decrease of groundwater level, karst also develops to the depth.
Karst caves and No. 3 Karst Pipe disclosed in PD-3 Drift have been a part of the lower
passage of No. 2 karst pipe. Karst development is weak in the deep riverbed. According
to the borehole data of the riverbed in the dam site, there are few corrosion phenomena
within 100 m. In addition, the permeability of rock mass is also very small. Therefore, it
can be inferred that the relative lower limit of karst development is 30–50 m below the
riverbed. In the two banks and watershed areas, the relative lower limit is controlled by
lithology and tectonics. These karst pipes are the main channels for groundwater discharge,
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and their hydrodynamic conditions are complex. The calculation shows that the hydraulic
gradients are about 8% for of Nos. 1 and 4 karst pipes, 4% for Nos. 2, and 20–28% for Nos.
3 and 5 (Table 4). Due to the wide distribution of karst strata at both banks of the dam
site, karst is relatively developed. When the reservoir is impounded to a normal water
level, these parts between the Nizao gully and the dam site have the possibility of leakage
around the dam foundation and abutment by the karst fractures.

3. Methods

In fractured karst systems, a 3D mathematical model is employed to describe the
movement of groundwater flow in fractured medium and a conduit model is used to de-
scribe it in karst medium. The two models are coupled using the conditions for continuous
groundwater flow between the walls of karst conduit and rock mass matrix around the
conduit.

3.1. Mathematical Model of Groundwater Flow

The transient groundwater flow in heterogeneous anisotropic fractured medium can
be simulated using the Boussinesq equation [42]:

µ
∂h f
∂t = ∂

∂x

(
Kfx

∂h f
∂x

)
+ ∂

∂y

(
Kfy

∂h f
∂y

)
∂
∂z

(
Kfz

∂h f
∂z

)
+ε, x, y, z ∈ Ω, t ≥ 0

h f (x, y, z, t)
∣∣∣
t=0

= h f 0, x, y, z ∈ Ω, t ≥ 0,

h f 1(x, y, z, t)
∣∣∣
Γ1
= h f 1, x, y, z ∈ Γ1, t ≥ 0

K f n
∂h f
→
∂n

∣∣∣∣
Γ2

= q f (x, y, z, t), x, y, z ∈ Γ2, t ≥ 0

(1)

where x, y, and z are the space coordinates [L]; t is time [T]; µ is the specific yield for
unconfined aquifer and specific storage for confined aquifer; hf is the hydraulic head in the
fractured system [L]; Kfx, Kfy, Kfz are the hydraulic conductivities along coordinate axes
[L/T]; ε is the evaporation and precipitation recharge of phreatic surface [L3/T]; hf0 is the
initial groundwater level [L]; hf1 is the boundary groundwater level [L]; n is the normal
direction of the boundary surface; Kfn is the hydraulic conductivity in the normal direction
of the boundary surface [L/T]; qf (x, y, z, t) is the unit area flux of the second type boundary
[L3/T·L2], it is positive for groundwater inflow and negative for outflow; Ω is the domain
of the fractured medium, and Γ1 and Γ2 are domains of the first and second type boundary.
(according to Abbreviations).

3.2. Karst Pipes Model and Determination of Its Hydraulic Conductivity

Groundwater flow in karst pipes is generally non-Darcy flow owing to the fast water
velocity. The hydraulic head loss, hl, can be given by Darcy–Weisbach equation:

h1 = λ
L
d

u2

2g
(2)

where λ is head loss coefficient along the conduit, L is the length of the tube [L], d is the
conduit diameter [L], u is the average velocity [L/T], and g is the gravitational acceleration
[L/T2]. If the porosity (n) of the conduit is assumed to be 1, the seepage velocity, V, is equal
to the average velocity. In addition, the hydraulic gradient (J) can be expressed by head
loss: (according to Abbreviations).

J =
h1

L
(3)

Substituting Equation (3) and the seepage velocity (V) into Equation (2), it can be
rewritten as:

JL = λ
L
d

VV
2g

(4)
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Therefore, Equation (4) can be written in the form of Darcy’s Law:

V =
2gd
λV

J (5)

A converted hydraulic conductivity, Kc, is defined as:

Kc =
2gd
λV

(6)

In order to calculate Kc, the key is to calculate the corresponding λ according to the
groundwater flow pattern. The λ values depend on Reynolds number (Re) and relative
roughness (∆) of the tube walls. λ values can be given as [41]:

For laminar flow (Re < 2320),

λ =
64
Re

(7)

For turbulent flow (Re ≥ 2320),

λ =

[
1.74− 21g

(
∆
d
+

21.25
Re0.9

)]−2
(8)

The seepage velocity can be calculated according to the flux and diameter of the karst
conduit. Then Re and λ values are obtained by the seepage velocity and Equations (7) and (8).
Finally, the converted hydraulic conductivity from Equation (6) can be determined.

The Kc is the main hydraulic conductivity along the direction of the karst pipe. In fact,
there is a certain angle between the direction of the pipe and the coordinate axis. Therefore,
the Kc value must be converted to tensor form in the global coordinate system, that
is, geodetic coordinate system, of the computational domain. A local coordinate system,
ox′y′z′, is established to parallel the positive direction of the ox′-axis with the axial direction
of karst pipe. The permeabilities of karst conduit are mainly along the ox’-axis owing to its
strong anisotropy. So, under the local coordinate system, ox′y′z′, the hydraulic conductivity
tensors of karst pipe, [K]eL, can be expressed as [41]:

[K]eL =

 Kc 0 0
0 0 0
0 0 0

 = diag(Kc, 0, 0) (9)

Rotating the direction of the local coordinate system with the same as that of the global
coordinate system, based on the matrix correlation theory and conception, the hydraulic
conductivity tensors of the global coordinate system, [K]eG, can be calculated with that of
the local coordinate system:

[K]eG = [P][K]eL[P]
T (10)

where [P] is the orthogonal matrix, and it can be calculated using the local coordinates of
karst pipe.

Assuming 
α1 =

{
cos α, cos β, cos γ

}
α2 =

{
cos α′, cos β′, cos γ′

}
α3 =

{
cos α′′ , cos β′′ , cos γ

} (11)
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And assuming that the starting and ending coordinates of the axis of karst pipe are
M1 (x1, y1, z1), M2 (x2, y2, z2), respectively. The directional cosine of vector (α1) or ox’-axis
can be given as: 

cos α = x2−x1√
(x2−x1)

2+(y2−y1)
2+(z1−z2)

2

cos β = y2−y1√
(x2−x1)

2+(y2−y1)
2+(z2−z1)

2

cos γ = z2−z1√
(x2−x1)

2+(y2−y1)
2+(z2−z1)

2

(12)

Because the ox’-axis, oy’-axis, and oz’-axis are orthogonal to each other, α1, α2, and α3
are also orthogonal, that is {

αT
1 α2= 0

αT
1 α3= 0

(13)

Therefore, vector α2 and α3 satisfy as:

αT
1 X = 0 (14)

We can get the following algebraic equation:

cos αx1+ cos βx2+ cos γx3= 0 (15)

Assuming a = cosα, b = cosβ, and c = cosγ, if a is not equal to zero, the orthogonal
matrix can be expressed as:

[P] =


a − b

a

√
a2

a2+b2 − ac√
a2+b2

b
√

a2

a2+b2 − bc√
a2+b2

c 0
√

a + b

 (16)

The expressions of orthogonal matrices for b 6= 0 and c 6= 0 can also be obtained by
the same method. Therefore, the hydraulic conductivity tensors in global coordinates can
be determined by Equation (10). Finally, the principal hydraulic conductivities along three
coordinate axes are obtained in karst conduit system.

3.3. Coupled Conditions

For fractured karst systems, the 3D continuum and 1D conduit models are applied to
describing the fractured and karst media, respectively. The coupling model is solved using
the continue conditions of the hydraulic heads at the common boundaries. The coupling
conditions can be expressed as

h f (x, y, z)
∣∣∣
Γc

= hk(x, y, z) (x, y, z) ∈ Γc, t > 0 (17)

where Γc is the common boundary of the karst and fracture media, and hk is the hydraulic
head in the karst system [L]. Therefore, before the hydraulic heads are calculated in the
study area, those in the common boundary must be solved. The iteration method is
employed to solve Equations (1) and (17). (according to Abbreviations).

3.4. Parameter Inversion Method

In order to obtain the size and direction of the hydraulic conductivities in the study
area, the inversion method of discontinuity control is used to determine those of riverbed
and left and right bank rocks [21]. The objective function is established by the least
square method.

E
(

Ki
j

)
=

M

∑
n=1

ωn

√(
hc

n − h0
n
)2 (18)
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where Ki
j are the permeability parameters to be calculated, the superscript i is the i-th

sub-partition according to permeability of rock mass, and i = I, II, . . . , NNO, NNO is the
total number of parametric partitions. The subscript j is the j-th parameter in the i-th
sub-partition, and j = 1, 2, . . . , NK, NK is the total number of parameters, ωk is the k-th
weight function of observed hydraulic heads, M is the number of observation holes, and hc

n
and h0

n are the calculated and observed hydraulic heads.

3.5. Calculation Method of Hydraulic Conductivity in Fracture-Karst Media

The values mainly depend on the permeability of fractures in rock mass, spatial
distribution characteristics of karst, and fracture discontinuity. Hydraulic conductivity
tensor can be used to indicate the size and direction of permeability of anisotropic media.
It is determined by the parameter inversion method. The equivalent permeability coefficient
required by this method can be determined with the data of water pressure test in the
boreholes. The Boussinesq equation was employed to calculate the equivalent permeability
coefficient. When the test section for the water pressure test is close to the impermeable
layer, the equation can be expressed as:

K = 0.528ωlg
(

0.66L
r0

)
(19)

If the test section is far from the impermeable layer, the equation is given as:

K = 0.528ωlg
(

1.32L
r0

)
(20)

where ω is the permeable rate, the value is equal to 100 Lu, L is the length of the test section,
and r0 is the radius of the test hole.

4. Results and Discussion
4.1. Field Tests and Parameter Determination

(1) Permeability coefficient of the unsaturated zone

The test is to raise the water head artificially by injecting water into the test pit.
It is an in-situ test method for measuring the permeability of loose rock and soil. The
permeability coefficient of the unsaturated zone is measured by a water injection test of
double ring. Two permeability tests were conducted in this study with the numbers of T1
and T2. The coordinates of T1 are 104◦54′36.51” E and 25◦12′12.59” N with the elevation
of 1089.90 m. In addition, the coordinates of T2 are 104◦55′16.01” E and 25◦11′18.07” N
with elevation of 1026.7 m. The data of tests are shown in Figure 4. The final steady
infiltration rate at the end of T1 was 4.95 cm3/s. The area of the ring was 490.625 cm2. The
water level in the pit is 10 cm, and infiltration depth of groundwater was 40 cm. Hence,
the calculated permeability coefficient of the unsaturated zone was 0.0081 cm/s. The
infiltration rate for T2 was 14.1 cm3/s and the infiltration depth was 35 cm. The calculated
permeability coefficient was 0.022 cm/s. The average value of 0.015 cm/s was regarded as
the permeability coefficient of the unsaturated zone.

(2) Division of Permeability coefficient zone

According to the characteristics of lithology and discontinuity in the dam site, the
media were divided into three zones in the vertical direction. They are strong, weak, and
slight weathering zones from top to bottom, respectively. The media were also influenced
by river erosion. There existed weathering, unloading, and fracture dissolution in a certain
range of valley slopes on both banks. The adit data showed that the integrity of rocks is
better in the mountain body than near the valley. Therefore, the mountain bodies of both
banks are divided into three zones longitudinally. They are strong, weak, and slightly
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permeable zones, respectively (Figure 5). Therefore, there are nine different material zones.
The equivalent permeability coefficients are listed in Table 5.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 20 
 

3.5. Calculation Method of Hydraulic Conductivity in Fracture-Karst Media 
The values mainly depend on the permeability of fractures in rock mass, spatial dis-

tribution characteristics of karst, and fracture discontinuity. Hydraulic conductivity ten-
sor can be used to indicate the size and direction of permeability of anisotropic media. It 
is determined by the parameter inversion method. The equivalent permeability coefficient 
required by this method can be determined with the data of water pressure test in the 
boreholes. The Boussinesq equation was employed to calculate the equivalent permeabil-
ity coefficient. When the test section for the water pressure test is close to the impermeable 
layer, the equation can be expressed as: 𝐾 = 0.528ωlg ൬0.66L

r0
൰ (19)

If the test section is far from the impermeable layer, the equation is given as: 𝐾 = 0.528ωlg ቀ1.32L
r0

ቁ  (20)

where ω is the permeable rate, the value is equal to 100 Lu, L is the length of the test 
section, and r0 is the radius of the test hole. 

4. Results and Discussion 
4.1. Field Tests and Parameter Determination 

(1) Permeability coefficient of the unsaturated zone 
The test is to raise the water head artificially by injecting water into the test pit. It is 

an in-situ test method for measuring the permeability of loose rock and soil. The permea-
bility coefficient of the unsaturated zone is measured by a water injection test of double 
ring. Two permeability tests were conducted in this study with the numbers of T1 and T2. 
The coordinates of T1 are 104°54′36.51″ E and 25°12′12.59″ N with the elevation of 1089.90 
m. In addition, the coordinates of T2 are 104°55′16.01″ E and 25°11′18.07″ N with elevation 
of 1026.7 m. The data of tests are shown in Figure 4. The final steady infiltration rate at the 
end of T1 was 4.95 cm3/s. The area of the ring was 490.625 cm2. The water level in the pit 
is 10 cm, and infiltration depth of groundwater was 40 cm. Hence, the calculated perme-
ability coefficient of the unsaturated zone was 0.0081 cm/s. The infiltration rate for T2 was 
14.1 cm3/s and the infiltration depth was 35 cm. The calculated permeability coefficient 
was 0.022 cm/s. The average value of 0.015 cm/s was regarded as the permeability coeffi-
cient of the unsaturated zone. 

 
Figure 4. Curve of infiltration rate and time for permeability tests. 

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0 200 400 600 800 1000 1200 1400
Time (s)

Le
ak

ag
e 

(L
) T1

T2

Figure 4. Curve of infiltration rate and time for permeability tests.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 20 
 

(2) Division of Permeability coefficient zone 
According to the characteristics of lithology and discontinuity in the dam site, the 

media were divided into three zones in the vertical direction. They are strong, weak, and 
slight weathering zones from top to bottom, respectively. The media were also influenced 
by river erosion. There existed weathering, unloading, and fracture dissolution in a certain 
range of valley slopes on both banks. The adit data showed that the integrity of rocks is 
better in the mountain body than near the valley. Therefore, the mountain bodies of both 
banks are divided into three zones longitudinally. They are strong, weak, and slightly 
permeable zones, respectively (Figure 5). Therefore, there are nine different material 
zones. The equivalent permeability coefficients are listed in Table 5. 

 
Figure 5. Different permeability zones in the study area. 

Table 5. Equivalent permeability coefficients for different zones (m/d). 

Zones of Vertical Di-
rection 

Zones of Horizontal Direction 
Strong Permeable 

Zone 
Weak Permeable 

Zone 
Slight Permeable 

Zone 
Strong weathering zone 0.2–5.0 0.1–0.5 0.1–0.3 
Weak weathering zone 0.1–0.5 0.1–0.3 0.05–0.2 
Slight weathering zone 0.1–0.3 0.05–0.2 0.005–0.05 

(3) Calculation of hydraulic conductivity for karst conduit 
Five karst pipes were considered in the study area (Figure 5). According to the meas-

uring data from Table 4 and Equations (6) and (10), the calculation results of the main 
hydraulic conductivities for karst conduits are listed in Table 6. 

Table 6. Main hydraulic conductivities for karst conduits. 

Number of Karst Pipes 
Main Hydraulic Conductivities (m/d) 

Kx Ky Kz 
1 4745 582 363 
2 5795 1602 241 

Ⅰ
Ⅲ

Slight permeable
zone

Ⅱ

Weak permeable
zone

No.4 karst pipe

Nos.2 and 3
karst pipes

Impervious
curtain

Strong

Ⅰ

Strong

Ⅱ

Weak
 permeable
zone

Ⅲ

Slight
permeable
     zone

No.1 karst
pipe

No.5 karst
  pipe

Underground
powerhouse

Dam

Figure 5. Different permeability zones in the study area.

Table 5. Equivalent permeability coefficients for different zones (m/d).

Zones of Vertical Direction
Zones of Horizontal Direction

Strong Permeable Zone Weak Permeable Zone Slight Permeable Zone

Strong weathering zone 0.2–5.0 0.1–0.5 0.1–0.3
Weak weathering zone 0.1–0.5 0.1–0.3 0.05–0.2
Slight weathering zone 0.1–0.3 0.05–0.2 0.005–0.05
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(3) Calculation of hydraulic conductivity for karst conduit

Five karst pipes were considered in the study area (Figure 5). According to the
measuring data from Table 4 and Equations (6) and (10), the calculation results of the main
hydraulic conductivities for karst conduits are listed in Table 6.

Table 6. Main hydraulic conductivities for karst conduits.

Number of Karst Pipes
Main Hydraulic Conductivities (m/d)

Kx Ky Kz

1 4745 582 363
2 5795 1602 241
3 1650 442 485
4 4871 1124 410
5 3368 1226 537

4.2. Hydraulic Conductivities of Fracture-Karst Media by Inversion Analysis

Taking the center of the arch dam as the coordinate origin, the east was the x-axis, the
north was the y-axis, and the vertical direction was the z-axis. The model area extended
about 600 m upstream, 500 m downstream to Longdang River, and 700 m to watershed on
both banks (Figure 5). It can be seen from Figure 3, groundwater was discharged into rivers
under natural conditions. The groundwater flow direction was almost perpendicular to
the river, so it could be treated as a streamline boundary. The watersheds in the two banks
were also treated as the second boundary conditions. The Mabie River and Longdang
River in the left bank was considered as the first boundary condition. The model area was
divided into 2,339,812 nodes and 4,334,022 elements. The discrete graph of the model area
is shown in Figure 6.
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Assuming that the permeability coefficients of five karst pipes remained unchanged
(Table 6), the permeability coefficient of the impervious curtain was set to 0.00864 m/d. The
groundwater levels of observation holes ZK1, ZK2, ZK3, ZK5, and ZM10 were selected as
the measured values. The calculated groundwater levels of these boreholes can be obtained
by solving the coupled model using the iterative method. Permeability coefficients were
adjusted continuously. When the errors between calculated and measured groundwater
levels were small, the parameters at this time could be considered as accurate parameters
(Table 7). Fitting curves between calculated and measured values are shown in Figure 7.
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It can be seen from Figure 7 that the calculated water levels fitted well with the mea-
sured water level. Generally, the calibrated model can better capture the hydrogeological
characteristics of karst and fractured medium in the study area (Figure 8).
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Table 7. Permeability coefficients of fracture-karst media by inversion method (m/d).

Zones of Vertical
Direction

Zones of Horizontal Direction

Strong Permeable Zone Weak Permeable Zone Slight Permeable Zone

Kx Ky Kz Kx Ky Kz Kx Ky Kz

Strong weathering zone 0.49 0.49 0.05 0.39 0.38 0.04 0.28 0.29 0.03
Weak weathering zone 0.39 0.38 0.04 0.29 0.30 0.03 0.15 0.15 0.02
Slight weathering zone 0.28 0.28 0.03 0.11 0.10 0.01 0.03 0.02 0.003
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4.3. Groundwater Level Analysis of Dam Site during the Reservoir Operation

During the reservoir operation, the seepage control and drainage measures for un-
derground buildings were used in the dam site. Drainage holes have been installed in an
underground powerhouse. Impervious curtain was arranged in the dam foundation and
both banks and extended to the position of karst pipes. It mainly discusses the variable
of groundwater flow field of karst pipeline impervious curtain under normal and invalid
conditions. The normal impounded level of the reservoir is 1030 m. In addition, the water
level behind the dam is 965.47 m. Contour maps of groundwater level for underground
powerhouse and karst pipes are shown in Figure 9. It can be seen that contour shape, trend,
and distribution of groundwater level accurately reflected the characteristics of seepage
control, drainage measures, and boundary conditions in corresponding areas (Figure 9a).
Owing to the action of anti-seepage treatment and drainage measures, the seepage con-
trol effect was obvious. The general trend of groundwater level was convergence from
upstream and downstream to an underground powerhouse area. The groundwater level
fell obviously near it. It can be seen from Figure 9b,c that the groundwater level decreased
obviously after passing through the curtain and drainage of the underground powerhouse.
Where there was a curtain, the water level isoline was relatively close, which reflected the
water-blocking effect of the impervious curtain. There occurred regular bending of the
groundwater level in the karst pipe area. In addition, the bending place was the direction
of the karst pipe. The groundwater level in the pipe decreased obviously after passing
through the impervious curtain.
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Groundwater in the study area was mainly discharged from the mountain bodies
on both banks to the Mabie River. However, after reservoir impoundment, groundwater
was mainly discharged from the upper reservoir to the lower reaches of the dam and
the powerhouse through the two banks and dam foundation. The groundwater level of
the powerhouse has decreased by about 2–5 m. Water conveyance pipeline has risen by
10–20 m and 15–25 m for mountainous bodies on both banks. Therefore, the natural flow
field of groundwater has been greatly changed by the water conservancy project.

4.4. Leakage Analysis of Underground Powerhouse and Karst Pipes

There are five karst pipes in the dam site, of which Nos. 2 and 3 are finally merged
into a karst pipe. Karst pipes 2, 3, and 4 are distributed on the right bank, and Nos. 1 and 5
on the left bank (Figure 5). The water flow in the pipes was discharged into the reservoir
area under natural conditions. However, the water level of the reservoir was higher than
the elevation of pipes after reservoir impoundment. The reservoir water will be discharged
into the pipes and flowed out of the reservoir owing to the difference of water levels, which
will affect the reservoir impoundment. The leakage of karst pipes and the underground
powerhouse was calculated under the normal and failure impervious curtain (Table 8).
The reservoir level of cases 1 and 2 is 1030 m, and that of Case 3 and 4 is 985 m. It can be
seen from the Table 8 that the leakage in the case of impervious failure (Case 2) was larger
than that of normal seepage control (Case 1), which shows that plugging karst pipes was
very necessary. Because the vertical curtain did not reach the elevation of No. 5 karst pipe,
there was little difference in leakage. It is suggested that the impervious curtain should be
deepened at No. 5 karst pipe. Whether the seepage control of karst pipes is normal or not
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has little effect on the leakage of the underground powerhouse. During the operation of
the reservoir, the leakage of the powerhouse was estimated to be about 1000–3000 m3/d.

Table 8. Prediction of leakage for karst pipes and powerhouse during the operation period of the
reservoir (m3/d).

Cases
Karst Pipes

Underground Powerhouse
1 2 and 3 4 5

Case 1 0.43 0.36 1.99 313.39 2272.51
Case 2 224.34 162.86 465.95 306.89 2307.62
Case 3 0.16 0.12 0.82 117.92 1205.22
Case 4 80.86 68.30 200.97 113.90 1232.58

5. Conclusions

According to the hydrogeological and karst hydrogeological conditions, a model
coupling karst-fracture media and karst pipes has been developed. A 3D mathematical
model of heterogeneous anisotropy was used to describe groundwater flow in the rock mass
matrix, and the 1D conduit model was built based on non-Darcy’s flow for karst pipes. The
permeability of karst pipes was larger along the development direction of pipes. Basically,
the permeability coefficients in the other two directions can be neglected. However, there
was a certain angle between the coordinate systems and these pipes, Therefore, for 1D
pipe flow, its permeability coefficients were a second-order tensor. The initial values for
hydraulic conductivities of fracture-karst media can be obtained by the data of water
pressure tests in the boreholes. The relatively accurate values were determined by the
inversion method. The calibrated model was used to predict the variation of groundwater
flow field and leakage in the dam site area during the reservoir operation. The results
show that the coupled model can capture the hydrogeological characteristics of karst and
fractured medium and reflect the features of seepage control and drainage measures in the
study area. The groundwater level of powerhouse has decreased by about 2–5 m. That of
the water conveyance pipeline has risen by 10–20 m and 15–25 m for both banks during
the reservoir operation. The leakage of karst pipes for impervious failure was larger than
that for normal seepage control. In addition, the leakage of the powerhouse was estimated
to be about 1000–3000 m3/d.
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Abbreviations

t is time [T];
µ is the specific yield for unconfined aquifer and specific storage for

confined aquifer, hf is the hydraulic head in the fractured system [L];
Kfx, Kfy, Kfz are the hydraulic conductivities along coordinate axes [L/T];
ε is the evaporation and precipitation recharge of phreatic surface [L3/T];
hf0 is the initial groundwater level [L];
hf1 is the boundary groundwater level [L];
n is the normal direction of boundary surface;
Kfn is the hydraulic conductivity in normal direction of boundary surface [L/T];
qf (x, y, z, t) is the unit area flux of the second type boundary [L3/T·L2];
Ω is domain of fractured medium;
Γ1 and Γ2 are domains of the first and second type boundary;
λ is head loss coefficient along the conduit;
L is the length of the tube [L];
d is the conduit diameter [L];
u is the average velocity [L/T];
g is the gravitational acceleration [L/T2];
Kc is the main hydraulic conductivity along the direction of karst pipe;
Γc is the common boundary of the karst and fracture media;
hk is the hydraulic head in the karst system [L];
ωk is the k-th weight function of observed hydraulic heads;
M is the number of observation holes;
hc

n, h0
n are the calculated and observed hydraulic heads;

ω is permeable rate;
L is the length of test section;
r0 is the radius of test hole.
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