Efficiency and Technological Reliability of Contaminant Removal in Household WWTPs with Activated Sludge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Presentation of the Studied Facilities
2.2. Analytical and Statistical Methods
3. Results and Discussion
3.1. The Efficiency of Pollutant Removal
3.2. Technological Reliability of the Studied Systems
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The Nature Conservation Act from 16 April 2004; Dz. U. Nr 92, Poz. 880; SEJM: Warsaw, Poland, 2004. (In Polish)
- Philippe, S.; Paolo, G. (Eds.) Council Directive 92/43/EEC of 21 May 1992 on the Conservation of Natural Habitats and of Wild Fauna and Flora; Cambridge University Press: London, UK, 1992. [Google Scholar]
- Jóźwiakowski, K.; Podbrożna, D.; Kopczacka, K.; Marzec, M.; Kowalczyk-Juśko, A.; Pochwatka, P.; Listosz, A.; Malik, A. The state of water and wastewater management in the municipalities of the Polesie National Park. J. Ecol. Eng. 2017, 18, 192–199. [Google Scholar] [CrossRef]
- Jóźwiakowski, K.; Podbrożna, D.; Kopczacka, K.; Jaguś, M.; Marzec, M.; Listosz, A.; Pochwatka, P.; Kowalczyk-Juśko, A.; Malik, A. The state of water and wastewater management in the municipalities of the Roztocze National Park. J. Ecol. Eng. 2018, 19, 255–262. [Google Scholar] [CrossRef]
- Mucha, Z.; Mikosz, J. Rational application of small wastewater treatment plants according to sustainability criteria. Czas. Tech. Sr. 2009, 106, 91–100. (In Polish) [Google Scholar]
- Strande, L.; Weiyang, X.; Scanlon, A.; Hinckley, T.M. Evaluation criteria for implementation of a sustainable sanitation and wastewater treatment system at Jiuzhaigou National Park, Sichuan Province, China. Environ. Manag. 2009, 45, 93–104. [Google Scholar]
- Jóźwiakowski, K.; Mucha, Z.; Generowicz, A.; Baran, S.; Bielińska, J.; Wójcik, W. The use of multi-criteria analysis for selection of technology for a household WWTP compatible with sustainable development. Arch. Environ. Prot. 2015, 3, 76–82. [Google Scholar] [CrossRef] [Green Version]
- Jóźwiakowski, K.; Marzec, M.; Kowalczyk-Juśko, A.; Gizińska-Górna, M.; Pytka-Woszczyło, A.; Malik, A.; Listosz, A.; Gajewska, M. 25 years of research and experiences about the application of constructed wetlands in southeastern Poland. Ecol. Eng. 2019, 127, 440–453. [Google Scholar] [CrossRef]
- Micek, A.; Jóźwiakowski, K.; Marzec, M.; Listosz, A.; Malik, A. Efficiency of pollution removal in preliminary settling tanks of household wastewater treatment plants in the Roztocze National Park. J. Ecol. Eng. 2020, 21, 9–18. [Google Scholar] [CrossRef]
- Steer, D.; Fraser, L.; Boddy, J.; Seibert, B. Efficiency of small constructed wetlands for subsurface treatment of single-family domestic effluent. Ecol. Eng. 2002, 18, 429–440. [Google Scholar] [CrossRef] [Green Version]
- Brix, H.; Arias, C. The use of vertical flow constructed wetlands for on-site treatment of do-mestic wastewater: New Danish guidelines. Ecol. Eng. 2005, 25, 491–500. [Google Scholar] [CrossRef]
- Puigagut, J.; Villaseñor, J.; Salas, J.J.; Becares, E.; Garcia, J. Subsurface-flow constructed wet-lands in Spain for the sanitation of small communi-ties: A comparative study. Ecol. Eng. 2007, 30, 312–319. [Google Scholar] [CrossRef]
- Maunoir, S.; Philip, H.; Rambaud, A. Small wastewater treatment plants in mountain areas: Combination of septic tank and biological filter. Water Sci. Technol. 2007, 56, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Weissenbacher, N.; Mayr, E.; Niederberger, T.; Aschauer, C.; Lebersorger, S.; Steinbacher, G.; Haberl, R. Alpine infrastructure in Central Europe: Integral evaluation of wastewater treatment systems at mountain refuges. Water Sci. Technol. 2008, 57, 2017–2022. [Google Scholar] [CrossRef] [PubMed]
- Seo, D.C.; DeLaune, R.D.; Park, W.Y.; Lim, J.S.; Seo, J.Y.; Do Lee, J.; Cho, J.S.; Heo, J.S. Evaluation of a hybrid constructed wetland for treating domestic sewage from individual housing units surrounding agricultural villages in South Korea. J. Environ. Monit. 2009, 11, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Ye, F.; Li, Y. Enhancement of nitrogen removal in towery hybrid constructed wetland to treat domestic wastewater for small rural communities. Ecol. Eng. 2009, 35, 1043–1050. [Google Scholar] [CrossRef]
- Kaczor, G.; Bergel, T.; Bugajski, P.; Pijanowski, J. Aspects of sewage disposal from tourist facilities in national parks and other protected areas. Pol. J. Environ. Stud. 2015, 24, 107–114. [Google Scholar] [CrossRef]
- Ghawi, A.H. Study on the Development of Household Wastewater Treatment Unit. J. Ecol. Eng. 2018, 19, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Wilk, B.; Cimochowicz-Rybicka, M. BIOVAC® wastewater treatment plants in the mountain national parks. Tech. Trans. 2018, 1, 113–123. [Google Scholar]
- PN-EN 12566–3:2016–10. Small Wastewater Treatment Plants for a Population Calculation (OLM) up to 50—Part 3: Container and/or Home Sewage Treatment Plants on Site; Polski Komitet Normalizacyjny: Warszawa, Poland, 2016. (In Polish)
- Water Law. Ustawa Prawo Wodne z dnia 20 lipca 2017 r., Dz.U. 2017 poz. 1566; SEJM: Warsaw, Poland, 2017. (In Polish)
- Pawełek, J.; Bugajski, P. The development of household wastewater treatment plants in Poland—Advantages and disadvantages. Acta Sci. Pol. Form. Circumiectus 2017, 16, 3–14. (In Polish) [Google Scholar] [CrossRef] [Green Version]
- Lofrano, G.; Brown, J. Wastewater management through the ages: A history of mankind. Sci. Total Environ. 2010, 408, 5254–5264. [Google Scholar] [CrossRef]
- Bernardes, R.S.; Klapwijk, A. Biological nutrient removal in a sequencing batch reactor treating domestic wastewater. Water Sci. Technol. 1996, 33, 29–38. [Google Scholar] [CrossRef]
- Bodík, I.; Kratochvíl, K.; Herdová, B.; Tapia, G.; Gašpariková, E. Municipal wastewater treatment in the anaerobic-aerobic baffled filter at ambient temperature. Water Sci. Technol. 2002, 46, 127–135. [Google Scholar] [CrossRef]
- Di Trapani, D.; Christensso, M.; Odegaard, H. Hybrid activated sludge/biofilm process for the treatment of municipal wastewater in a cold climate region: A case study. Water Sci. Technol. 2011, 63, 1121–1129. [Google Scholar] [CrossRef]
- Jóźwiakowska, K.; Marzec, M. Efficiency and reliability of sewage purification in long-term exploitation of the municipal wastewater treatment plant with activated sludge and hydroponic system. Arch. Environ. Prot. 2020, 46, 30–41. [Google Scholar]
- Brucculeri, M.; Bolzonella, D.; Battistoni, P.; Cecchi, F. Treatment of mixed municipal and winery wastewaters in a conventional activated sludge process: A case study. Water Sci. Technol. 2005, 51, 89–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orhon, D.; Babuna, F.G.; Karahan, O. Industrial wastewater treatment by activated sludge. IWA Publ. 2009, 8. [Google Scholar] [CrossRef]
- Hanna, K.M.; Kellan, J.L.; Boardman, G.D. Onsite aerobic package treatment systems. Water Res. 1995, 29, 2530–2540. [Google Scholar] [CrossRef]
- Marzec, M.; Jóźwiakowski, K. Operational and environmental problems of the functioning of mini-sewage treatment plants with activated sludge. Pol. J. Environ. Stud. 2007, 16 Pt III, 525–529. [Google Scholar]
- Marzec, M. Reliability of removal of selected pollutants in different technological solutions of household wastewater treatment plants. J. Water Land Dev. 2017, 35, 141–148. [Google Scholar] [CrossRef] [Green Version]
- Marzec, M. Technological reliability of utilization of biogenic pollutants in selected technologies used in small wastewater treatment plants. Przemysł Chem. 2018, 97, 753–757. (In Polish) [Google Scholar]
- Bugajski, P.; Kurek, K.; Jóźwiakowski, K. Effect of wastewater temperature and concentration of organic compounds on the efficiency of ammonium nitrogen removal in a household treatment plant servicing a school building. Arch. Environ. Prot. 2019, 45, 31–37. [Google Scholar]
- Jucherski, A.; Walczowski, A.; Bugajski, P.; Jóźwiakowski, K. Technological reliability of domestic wastewater purification in a small Sequencing Batch Biofilm Reactor (SBBR). Sep. Purif. Technol. 2019, 224, 340–347. [Google Scholar] [CrossRef]
- Micek, A.; Jóźwiakowski, K.; Marzec, M.; Listosz, A. Technological reliability and efficiency of wastewater treatment in two hybrid constructed wetlands in the Roztocze National Park (Poland). Water 2020, 12, 3435. [Google Scholar] [CrossRef]
- Oliveira, S.C.; Sperling, M.V. Reliability analysis of wastewater treatment plants. Water Res. 2008, 42, 1182–1194. [Google Scholar] [CrossRef] [PubMed]
- Alderson, M.P.; dos Santos, A.B.; Mota Filho, C.R. Reliability analysis of low-cost, full-scale domestic wastewater treatment plants for reuse in aquaculture and agriculture. Ecol. Eng. 2015, 82, 6–14. [Google Scholar] [CrossRef]
- Eisenberg, D.; Soller, J.; Sakaji, R.; Olivieri, A. A methodology to evaluate water and wastewater treatment plant reliability. Water Sci. Technol. 2001, 43, 91–99. [Google Scholar] [CrossRef]
- Taheriyoun, M.; Moradinejad, S. Reliability analysis of a wastewater treatment plant using fault tree analysis and Monte Carlo simulation. Environ. Monit. Assess. 2015, 187, 4186. [Google Scholar] [CrossRef]
- Bugajski, P.; Chmielowski, K.; Kaczor, G. Reliability of a collective wastewater treatment plant. J. Ecol. Eng. 2016, 17, 143–147. [Google Scholar] [CrossRef] [Green Version]
- Michalczyk, Z.; Kovalchuk, I.; Chmiel, S.; Głowacki, S.; Chabudziński, Ł.; Kharkevych, V.; Voloschyn, P. Waters. In Roztocze. Nature and Human; Grabowski, T., Harasimuk, M., Kaszewski, B.M., Kravchuk, Y., Eds.; Roztoczański Park Narodowy: Zwierzyniec, Poland, 2015; pp. 103–122. (In Polish) [Google Scholar]
- Czerwieniec, D.; Trych, P. Technical Projects. Household Wastewater Treatment Plants for the Roztocze National Park. MILAGROS. Przedsiębiorstwo Realizacji Inwestycji. Typescript, 2004. (In Polish) [Google Scholar]
- American Public Health Association (APHA). Standard Methods for Examination of Water and Wastewater, 18th ed.; American Public Health Association: Washington, DC, USA, 1992. [Google Scholar]
- American Public Health Association (APHA). Standard Methods for Examination of Water and Wastewater, 21st ed.; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Jóźwiakowski, K.; Bugajski, P.; Mucha, Z.; Wójcik, W.; Jucherski, A.; Natawny, M.; Siwiec, T.; Mazur, A.; Obroślak, R.; Gajewska, M. Reliability of pollutions removal processes during long-term operation of one-stage constructed wetland with horizontal flow. Sep. Purif. Technol. 2017, 187, 60–66. [Google Scholar] [CrossRef]
- Regulation of the Minister of Maritime Economy and Inland Navigation of 12 July 2019 on Substances Which Are Particularly Harmful to the Aquatic Environment and the Conditions to Be Met When Discharging Wastewater into Water or Soil and When Discharging Rainwater or Snowmelt into Water or Water Installations, Pos. 1311; Minister of Maritime Economy and Inland Navigation: Warsaw, Poland, 2019.
- Bugajski, P.; Pawełek, J.; Kurek, K. Concentrations of organic and biogenic pollutants in domestic wastewater after mechanical treatment in the aspect of biological reactor design. Infrastruct. Ecol. Rural Areas 2017, 1811–1822. [Google Scholar] [CrossRef]
- Marzec, M.; Jóźwiakowski, K.; Dębska, A.; Gizińska-Górna, M.; Pytka-Woszczyło, A.; Kowalczyk-Juśko, A.; Listosz, A. The efficiency and reliability of pollutant removal in a hybrid constructed wetland with common reed, manna grass, and Virginia Mallow. Water 2018, 10, 1445. [Google Scholar] [CrossRef] [Green Version]
- Marzec, M.; Gizińska-Górna, M.; Jóźwiakowski, K.; Pytka-Woszczyło, A.; Kowalczyk-Juśko, A.; Gajewska, M. The efficiency and reliability of pollutant removal in a hybrid constructed wetland with giant miscanthus and Jerusalem artichoke in Poland. Ecol. Eng. 2019, 127, 23–35. [Google Scholar] [CrossRef]
- Johal, E.; Walia, B.S.; Saini, M.S.; Jha, M.K. Efficiency assessment and mathematical correlation development between BOD5 and other parameters in Jalandhar Sewage Treatment. Int. J. Innov. Sci. Eng. Technol. 2014, 3, 13088–13096. [Google Scholar]
- Showkat, U.; Najar, I.A. Study of efficiency of sequential batch reactor (SBR)-based sewage treatment plant. Appl. Water Sci. 2019, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Jakubaszek, A.; Stadnik, A. Efficiency of sewage treatment plants in the sequential batch reactor. Civ. Environ. Eng. Rep. 2018, 28, 121–131. [Google Scholar] [CrossRef] [Green Version]
- Ding, S.; Bao, P.; Wang, B.; Zhang, Q.; Peng, Y. Long-term stable simultaneous partial nitrification, anammox and denitrification (SNAD) process treating real domestic sewage using suspended activated sludge. Chem. Eng. J. 2018, 339, 180–188. [Google Scholar] [CrossRef]
- Myszograj, S. Mechanisms of biological processes in domestic wastewater treatment plants. Civ. Environ. Eng. Rep. 2018, 28, 177–192. [Google Scholar] [CrossRef] [Green Version]
- Quansheng, D.; Qixing, C.; Zehui, L.; Shouwei, Z. Application of microbial technology in wastewater treatment. Prog. Appl. Microbiol. 2017, 23–28. [Google Scholar]
- Bunce, J.T.; Ndam, E.; Ofiteru, I.D.; Moore, A.; Graham, D.W. A review of phosphorus removal technologies and their applicability to small-scale domestic wastewater treatment systems. Front. Environ. Sci. 2018, 6, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Andraka, D.; Dzienis, L. Required reliability level of wastewater treatment plants according to European and Polish regulations. Zesz. Nauk. Politech. Białostockiej Ser. Inżynieria Sr. 2003, 16, 24–28. (In Polish) [Google Scholar]
- Bugajski, P.; Wałęga, A.; Kaczor, G. Application of the Weibull reliability analysis of haousehold sewage treatment plant. Gaz Woda I Tech. Sanit. 2012, 2, 56–58. (In Polish) [Google Scholar]
- Jucherski, A.; Nastawny, M.; Walczowski, A.; Jóźwiakowski, K.; Gajewska, M. Assessment of the technological reliability of a hybrid constructed wetland for wastewater treatment in a mountain eco-tourist farm in Poland. Water Sci. Technol. 2017, 75, 2649–2658. [Google Scholar] [CrossRef] [PubMed]
- Wojciechowska, E.; Gajewska, M.; Ostojski, A. Reliability of nitrogen removal processes in multistage treatment wetlands receiving high-strength wastewater. Ecol. Eng. 2017, 98, 365–371. [Google Scholar] [CrossRef]
Technological Parameters | Facility No. 1—Obrocz | Facility No. 2—Rybakówka |
---|---|---|
Year of construction | 2014 | 2014 |
Mean wastewater capacity Q (m3/day) | 1.0 | 1.6 |
Volume of a septic tank (m3) | 5.7 | 5.7 |
Volume of an activated sludge chamber (m3) | 1.42 | 1.83 |
Wastewater receiver | soil | soil |
Parameters | Statistical Indicators | ||||||||
---|---|---|---|---|---|---|---|---|---|
Mean | Min | Max | Standard Deviation | ||||||
in | out | in | out | in | out | in | out | ||
pH | - | - | - | 7.90 | 6.29 | 8.22 | 7.72 | - | - |
Dissolved oxygen | mg O2/dm3 | 1.62 | 8.02 | 0.23 | 3.15 | 7.02 | 10.56 | 1.63 | 1.97 |
TSS | mg/dm3 | 28.7 | 23.9 | 5.3 | 1.3 | 69.0 | 73.0 | 20.9 | 18.6 |
BOD5 | mgO2/dm3 | 53.0 | 9.0 | 12.3 | 1.0 | 80.0 | 53.0 | 22.1 | 12.9 |
COD | mgO2/dm3 | 180 | 63 | 111 | 20.7 | 236 | 130 | 34.3 | 27.43 |
Ammonium nitrogen | mg/dm3 | 136.0 | 39.9 | 111.0 | 15.0 | 172.0 | 80.5 | 17.2 | 18.1 |
Nitrate nitrogen | mg/dm3 | 1.97 | 61.17 | 0.09 | 25.5 | 5.70 | 87.7 | 1.89 | 17.88 |
Nitrite nitrogen | mg/dm3 | 0.31 | 1.36 | 0.03 | 0.59 | 1.17 | 3.97 | 0.43 | 0.81 |
TN | mg/dm3 | 160 | 127 | 121 | 94 | 207 | 159 | 24.4 | 15.3 |
TP | mg/dm3 | 12.0 | 11.5 | 8.2 | 9.5 | 17.2 | 19.0 | 3.0 | 2.2 |
Parameters | Statistical Indicators | ||||||||
---|---|---|---|---|---|---|---|---|---|
Mean | Min | Max | Standard Deviation | ||||||
in | out | in | out | in | out | in | out | ||
pH | - | - | - | 7.04 | 6.14 | 11.9 | 7.86 | - | - |
Dissolved oxygen | mg O2/dm3 | 1.29 | 3.03 | 0.21 | 0.60 | 3.75 | 9.48 | 1.09 | 2.37 |
TSS | mg/dm3 | 34.5 | 18.1 | 3.8 | 2.7 | 116 | 48.8 | 31.0 | 14.1 |
BOD5 | mgO2/dm3 | 85.6 | 29.1 | 16 | 1.6 | 250 | 63.4 | 58.2 | 24 |
COD | mgO2/dm3 | 251 | 95 | 109 | 18 | 400 | 179 | 88 | 52.3 |
Ammonium nitrogen | mg/dm3 | 97.6 | 53.4 | 58 | 1.1 | 134 | 102 | 19.7 | 33.0 |
Nitrate nitrogen | mg/dm3 | 0.62 | 11.5 | 0.18 | 0.5 | 1.2 | 54.2 | 0.32 | 17.70 |
Nitrite nitrogen | mg/dm3 | 0.14 | 0.31 | 0.05 | 0.02 | 0.76 | 1.68 | 0.20 | 0.49 |
TN | mg/dm3 | 117 | 77.0 | 60.0 | 35.0 | 182 | 104 | 25.1 | 18.7 |
TP | mg/dm3 | 17.3 | 12.1 | 11.4 | 9.6 | 30.9 | 15.8 | 5.7 | 2.1 |
Parameter | Parameters of Weibull Distribution | Hollander–Proschan Goodness-of-Fit Test | |||
---|---|---|---|---|---|
θ | c | b | Stat | p | |
Facility no. 1—Obrocz | |||||
TSS | −0.2000 | 1.2122 | 28.9624 | 0.0217 | 0.9826 |
BOD5 | 0.9636 | 0.7691 | 10.0911 | 0.4015 | 0.6880 |
COD | 14.6970 | 1.3850 | 80.1201 | 0.2532 | 0.8000 |
TN | 58.8890 | 8.6765 | 132.4568 | 0.1400 | 0.8886 |
TP | 9.4444 | 4.8527 | 12.5016 | 0.3000 | 0.7641 |
Facility no. 2—Rybakówka | |||||
TSS | 2.2929 | 1.3035 | 21.5361 | 0.1127 | 0.9102 |
BOD5 | 1.4000 | 1.0681 | 28.9343 | −0.0998 | 0.9204 |
COD | −2.0000 | 1.8159 | 102.2153 | −0.1191 | 0.9051 |
TN | −2.0000 | 3.1554 | 78.7167 | −0,6526 | 0.5139 |
TP | −0.5000 | 5.5212 | 12.6970 | −0.0081 | 0.9934 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Micek, A.; Jóźwiakowski, K.; Marzec, M.; Listosz, A.; Grabowski, T. Efficiency and Technological Reliability of Contaminant Removal in Household WWTPs with Activated Sludge. Appl. Sci. 2021, 11, 1889. https://doi.org/10.3390/app11041889
Micek A, Jóźwiakowski K, Marzec M, Listosz A, Grabowski T. Efficiency and Technological Reliability of Contaminant Removal in Household WWTPs with Activated Sludge. Applied Sciences. 2021; 11(4):1889. https://doi.org/10.3390/app11041889
Chicago/Turabian StyleMicek, Agnieszka, Krzysztof Jóźwiakowski, Michał Marzec, Agnieszka Listosz, and Tadeusz Grabowski. 2021. "Efficiency and Technological Reliability of Contaminant Removal in Household WWTPs with Activated Sludge" Applied Sciences 11, no. 4: 1889. https://doi.org/10.3390/app11041889
APA StyleMicek, A., Jóźwiakowski, K., Marzec, M., Listosz, A., & Grabowski, T. (2021). Efficiency and Technological Reliability of Contaminant Removal in Household WWTPs with Activated Sludge. Applied Sciences, 11(4), 1889. https://doi.org/10.3390/app11041889