High-Resolution Acoustic Cameras Provide Direct and Efficient Assessments of Large Demersal Fish Populations in Extremely Turbid Waters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Acoustic Camera
2.3. Survey Description
2.4. Acoustic Data Treatment
2.5. Scientific Fishing
3. Results
3.1. Demersal Species Identification Through Acoustic Camera
3.2. Length of Fish
3.2.1. Total Length Estimated with the Acoustic Camera
3.2.2. Measured Total Length by Fishing
3.3. Abundance of Demersal Fish
3.4. Spatial Distribution of Demersal Fish
4. Discussion
4.1. Detectability of Demersal Fish with P900-130 BlueView Acoustic Camera
4.2. Accuracy of Measurement with an Acoustic Camera
4.3. Stock Assessment with an Acoustic Camera
4.4. Spatial Distribution
4.5. Using an Acoustic Camera in Extremely Turbid Environment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baumgartner, L.J.; Reynoldson, N.; Cameron, L.; Stanger, J. Assessment of a Dual-frequency Identification Sonar (DIDSON) for application in fish migration studies. ICES Doc. 2006, 84, 1–33. [Google Scholar]
- Belcher, E.O.; Matsuyama, B.; Trimble, G. Object Identification with acoustic lenses. In Proceedings of the MTS/IEEE Oceans 2001, An Ocean Odyssey, Conference Proceedings (IEEE Cat. No.01CH37295), Honolulu, HI, USA, 5–8 November 2001; pp. 6–11. [Google Scholar]
- Langkau, M.C.; Balk, H.; Schmidt, M.B.; Borcherding, J. Can acoustic shadows identify fish species? A novel application of imaging sonar data. Fish. Manag. Ecol. 2012, 19, 313–322. [Google Scholar] [CrossRef]
- Tiffan, K.F.; Rondorf, D.W.; Skalicky, J.J. Imaging Fall Chinook Salmon Redds in the Columbia River with a Dual-Frequency Identification Sonar. N. Am. J. Fish. Manag. 2004, 24, 1421–1426. [Google Scholar] [CrossRef]
- Hubert, W.A.; Pope, K.L.; Dettmers, J.M. Passive capture techniques. In Fisheries Techniques, 3rd ed.; Zale, A.V., Parrish, D.L., Sutton, T.M., Eds.; American Fisheries Society: Bethesda, MD, USA, 2012; pp. 223–265. ISBN 1-888569-00-X. [Google Scholar]
- Belcher, E.O.; Lynn, D.C. Acoustic near-video quality images for work in turbid water. In Proceedings of the Underwater Intervention, Houston, TX, USA, 24–26 January 2000. [Google Scholar]
- Kim, K.; Neretti, N.; Intrator, N. Mosaicing of acoustic camera images. IEE Proc. Radar. Sonar Navig. 2005, 152, 263–270. [Google Scholar] [CrossRef] [Green Version]
- Kang, M.-H. Semiautomated analysis of data from an imaging sonar for fish counting, sizing, and tracking in a post-processing application. Fish. Aquat. Sci. 2011, 14, 218–225. [Google Scholar] [CrossRef] [Green Version]
- Moursund, R.A.; Carlson, T.J.; Peters, R.D. A fisheries application of a dual-frequency identification sonar acoustic camera. ICES J. Mar. Sci. J. Cons. 2003, 60, 678–683. [Google Scholar] [CrossRef]
- Graham, N.; Jones, E.G.; Reid, D.G. Review of technological advances for the study of fish behaviour in relation to demersal fishing trawls. ICES J. Mar. Sci. J. Cons. 2004, 61, 1036–1043. [Google Scholar] [CrossRef] [Green Version]
- Martignac, F.; Daroux, A.; Bagliniere, J.L.; Ombredane, D.; Guillard, J. The use of acoustic cameras in shallow waters: New hydroacoustic tools for monitoring migratory fish population. A review of DIDSON technology. Fish. Fish. 2015, 16, 486–510. [Google Scholar] [CrossRef]
- Holmes, J.A.; Cronkite, G.M.W.; Enzenhofer, H.J.; Mulligan, T.J. Accuracy and precision of fish-count data from a “dual-frequency identification sonar” (DIDSON) imaging system. ICES J. Mar. Sci. J. Cons. 2006, 63, 543–555. [Google Scholar] [CrossRef] [Green Version]
- Burwen, D.L.; Fleischman, S.J.; Miller, J.D. Evaluation of a Dual-Frequency Imaging Sonar for Detecting and Estimating Fish Size in the Kenai River; Fisheries Data Series No 07-44; Alaska Department of Fish and Game: Anchorage, AK, USA, 2007; ISBN 1800478364.
- Maxwell, S.L.; Gove, N.E. Assessing a dual-frequency identification sonars’ fish-counting accuracy, precision, and turbid river range capability. J. Acoust. Soc. Am. 2007, 122, 3364–3377. [Google Scholar] [CrossRef]
- Boswell, K.M.; Wilson, M.P.; Cowan, J.H. A Semiautomated Approach to Estimating Fish Size, Abundance, and Behavior from Dual-Frequency Identification Sonar (DIDSON) Data. N. Am. J. Fish. Manag. 2008, 28, 799–807. [Google Scholar] [CrossRef]
- Han, J.; Honda, N.; Asada, A.; Shibata, K. Automated acoustic method for counting and sizing farmed fish during transfer using DIDSON. Fish. Sci. 2009, 75, 1359. [Google Scholar] [CrossRef]
- Pavlov, D.S.; Borisenko, E.S.; Pashin, V.M. Investigations of spawning migration and assessment of abundance of the Kamchatka steelhead (Parasalmo mykiss) from the Utkholok River by means of Didson dual-frequency identification sonar. J. Ichthyol. 2009, 49, 1042. [Google Scholar] [CrossRef]
- Burwen, D.L.; Fleischman, S.J.; Miller, J.D. Accuracy and Precision of Salmon Length Estimates Taken from DIDSON Sonar Images. Trans. Am. Fish. Soc. 2010, 139, 1306–1314. [Google Scholar] [CrossRef]
- Becker, A.; Whitfield, A.K.; Cowley, P.D.; Järnegren, J.; Næsje, T.F. An assessment of the size structure, distribution and behaviour of fish populations within a temporarily closed estuary using dual frequency identification sonar (DIDSON). J. Fish. Biol. 2011, 79, 761–775. [Google Scholar] [CrossRef]
- Pham, A.H.; Lundgren, B.; Stage, B.; Jensen, J.A. Ultrasound backscatter from free-swimming fish at 1 MHz for fish identification. IEEE Int. Ultrason. Symp. IUS 2012, 1477–1480. [Google Scholar] [CrossRef] [Green Version]
- Khan, F.; Royer, G.E.; Johnson, G.E.; Phillips, N.R.; Ham, K.D.; Hughes, J.S.; Fischer, E.S.; Ploskey, G.R. Acoustic Imaging Evaluation of Juvenile Salmonid Behavior in the Immediate Forebay of the Water Temperature Control. Tower at Cougar Dam 2010; Pacific Northwest National Lab. (PNNL): Washington, DC, USA, 2012.
- Baumgartner, L.; Bettanin, M.; McPherson, J.; Jones, M.; Zampatti, B.; Beyer, K. Assessment of an infrared fish counter (Vaki Riverwatcher) to quantify fish migrations in the Murray-Darling Basin. Aust. J. Zool. 2010, 58, 154–164. [Google Scholar] [CrossRef]
- Gledhill, C.T.; Lyczkowski-Shultz, J.; Rademacher, K.; Kargard, E.; Crist, G.; Grace, M.A. Evaluation of video and acoustic index methods for assessing reef-fish populations. ICES J. Mar. Sci. 1996, 53, 483–485. [Google Scholar] [CrossRef] [Green Version]
- Koslow, J.A.; Kloser, R.; Stanley, C.A. Avoidance of a camera system by a deepwater fish, the orange roughy (Hoplostethus atlanticus). Deep. Res. Part. I Oceanogr. Res. Pap. 1995, 42, 233–244. [Google Scholar] [CrossRef]
- Rose, C.S.; Stoner, A.W.; Matteson, K. Use of high-frequency imaging sonar to observe fish behaviour near baited fishing gears. Fish. Res. 2005, 76, 291–304. [Google Scholar] [CrossRef]
- Pipal, K.; Jessop, M.; Boughton, D.; Adams, P. Using dual-frequency identification sonar (DIDSON) to estimate adult steelhead escapement in the San Lorenzo river, California. Calif. Fish. Game 2010, 96, 90–95. [Google Scholar]
- McCauley, D.J.; DeSalles, P.A.; Young, H.S.; Gardner, J.P.; Micheli, F. Use of high-resolution acoustic cameras to study reef shark behavioral ecology. J. Exp. Mar. Bio. Ecol. 2016, 482, 128–133. [Google Scholar] [CrossRef] [Green Version]
- Shen, W.; Yang, L.; Zhang, J.; Peng, G. The Survey of Fishery Resources and Spatial Distribution Using DIDSON Imaging Sonar Data. In Computer and Computing Technologies in Agriculture VI: 6th IFIP WG 5.14 International Conference, CCTA 2012, Zhangjiajie, China, 19–21 October 2012, Revised Selected Papers, Part I; Li, D., Chen, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 366–375. ISBN 978-3-642-36124-1. [Google Scholar]
- Frias-Torres, S.; Luo, J. Using dual-frequency sonar to detect juvenile goliath grouper Epinephelus itajara in mangrove habitat. Endanger. Species Res. 2009, 7, 237–242. [Google Scholar] [CrossRef]
- Sadovy, Y.; Eklund, A.M. Synopsis of biological data on the Nassau grouper, Epinephelus striatus (Bloch, 1792), and the jewfish, E. itajara (Lichenstein, 1822). In Fao Fish. Synop. 157; NOAA Tech. Rep. NMFS 146; NOAA/National Marine Fisheries Service: Seattle, WA, USA, 1999; 65p. [Google Scholar]
- Gerhardinger, L.C.; Bertoncini, A.A.; Hostim-silva, M. Local ecological knowledge and Goliath grouper spawning aggregations in the South Atlantic Ocean: Goliath grouper spawning aggregations in Brazil. SPC Tradit. Mar. Resour. Manag. Knowl. Inf. Bull. 2006, 20, 33–34. [Google Scholar]
- Koenig, C.C.; Coleman, F.C.; Eklund, A.M.; Schull, J.; Ueland, J. Mangroves as essential nursery habitat for goliath grouper (Epinephelus itajara). Bull. Mar. Sci. 2007, 80, 567–586. [Google Scholar]
- Gerhardinger, L.C.; Hostim-Silva, M.; Medeiros, R.P.; Matarezi, J.; Bertoncini, Á.A.; Freitas, M.O.; Ferreira, B.P. Fishers’ resource mapping and goliath grouper Epinephelus itajara (Serranidae) conservation in Brazil. Neotrop. Ichthyol. 2009, 7, 93–102. [Google Scholar] [CrossRef] [Green Version]
- Craig, M.T. Epinephelus Itajara. Available online: www.iucnredlist.org (accessed on 13 October 2014).
- Orseau, S.; Lesourd, S.; Huybrechts, N.; Gardel, A. Hydro-sedimentary processes of a shallow tropical estuary under Amazon influence. The Mahury Estuary, French Guiana. Estuar. Coast. Shelf Sci. 2017, 189, 252–266. [Google Scholar] [CrossRef]
- Pujos, M.; Froidefond, J.M. Water masses and suspended matter circulation on the French Guiana continental shelf. Cont. Shelf Res. 1995, 15, 1157–1171. [Google Scholar] [CrossRef]
- Abascal-Zorrilla, N.; Vantrepotte, V.; Huybrechts, N.; Ngoc, D.D.; Anthony, E.J.; Gardel, A. Dynamics of the estuarine turbidity maximum zone from landsat-8 data: The case of the maroni river Estuary, French Guiana. Remote Sens. 2020, 12, 2173. [Google Scholar] [CrossRef]
- Froidefond, J.M.; Lahet, F.; Hu, C.; Doxaran, D.; Guiral, D.; Prost, M.T.; Ternon, J.F. Mudflats and mud suspension observed from satellite data in French Guiana. Mar. Geol. 2004, 208, 153–168. [Google Scholar] [CrossRef]
- Shi, W.; Wang, M. Characterization of global ocean turbidity from moderate resolution imaging spectroradiometer ocean color observations. J. Geophys. Res. Ocean. 2010, 115, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Ffield, A. North Brazil current rings viewed by TRMM Microwave Imager SST and the influence of the Amazon Plume. Deep Sea Res. Part. I Oceanogr. Res. Pap. 2005, 52, 137–160. [Google Scholar] [CrossRef]
- Hellweger, F.L.; Gordon, A.L. Tracing Amazon River water into the Caribbean Sea. J. Mar. Res. 2002, 60, 537–549. [Google Scholar] [CrossRef]
- Richardson, P.L.; Hufford, G.E.; Limeburner, R.; Brown, W.S. North Brazil Current retrofiection eddies Woods Hole Oceanographic Institution, Woods Hole, Massachusetts. J. Geophys. Res. 1994, 99, 5081–5093. [Google Scholar] [CrossRef]
- Pina-Amargós, F.; González-Sansón, G. Movement patterns of goliath grouper Epinephelus itajara around southeast Cuba: Implications for conservation. Endanger. Species Res. 2009, 7, 243–247. [Google Scholar] [CrossRef]
- Koenig, C.C.; Coleman, F.C. The Recovering Goliath Grouper Population of the Southeastern US: Non-Consumptive Investigations for Stock Assessment. National Oceanic and Atmospheric Administration MARFIN Project FINAL Report; NOAA: St Teresa, FL, USA, 2013.
- Artero, C. Biologie et Ecologie du Mérou Géant, Epinephelus Itajara, en Guyane Française. Ph.D. Thesis, Université des Antilles et de la Guyane, Cayenne, France, 2014. [Google Scholar]
- Graves, J.E.; Luckhurst, B.E.; Prince, E.D. An evaluation of pop-up satellite tags for estimating postrelease survival of blue marlin (Makaira nigricans) from a recreational fishery. Fish. Bull. USA 2002, 100, 134–142. [Google Scholar]
- Horodysky, A.Z.; Graves, J.E. Application of pop-up satellite archival tag technology to estimate postrelease survival of white marlin (Tetrapturus albidus) caught on circle and straight-shank (“J”) hooks in the western North Atlantic recreational fishery. Fish. Bull. 2005, 103, 84–96. [Google Scholar]
- Han, C.-H.; Uye, S.-I. Quantification of the abundance and distribution of the common jellyfish Aurelia aurita s.l. with a Dual-frequency IDentification SONar (DIDSON). J. Plankt. Res. 2009. [Google Scholar] [CrossRef] [Green Version]
- Doehring, K.; Young, R.G.; Hay, J.; Quarterman, A.J. Suitability of Dual-frequency Identification Sonar (DIDSON) to monitor juvenile fish movement at floodgates. N. Z. J. Mar. Freshw. Res. 2011, 45, 413–422. [Google Scholar] [CrossRef]
- Allen, G. Fao Species Catalogue Vol. 6. Snappers of the World. An annotated and illustrated catalogue of lutjanid species known to date. FAO Fish. Synop. 1985, 6, 208. [Google Scholar]
- Artero, C.; Murie, D.J.; Koenig, C.C.; Berzins, R.; Bouchon, C.; Lampert, L. Age, growth, and mortality of the Atlantic goliath grouper Epinephelus itajara in French Guiana. Endanger. Species Res. 2015. [Google Scholar] [CrossRef] [Green Version]
- Artero, C.; Koenig, C.C.; Richard, P.; Berzins, R.; Guillou, G.; Bouchon, C.; Lampert, L. Ontogenetic dietary and habitat shifts in goliath grouper Epinephelus itajara from French Guiana. Endanger. Species Res. 2015. [Google Scholar] [CrossRef]
- Daroux, A.; Martignac, F.; Nevoux, M.; Baglinière, J.L.; Ombredane, D.; Guillard, J. Manual fish length measurement accuracy for adult river fish using an acoustic camera (DIDSON). J. Fish. Biol. 2019, 95, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Tušer, M.; Frouzová, J.; Balk, H.; Muška, M.; Mrkvička, T.; Kubečka, J. Evaluation of potential bias in observing fish with a DIDSON acoustic camera. Fish. Res. 2014, 155, 114–121. [Google Scholar] [CrossRef]
- Johns, W.E.; Lee, T.N.; Schott, F.A.; Zantopp, R.J.; Evans, R.H. The North Brazil Current Retrofiection: Seasonal Structure and Eddy Variability. J. Geophys. Res. Ocean. 1990, 95, 22103–22120. [Google Scholar] [CrossRef]
- Stramma, L.; Schott, F. The mean flow field of the tropical Atlantic Ocean. Deep Sea Res. Part. II Top. Stud. Oceanogr. 1999, 46, 279–303. [Google Scholar] [CrossRef]
- Memery, L.; Arhan, M.; Alvarez-Salgado, X.A.; Messias, M.J.; Mercier, H.; Castro, C.G.; Rios, A.F. The water masses along the western boundary of the south and equatorial Atlantic. Prog. Oceanogr. 2000, 47, 69–98. [Google Scholar] [CrossRef]
Site | Perimeter (km) | Depth (m) | Facies |
---|---|---|---|
Rémire Islands | |||
Mamelles | 2.3 | 0.5–4.5 | Rocky screes |
La Mère | 4.4 | 1.5–5 | Screes, large boulders |
Le Père | 3 | 1.5–7 | Large boulders, walls |
Malingre | 1.1 | 1–5 | Large boulders, walls |
Grand Connétable Island MPA | |||
Petit Connétable | 0.8 | 4–10 | Large boulders, walls |
Grand Connétable | 0.3 | 5–9 | Walls |
2011 | 2012 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Acoustic Camera Survey | Fishing | N Survey | Acoustic Camera Survey | Fishing | N Survey | |||||
Mobile | Stationary | Total | Mobile | Stationary | Total | |||||
Mamelles | 3 | 17 | 20 | 5 | 7 | 18 | 0 | 18 | 7 | 8 |
La Mère | 33 | 0 | 33 | 1 | 3 | 17 | 0 | 17 | 2 | 4 |
Le Père | 23 | 14 | 37 | 3 | 5 | 39 | 6 | 45 | 3 | 4 |
Malingre | - | 0 | 0 | 1 | 2 | 6 | 0 | 6 | 1 | 3 |
TOTAL Rémire Islands | 59 | 31 | 90 | 10 | 17 | 80 | 6 | 86 | 13 | 19 |
Petit Connétable | 26 | 0 | 26 | 15 | 19 | 29 | 7 | 36 | 3 | 10 |
Grand Connétable | 93 | 8 | 101 | 105 | 2 | 31 | 10 | 41 | 65 | 1 |
Grand Connétable Island MPA | 119 | 8 | 127 | 120 | 21 | 60 | 17 | 77 | 68 | 11 |
TOTAL | 178 | 39 | 217 | 130 | 38 | 140 | 23 | 163 | 81 | 30 |
Fish | Size Measured during Fishing Survey | Size Estimated with an Acoustic Camera | Variation |
---|---|---|---|
1 | 101 | 90 | −11 |
2 | 122 | 80 | −42 |
3 | 171 | 170 | −1 |
4 | 124 | 120 | −4 |
5 | 112 | 100 | −12 |
6 | 120 | 110 | −10 |
7 * | − | 100 | − |
Mean | 125 | 112 | −13 |
Site | Count 1 | Count 2 |
---|---|---|
Mamelles | 20 | 21 |
Grand Connétable | 95 | 94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Artero, C.; Marchetti, S.; Bauer, E.; Viala, C.; Noël, C.; Koenig, C.C.; Berzins, R.; Lampert, L. High-Resolution Acoustic Cameras Provide Direct and Efficient Assessments of Large Demersal Fish Populations in Extremely Turbid Waters. Appl. Sci. 2021, 11, 1899. https://doi.org/10.3390/app11041899
Artero C, Marchetti S, Bauer E, Viala C, Noël C, Koenig CC, Berzins R, Lampert L. High-Resolution Acoustic Cameras Provide Direct and Efficient Assessments of Large Demersal Fish Populations in Extremely Turbid Waters. Applied Sciences. 2021; 11(4):1899. https://doi.org/10.3390/app11041899
Chicago/Turabian StyleArtero, Céline, Simon Marchetti, Eric Bauer, Christophe Viala, Claire Noël, Christopher C. Koenig, Rachel Berzins, and Luis Lampert. 2021. "High-Resolution Acoustic Cameras Provide Direct and Efficient Assessments of Large Demersal Fish Populations in Extremely Turbid Waters" Applied Sciences 11, no. 4: 1899. https://doi.org/10.3390/app11041899
APA StyleArtero, C., Marchetti, S., Bauer, E., Viala, C., Noël, C., Koenig, C. C., Berzins, R., & Lampert, L. (2021). High-Resolution Acoustic Cameras Provide Direct and Efficient Assessments of Large Demersal Fish Populations in Extremely Turbid Waters. Applied Sciences, 11(4), 1899. https://doi.org/10.3390/app11041899