A Hybrid Framework for Mitigating Heading Drift for a Wearable Pedestrian Navigation System through Adaptive Fusion of Inertial and Magnetic Measurements
Abstract
:1. Introduction
1.1. Heading Drift Correction Methods Based on Machine Learning
1.2. Heading Drift Correction Methods Based on Heuristic and Magnetic Field-Aided Methods
2. Hybrid Framework Description
Algorithm 1 Operation of our proposed framework |
Input: Inertial and magnetic data Output: Estimated position
|
2.1. Foot-State Classifier
2.2. Adaptive Fusion Module
Algorithm 2 Operation of the adaptive fusion module |
Input: Foot state, magnetic field quality, and heading Output: Heading error measurement
|
2.2.1. Human Motion Classifier
2.2.2. Magnetic Disturbance Detector
2.2.3. Computing the Heading Error Measurement
2.3. INS
2.4. ESKF Implementation
2.4.1. Error-State Model
2.4.2. Error Measurement Model
2.4.3. Compensating the State Vector
3. Experimental Results and Analysis
- ZUPT: Only ZUPT and ZARU are used.
- ZUPT–MED–EC: ZUPT and ZARU are used. Magnetic fields filtered by the MED are used to enhance the heading estimation (i.e., if , ; otherwise, ).
- ZUPT–AFM: ZUPT and ZARU are used. The adaptive fusion module is used to mitigate the heading drift (i.e., ).
- ZUPT–HDR: ZUPT and ZARU are used. Only the HDR algorithm is performed (i.e., if , ; otherwise, ).
- ZUPT–EC: ZUPT and ZARU are used. Raw magnetic fields are used to enhance the heading estimation (i.e., ).
Framework | State of Heading Error Correction Algorithms | |
---|---|---|
EC | HDR | |
ZUPT | 0 | 0 |
ZUPT–MED–EC | auto | 0 |
ZUPT–AFM | auto | auto |
ZUPT–HDR | 0 | auto |
ZUPT–EC | 2 | 0 |
3.1. Inertial/Magnetic Sensor and Processing Platform
3.2. Metric Definitions
- Translation error (TE) (m): .The TE indicates the 2D spatial closeness of the average of the estimated positions in the stance phase to the ground truth over the whole trajectory.
- Absolute heading error (AHE) (): .The AHE indicates the absolute error between the average heading of each stance phase and the ground truth over the whole trajectory.
- Heading drift (HD) (): /duration.
- Start–end error (SE) (m): .The 2D translation error between the start point and end point.
- Total traveled distance error (TTDE) (%): /traveled-distance.The final 2D SE of the total traveled distance.
3.3. Vicon Dataset
3.4. Indoor and Outdoor Loop Datasets
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lander, C.; Wiehr, F.; Herbig, N.; Krüger, A.; Löchtefeld, M. Inferring landmarks for pedestrian navigation from mobile eye-tracking data and Google Street View. In Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems, Denver, CO, USA, 6–11 May 2017; pp. 2721–2729. [Google Scholar]
- Lu, C.; Uchiyama, H.; Thomas, D.; Shimada, A.; Taniguchi, R.I. Indoor positioning system based on chest-mounted IMU. Sensors 2019, 19, 420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, G.; Zhang, W.; Wan, H.; Li, X. Improving the heading accuracy in indoor pedestrian navigation based on a decision tree and Kalman filter. Sensors 2020, 20, 1578. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Yuan, W.; Shen, Q.; Li, T.; Chang, H. A handheld inertial pedestrian navigation system with accurate step modes and device poses recognition. IEEE Sens. J. 2014, 15, 1421–1429. [Google Scholar] [CrossRef]
- Munoz Diaz, E. Inertial pocket navigation system: Unaided 3D positioning. Sensors 2015, 15, 9156–9178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foxlin, E. Pedestrian tracking with shoe-mounted inertial sensors. IEEE Comput. Graph. Appl. 2005, 25, 38–46. [Google Scholar] [CrossRef]
- Nilsson, J.O.; Skog, I.; Händel, P.; Hari, K. Foot-mounted INS for everybody-an open-source embedded implementation. In Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium, Myrtle Beach, SC, USA, 23–26 April 2012; pp. 140–145. [Google Scholar]
- Nilsson, J.O.; Gupta, A.K.; Händel, P. Foot-mounted inertial navigation made easy. In Proceedings of the 2014 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Busan, Korea, 27–30 October 2014; pp. 24–29. [Google Scholar]
- Le Scornec, J.; Ortiz, M.; Renaudin, V. Foot-mounted pedestrian navigation reference with tightly coupled GNSS carrier phases, inertial and magnetic data. In Proceedings of the 2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sapporo, Japan, 18–21 September 2017; pp. 1–8. [Google Scholar]
- EvAAL Competition. Available online: http://evaal.aaloa.org/ (accessed on 25 December 2020).
- Jao, C.S.; Stewart, K.; Conradt, J.; Neftci, E.; Shkel, A. Zero Velocity Detector for Foot-mounted Inertial Navigation System Assisted by a Dynamic Vision Sensor. In Proceedings of the 2020 DGON Inertial Sensors and Systems (ISS), Braunschweig, Germany, 15–16 September 2020; pp. 1–18. [Google Scholar]
- Wahlström, J.; Markham, A.; Trigoni, N. FootSLAM meets Adaptive Thresholding. IEEE Sens. J. 2020, 20, 9351–9358. [Google Scholar] [CrossRef] [Green Version]
- Bebek, Ö.; Suster, M.A.; Rajgopal, S.; Fu, M.; Fu, M.J.; Huang, X.; Çavuşoǧlu, M.C.; Mehregany, M.; Van Den Bogert, A.J.; Mastrangelo, C.H. Personal navigation via high-resolution gait-corrected inertial measurement units. IEEE Trans. Instrum. Meas. 2010, 59, 3018–3027. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, H.; Qiu, S.; Gao, Q. Stance-phase detection for ZUPT-aided foot-mounted pedestrian navigation system. IEEE/ASME Trans. Mechatronics 2015, 20, 3170–3181. [Google Scholar] [CrossRef]
- Strozzi, N.; Parisi, F.; Ferrari, G. Impact of on-body IMU placement on inertial navigation. IET Wirel. Sens. Syst. 2018, 8, 3–9. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Meng, X. Use of an inertial/magnetic sensor module for pedestrian tracking during normal walking. IEEE Trans. Instrum. Meas. 2015, 64, 776–783. [Google Scholar] [CrossRef]
- Liu, Y.; Li, S.; Mu, C.; Wang, Y. Step length estimation based on D-ZUPT for pedestrian dead-reckoning system. Electron. Lett. 2016, 52, 923–924. [Google Scholar] [CrossRef]
- Ojeda, L.; Borenstein, J. Non-GPS navigation for security personnel and first responders. J. Navig. 2007, 60, 391–407. [Google Scholar] [CrossRef] [Green Version]
- Wagstaff, B.; Kelly, J. LSTM-based zero-velocity detection for robust inertial navigation. In Proceedings of the 2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Nantes, France, 24–27 September 2018; pp. 1–8. [Google Scholar]
- Wu, Y.; Zhu, H.B.; Du, Q.X.; Tang, S.M. A survey of the research status of pedestrian dead reckoning systems based on inertial sensors. Int. J. Autom. Comput. 2019, 16, 65–83. [Google Scholar] [CrossRef]
- Deng, Z.; Wang, P.; Yan, D.; Shang, K. Foot-Mounted Pedestrian Navigation Method Based on Gait Classification for Three-Dimensional Positioning. IEEE Sens. J. 2019, 20, 2045–2055. [Google Scholar] [CrossRef]
- Wang, Q.; Luo, H.; Xiong, H.; Men, A.; Zhao, F.; Xia, M.; Ou, C. Pedestrian Dead Reckoning based on Walking Pattern Recognition and Online Magnetic Fingerprint Trajectory Calibration. IEEE Internet Things J. 2020, 8, 2011–2026. [Google Scholar] [CrossRef]
- Majid, J.; Atena, R.F.; Katarzyna, R.; Zeljko, Z. A Comprehensive Analysis on Wearable Acceleration Sensors in Human Activity Recognition. Sensors 2017, 17, 529. [Google Scholar]
- Manivannan, A.; Chin, W.C.B.; Barrat, A.; Bouffanais, R. On the Challenges and Potential of Using Barometric Sensors to Track Human Activity. Sensors 2020, 20, 6786. [Google Scholar] [CrossRef]
- Ruiz, A.R.J.; Granja, F.S.; Honorato, J.C.P.; Rosas, J.I. Accurate pedestrian indoor navigation by tightly coupling foot-mounted IMU and RFID measurements. IEEE Trans. Instrum. Meas. 2012, 61, 178–189. [Google Scholar] [CrossRef] [Green Version]
- Pasku, V.; De Angelis, A.; Moschitta, A.; Carbone, P.; Nilsson, J.O.; Dwivedi, S.; Händel, P. A magnetic ranging-aided dead-reckoning positioning system for pedestrian applications. IEEE Trans. Instrum. Meas. 2017, 66, 953–963. [Google Scholar] [CrossRef]
- Everett, T.; Kell, C. Human Movement: An Introductory Text; Elsevier Health Sciences: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Norrdine, A.; Kasmi, Z.; Blankenbach, J. Step Detection for ZUPT-Aided Inertial Pedestrian Navigation System Using Foot-Mounted Permanent Magnet. IEEE Sens. J. 2016, 16, 6766–6773. [Google Scholar] [CrossRef]
- Abdulrahim, K.; Hide, C.; Moore, T.; Hill, C. Aiding low cost inertial navigation with building heading for pedestrian navigation. J. Navig. 2011, 64, 219–233. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, J.O.; Skog, I.; Händel, P. A note on the limitations of ZUPTs and the implications on sensor error modeling. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sydney, Australia, 13–15 November 2012. [Google Scholar]
- Ilyas, M.; Cho, K.; Baeg, S.; Park, S. Drift Reduction in Pedestrian Navigation System by Exploiting Motion Constraints and Magnetic Field. Sensors 2016, 16, 1455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panahandeh, G.; Mohammadiha, N.; Leijon, A.; Händel, P. Continuous hidden Markov model for pedestrian activity classification and gait analysis. IEEE Trans. Instrum. Meas. 2013, 62, 1073–1083. [Google Scholar] [CrossRef] [Green Version]
- Wagstaff, B.; Peretroukhin, V.; Kelly, J. Robust data-driven zero-velocity detection for foot-mounted inertial navigation. IEEE Sens. J. 2019, 20, 957–967. [Google Scholar] [CrossRef] [Green Version]
- Jalal Abadi, M.; Luceri, L.; Hassan, M.; Chou, C.T.; Nicoli, M. A cooperative machine learning approach for pedestrian navigation in indoor IoT. Sensors 2019, 19, 4609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thébault, E.; Finlay, C.C.; Beggan, C.D.; Alken, P.; Aubert, J.; Barrois, O.; Bertrand, F.; Bondar, T.; Boness, A.; Brocco, L.; et al. International geomagnetic reference field: The 12th generation. Earth Planets Space 2015, 67, 1–19. [Google Scholar] [CrossRef]
- Herath, S.; Yan, H.; Furukawa, Y. RoNIN: Robust Neural Inertial Navigation in the Wild: Benchmark, Evaluations, & New Methods. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–30 June 2020; pp. 3146–3152. [Google Scholar]
- Chen, C.; Lu, X.; Wahlstrom, J.; Markham, A.; Trigoni, N. Deep neural network based inertial odometry using low-cost inertial measurement units. IEEE Trans. Mob. Comput. 2019. [Google Scholar] [CrossRef]
- Liu, W.; Caruso, D.; Ilg, E.; Dong, J.; Mourikis, A.I.; Daniilidis, K.; Kumar, V.; Engel, J. TLIO: Tight Learned Inertial Odometry. IEEE Robot. Autom. Lett. 2020, 5, 5653–5660. [Google Scholar] [CrossRef]
- Jiménez, A.R.; Seco, F.; Prieto, J.C.; Guevara, J. Indoor pedestrian navigation using an INS/EKF framework for yaw drift reduction and a foot-mounted IMU. In Proceedings of the Positioning Navigation and Communication, Dresden Germany, 11–12 March 2010; pp. 135–143. [Google Scholar]
- Borenstein, J.; Ojeda, L.; Kwanmuang, S. Heuristic reduction of gyro drift. J. Navig. 2009, 62, 41–58. [Google Scholar] [CrossRef] [Green Version]
- Borenstein, J.; Ojeda, L. Heuristic drift elimination for personnel tracking systems. J. Navig. 2010, 63, 591–606. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, A.R.; Seco, F.; Zampella, F.; Prieto, J.C.; Guevara, J. Improved Heuristic Drift Elimination (iHDE) for pedestrian navigation in complex buildings. In Proceedings of the 2011 International Conference on Indoor Positioning and Indoor Navigation, Guimaraes, Portugal, 21–23 September 2011; pp. 1–8. [Google Scholar]
- Renaudin, V.; Combettes, C. Magnetic, acceleration fields and gyroscope quaternion (MAGYQ)-based attitude estimation with smartphone sensors for indoor pedestrian navigation. Sensors 2014, 14, 22864–22890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fourati, H. Heterogeneous data fusion algorithm for pedestrian navigation via foot-mounted inertial measurement unit and complementary filter. IEEE Trans. Instrum. Meas. 2015, 64, 221–229. [Google Scholar] [CrossRef]
- De Vries, W.; Veeger, H.; Baten, C.; Van Der Helm, F. Magnetic distortion in motion labs, implications for validating inertial magnetic sensors. Gait Posture 2009, 29, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Ashkar, R.; Romanovas, M.; Goridko, V.; Schwaab, M.; Traechtler, M.; Manoli, Y. A low-cost shoe-mounted Inertial Navigation System with magnetic disturbance compensation. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation, Busan, Korea, 27–30 October 2014; pp. 1–10. [Google Scholar]
- Afzal, M.H.; Renaudin, V.; Lachapelle, G. Use of earth’s magnetic field for mitigating gyroscope errors regardless of magnetic perturbation. Sensors 2011, 11, 11390–11414. [Google Scholar] [CrossRef]
- Ma, M.; Song, Q.; Li, Y.; Gu, Y.; Zhou, Z. A heading error estimation approach based on improved Quasi-static magnetic Field detection. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN), Alcala de Henares, Spain, 4–7 October 2016; pp. 1–8. [Google Scholar]
- Li, H.; Derrode, S.; Benyoussef, L.; Pieczynski, W. Free-walking 3D Pedestrian Large Trajectory Reconstruction from IMU Sensors. In Proceedings of the 2018 26th European Signal Process. Conf. (EUSIPCO), Rome, Italy, 3–7 September 2018; pp. 657–661. [Google Scholar]
- Fischer, C.; Sukumar, P.T.; Hazas, M. Tutorial: Implementing a Pedestrian Tracker Using Inertial Sensors. IEEE Pervasive Comput. 2013, 12, 17–27. [Google Scholar] [CrossRef]
- Lee, J.; Lim, J.; Lee, J. Compensated heading angles for outdoor mobile robots in magnetically disturbed environment. IEEE Trans. Ind. Electron. 2017, 65, 1408–1419. [Google Scholar] [CrossRef]
- Diebel, J. Representing Attitude: Euler Angles, Unit Quaternions, and Rotation Vectors. J. Diebel. 2006, 58, 1–35. [Google Scholar]
- Sola, J. Quaternion Kinematics for the Error-State KF; Tech. Rep.; Laboratoire Analyse et Architecture des Systemes-Centre National de la Recherche Scientifique (LAAS-CNRS): Toulouse, France, 2012. [Google Scholar]
- Simon, D. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Mtw Awinda Specification. Available online: https://www.xsens.com/hubfs/3446270/Downloads/Manuals/MTwAwinda_WhitePaper.pdf (accessed on 25 December 2020).
- Track 2 Description. Available online: http://evaal.aaloa.org/images/2017/annex/track2_ipin2017competition.pdf (accessed on 23 December 2020).
- IPIN Competition 2017-Track 2. Available online: http://evaal.aaloa.org/images/2017/presentations/track2.pdf (accessed on 22 December 2020).
- Angermann, M.; Robertson, P.; Kemptner, T.; Khider, M. A high precision reference data set for pedestrian navigation using foot-mounted inertial sensors. In Proceedings of the 2010 International Conference on Indoor Positioning and Indoor Navigation, Zurich, Switzerland, 15–17 September 2010; pp. 1–6. [Google Scholar]
- Strozzi, N.; Parisi, F.; Ferrari, G. On single sensor-based inertial navigation. In Proceedings of the IEEE International Conference on Wearable and Implantable Body Sensor Networks, San Francisco, CA, USA, 14–17 June 2016; pp. 300–305. [Google Scholar]
- Hsu, Y.L.; Wang, J.S.; Chang, C.W. A Wearable Inertial Pedestrian Navigation System With Quaternion-Based Extended Kalman Filter for Pedestrian Localization. IEEE Sens. J. 2017, 17, 3193–3206. [Google Scholar] [CrossRef]
Performance Metrics | ZUPT | ZUPT–EC | ZUPT–HDR | ZUPT–AFM | ZUPT–MED–EC |
---|---|---|---|---|---|
75% TE (m) | 0.2919 | 0.9002 | 0.3202 | 0.2693 | 0.2788 |
100% TE (m) | 1.6683 | 1.9877 | 1.6673 | 1.3394 | 1.3775 |
75% AHE () | 9.378 | 31.1 | 10.37 | 3.496 | 2.272 |
100% AHE () | 16.4796 | 65.8588 | 17.9684 | 9.5134 | 6.9021 |
RMSE of TE (m) | 0.4534 | 0.8243 | 0.5169 | 0.2495 | 0.2609 |
RMSE of AHE () | 7.1679 | 24.1606 | 7.8618 | 3.1473 | 2.1969 |
HD (/min) | 2.0654 | 1.1495 | 2.3644 | 0.8325 | 0.5589 |
Dataset | Subject | Total Distance | Motion |
---|---|---|---|
Indoor dataset 1 | 24-group walking with four-shape paths (each type has 6 groups) | 1469 m | walking, slow running |
24-group slow running with four-shape paths (each type has 6 groups) | |||
Indoor dataset 2 | 2-group 10-lap moving with mixed-motion | 668 m | walking, slow running, crouch-walking |
Indoor dataset 3 | 3 three-lap walking sub-datasets | 2952 m | walking |
3 free walking sub-datasets | |||
Outdoor dataset | 3-group long-term walking | 3699 m | walking |
Indoor–outdoor dataset | 1.9 km sub-dataset 2.2 km sub-dataset | 4196 m | walking, slow running, climbing stairs, walking down stairs |
Performance Metrics | ZUPT | ZUPT–EC | ZUPT–HDR | ZUPT–AFM | ZUPT–MED–EC |
---|---|---|---|---|---|
75% TTDE (%) | 0.5687 | 0.6299 | 0.5736 | 0.5695 | 0.5666 |
100% TTDE (%) | 1.0004 | 1.3532 | 1.0091 | 0.9894 | 0.9869 |
RMSE of TTDE (%) | 0.4816 | 0.5893 | 0.4887 | 0.4527 | 0.4551 |
Experiment | Start–End Error (m) | |||||
---|---|---|---|---|---|---|
Framework | ||||||
Type | Subject | ZUPT | ZUPT–HDR | ZUPT–EC | ZUPT–MED–EC | ZUPT–AFM |
Indoor dataset 2 (344 m) | 1 | 0.68 | 0.68 | 1.17 | 0.58 | 0.59 |
2 | 0.43 | 0.36 | 1.35 | 0.25 | 0.26 | |
RMSE | 0.57 () | 0.54 () | 1.26 () | 0.45 () | 0.46 () | |
Indoor three-lap walking (486 m) | 1 | 2.14 | 2.04 | 1.11 | 0.24 | 0.25 |
2 | 6.42 | 6.78 | 9.41 | 0.84 | 0.82 | |
3 | 4.22 | 4.09 | 4.46 | 1.11 | 1.17 | |
RMSE | 4.6 () | 4.72 () | 6.05 () | 0.82 () | 0.84 () | |
Indoor free walking (498 m) | 1 | 1.75 | 1.72 | 8.75 | 1.86 | 1.64 |
2 | 2.96 | 2.75 | 3.1 | 2.88 | 2.8 | |
3 | 2.49 | 2.41 | 1.69 | 0.77 | 0.67 | |
RMSE | 2.45 () | 2.33 () | 5.45 () | 2.03 () | 1.91 () | |
Outdoor dataset (1233 m) | 1 | 38.19 | 37.19 | 58.64 | 14.07 | 9.25 |
2 | 36.18 | 34.49 | 46.9 | 20.54 | 14.94 | |
3 | 36.35 | 32.58 | 96.92 | 34.12 | 10.44 | |
RMSE | 36.92 () | 34.8 () | 70.79 () | 24.39 () | 11.8 () | |
Indoor–outdoor dataset | 1 (1919 m) | 36.44 () | 21.36 () | 31.132 () | 27.05 () | 18.02 () |
2 (2277 m) | 70.75 () | 27.72 () | 58.05 () | 52.43 () | 14.712 () |
Performance Metrics | ZUPT | ZUPT–EC | ZUPT–HDR | ZUPT–AFM | ZUPT–MED–EC |
---|---|---|---|---|---|
75% TTDE (%) | 0.6004 | 1.5334 | 0.6042 | 0.5911 | 0.5953 |
100% TTDE (%) | 3.1072 | 7.8605 | 3.0162 | 1.2117 | 2.7672 |
RMSE of TTDE (%) | 0.9501 | 1.6997 | 0.8282 | 0.5027 | 0.7071 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Liu, Y.; Sun, J. A Hybrid Framework for Mitigating Heading Drift for a Wearable Pedestrian Navigation System through Adaptive Fusion of Inertial and Magnetic Measurements. Appl. Sci. 2021, 11, 1902. https://doi.org/10.3390/app11041902
Zhang L, Liu Y, Sun J. A Hybrid Framework for Mitigating Heading Drift for a Wearable Pedestrian Navigation System through Adaptive Fusion of Inertial and Magnetic Measurements. Applied Sciences. 2021; 11(4):1902. https://doi.org/10.3390/app11041902
Chicago/Turabian StyleZhang, Liqiang, Yu Liu, and Jinglin Sun. 2021. "A Hybrid Framework for Mitigating Heading Drift for a Wearable Pedestrian Navigation System through Adaptive Fusion of Inertial and Magnetic Measurements" Applied Sciences 11, no. 4: 1902. https://doi.org/10.3390/app11041902
APA StyleZhang, L., Liu, Y., & Sun, J. (2021). A Hybrid Framework for Mitigating Heading Drift for a Wearable Pedestrian Navigation System through Adaptive Fusion of Inertial and Magnetic Measurements. Applied Sciences, 11(4), 1902. https://doi.org/10.3390/app11041902