Influence of Electrically Powered Pedal Assistance on User-Induced Cycling Loads and Muscle Activity during Cycling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Instrumentation
2.3.1. Bicycle
2.3.2. Instrumented Steer
2.3.3. Instrumented Seat
2.3.4. Instrumented Pedals
2.3.5. Instrumented Bottom Bracket
2.3.6. EMG System
2.3.7. Data Acquisition System
2.4. Protocol
2.4.1. Preparation
2.4.2. Tests
2.5. Data Processing
2.5.1. Load Cells
2.5.2. Joint Loading
2.5.3. Muscle Activity
3. Results
3.1. Variables
3.2. Visual Evaluation AVCs
3.3. Statistical Analysis
3.3.1. PA in the Upper Dead Center (Phase in Pedal Cycle = 0%)
3.3.2. PA in the Power Phase (Phase in Pedal Cycle = 25%)
3.3.3. PA in the Lower Dead Center (Phase in Pedal Cycle = 50%)
3.3.4. PA in the Recovery Phase (Phase in Pedal Cycle = 75%)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Huertas-Leyva, P.; Dozza, M.; Baldanzini, N. Investigating cycling kinematics and braking maneuvers in the real world: E-bikes make cyclists move faster, brake harder, and experience new conflicts. Transp. Res. 2018, 54, 211–222. [Google Scholar] [CrossRef]
- Stone, C.; Hull, M.L. The effect of rider weight on rider-induced loads during common cycling situations. J. Biomech. 1995, 4, 365–375. [Google Scholar] [CrossRef]
- Hull, M.L.; Davis, R.R. Measurement of pedal loading in bicycling: I. Instrumentation. J. Biomech. 1981, 14, 843–856. [Google Scholar] [CrossRef]
- Hull, M.L.; Bolourchi, F. Contributions of rider induced loads to bicycle frame stresses. J. Strain Anal. 1988, 23, 105–114. [Google Scholar] [CrossRef]
- Hull, M.; Jorge, M. A method for biomechanical analysis of bicycle pedadalling. J. Biomech. 1985, 18, 631–644. [Google Scholar] [CrossRef]
- Ericson, M.O.; Nisell, R.; Ekholm, J. Varus and valgus loads on the knee jointduring ergometer cycling. Scand. J. Sports Sci. 1984, 6, 39–45. [Google Scholar]
- Ruby, P.; Hull, M.L.; Jenkins, D.; Kirby, K. Effect of anatomy on knee joint loads during seated cycling. J. Biomech. 1992, 25, 1195–1207. [Google Scholar] [CrossRef]
- Gregor, R.J.; Cavanaegh, P.R.; LaFortune, M. Knee flexor moments during propulsion in cycling: A creative solution to Lombard’s paradox. J. Biomech. 1985, 18, 307–316. [Google Scholar] [CrossRef]
- Gonzalez, H.; Hull, M.L. Multivariable optimization of cycling biomechanics. J. Biomech. 1989, 22, 1151–1161. [Google Scholar] [CrossRef]
- Neptune, R.R.; Hull, M.L. A theoretical analysis of preferred rate selection in endurance cycling. J. Biomech. 1999, 32, 409–415. [Google Scholar] [CrossRef]
- Marsh, A.P.; Martin, P.E.; Sanderson, D.J. Is a joint moment-based cost function associated with preferred cycling cadence? J. Biomech. 2000, 33, 173–180. [Google Scholar] [CrossRef]
- Ericson, M.; Bratt, A.; Nisell, R.; Nemeth, G.; Ekholm, J. Load moments about the hip and knee joints during ergometer cycling. Scand. J. Rehabil. Med. 1986, 18, 165–172. [Google Scholar]
- Horscroft, R.; Davidson, C.J.; McDaniel, J.; Wagner, B.M.; Martin, J. Effects of saddle height on joint power distribution. Med. Sci. Sport Exerc. 2003, 35, S16. [Google Scholar] [CrossRef]
- Mornieux, G.; Guenette, J.A.G.; Sheel, A.W.; Sanderson, D.J. Influence of cadence, power output and hypoxia on the joint moment distribution during cycling. Eur. J. Appl. Physiol. 2007, 102, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, G.E.; Hagberg, J.M.; McCole, S.D.; Li, L. Lower extremity joint moment during uphill cycling. J. Appl. Biomech. 1999, 15, 166–181. [Google Scholar] [CrossRef]
- Ericsson, M. Mechanical muscular power output and work during ergometer cycling at different work loads and speeds. Eur. J. Appl. Physiol. 1988, 57, 382–387. [Google Scholar] [CrossRef]
- Dettori, N.; Norvel, D. The effects of exercise on patellar tracking in lateral petellar compression syndrome. Sports Med. 2006, 36, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Mariani, P.P.; Caruso, I. An electromyographic investigation of subluxation of the patella. J. Bone Jt. Surg. 1979, 61, 169–171. [Google Scholar] [CrossRef] [PubMed]
- Souza, D.R.; Gross, M.T. Comparison of vastus medialis obliquus vastus lateralis muscle integrated electromyographic ratios between healthy subjects and patients with patellofemoral pain. Phys. Ther. 1991, 71, 310–316. [Google Scholar] [CrossRef]
- Ericson, M.O.; Nissel, R.; Arborelius, U.P.; Ekhorn, J. Muscular activity during ergometer cycling. Scand. J. Rehabil. Med. 1985, 17, 53–61. [Google Scholar] [PubMed]
- Baum, B.S.; Li, L. Lower extremity muscle activities during cycling are influenced by load and frequency. J. Electromyogr. Kinesiol. 2003, 2, 181–190. [Google Scholar] [CrossRef]
- Laplaud, D.; Hug, F.; Grelot, L. Reproducibility of eight lower limb muscles activity level in the course of an incremental pedaling exercise. J. Electromyogr. Kinesiol. 2006, 15, 158–166. [Google Scholar] [CrossRef]
- Dieltiens, S.; D’hondt, J.; Juwet, M.; Versteyhe, M. Development of A Low-Cost Measurement System to Determine 3-Dimensional Pedal Loads During in-Situ Cycling. Transp. Probl. 2018, 14, 151–160. [Google Scholar] [CrossRef] [Green Version]
- Dieltiens, S.; D’hondt, J.; Juwet, M. Design and Calibration of an Instrumented Seat Post to Measure Sitting Loads While Cycling. Sensors 2020, 20, 1384. [Google Scholar]
- D’hondt, J.; Dieltiens, S.; Juwet, M. Design and Calibration of a 6-component Balance in a Bicycle Steer. In Proceedings of the 18th International Conference on Experimental Mechanics (ICEM18), Brussels, Belgium, 1 July 2018. [Google Scholar]
- Dieltiens, S.; Claeys, K.; D’hondt, J.; Devroey, H.; Juwet, M.; Demeester, E. Validation of a Bar Linkage Model for Joint Angle Estimation during Cycling. Appl. Sci. 2020, 10, 5104. [Google Scholar] [CrossRef]
- Tikkanen, O. Physiological Loading during Normal Daily Life and Excercise Assessed with Electromyography; University of Jyvaskyla: Jyvaskyla, Finland, 2014. [Google Scholar]
- Pesola, O. Reduced Muscle Inactivity, Sedentary Time and Cardio-Metabolic Benefits; University of Jyvaskyla: Jyvaskyla, Finland, 2016. [Google Scholar]
- Colyer, S.I.; McGuigan, P.M. Textile electrodes embedded in clothing: A practical alternative to traditional surface electromyography when assesing muscle excitation during functional movements. J. Sport Sci. Med. 2018, 17, 101–109. [Google Scholar]
- Holmes, J.C.; Pruitt, A.L.; Whalen, N.J. Lower Extremity overuse in bicycling. Clin. Sports Med. 1994, 13, 187–203. [Google Scholar] [CrossRef]
- Burke, E.R. Perfect positioning. In Serious Cycling, Champaign (IL); Human Kinetics: Champaign, IL, USA, 2002; pp. 235–245. [Google Scholar]
- Burden, A. How should we normalize electromyograms obtained from healthy participants? What we have learned from over 25 years of research. J. Electromyogr. Kinesiol. 2010, 20, 1023–1035. [Google Scholar] [CrossRef]
- Yanamashetti, G.; Murthy, H.S. Application of Global Regression method for Calibration of Wind Tunnel. In Proceedings of the Symposium on Applied Aerodynamics and Design of Aerospace Vehicles, Bangalore, India, 16–18 November 2011. [Google Scholar]
- Carpes, F.P.; Mota, C.B.; Faria, I.E. On the bilateral asymmetry during running and cycling—A review considering leg preference. Phys. Ther. Sport 2010, 11, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Carpes, F.P.; Rossato, M.; Faria, I.E.; Mota, C.B. Bilateral pedaling asymmetry during a simulated 40-km cycling time-trial. J. Sports Med. Phys. Fit. 2008, 47, 51–57. [Google Scholar] [CrossRef]
- Costes, A.; Turpin, N.A.; Villeger, D.; Moretto, P.; Watier, B. A reduction of the saddle vertical force triggers the sit–stand transition in cycling. J. Biomech. 2015, 48, 2998–3003. [Google Scholar] [CrossRef] [Green Version]
- Dorel, S.; Couterier, A.; Hug, F. Intra-session repeatability of lower limb muscles activation pattern during pedaling. J. Electromyogr. Kinesiol. 2008, 18, 857–865. [Google Scholar] [CrossRef] [PubMed]
- Richmond, D.R. Handlebar problems in bicycling. Clin. Sports Med. 1994, 13, 165–173. [Google Scholar] [CrossRef]
- Schwarzer, U.; Sommer, F.; Klotz, T.; Cremer, C.; Engelmann, U. Cycling and penile pressure: The type of saddle matters. Eur. Urol. 2002, 41, 139–143. [Google Scholar] [CrossRef]
- Callaghan, M.J.; Phil, M. Lower body problems and injury in cycling. J. Bodyw. Mov. Ther. 2005, 9, 226–236. [Google Scholar] [CrossRef]
Subject 1 | Subject 2 | Subject 3 | Subject 4 | Subject 5 | Subject 6 | Subject 7 | Subject 8 | Subject 9 | Subject 10 | |
---|---|---|---|---|---|---|---|---|---|---|
Gender | M | F | F | F | M | M | M | F | F | F |
Age | 28 | 26 | 33 | 32 | 40 | 28 | 31 | 26 | 30 | 37 |
Weight | 77 | 62 | 66 | 51 | 80 | 77 | 65 | 49 | 60 | 56 |
Height | 182 | 172 | 171 | 157 | 173 | 171 | 179 | 164 | 175 | 169 |
BMI | 23 | 21 | 23 | 20 | 27 | 26 | 20 | 18 | 20 | 20 |
Dominant foot | R | R | R | R | R | R | R | L | R | R |
Variables | ||
---|---|---|
Right Quadricep Activity (%max) | Right Hamstring Activity (%max) | Right Glute Activity (%max) |
Right Ankle Loading: Normal force (N) Anterior force (N) Sagittal moment (N⋅m) | Right Knee Loading: Normal force (N) Anterior force (N) Sagittal moment (N⋅m) | Right Hip Loading: Normal force (N) Anterior force (N) Sagittal moment (N⋅m) |
Seat Loading: Normal force (N) Anterior force (N) Lateral force (N) Axial moment (N⋅m) Frontal moment (N⋅m) Sagittal moment (N⋅m) | Steer Loading: Normal force (N) Anterior force (N) Lateral force (N) Axial moment (N⋅m) Frontal moment (N⋅m) Sagittal moment (N⋅m) | Right Pedal Loading: Normal force (N) Anterior force (N) Lateral force (N) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dieltiens, S.; Jiménez-Peña, C.; Van Loon, S.; D’hondt, J.; Claeys, K.; Demeester, E. Influence of Electrically Powered Pedal Assistance on User-Induced Cycling Loads and Muscle Activity during Cycling. Appl. Sci. 2021, 11, 2032. https://doi.org/10.3390/app11052032
Dieltiens S, Jiménez-Peña C, Van Loon S, D’hondt J, Claeys K, Demeester E. Influence of Electrically Powered Pedal Assistance on User-Induced Cycling Loads and Muscle Activity during Cycling. Applied Sciences. 2021; 11(5):2032. https://doi.org/10.3390/app11052032
Chicago/Turabian StyleDieltiens, Sien, Carlos Jiménez-Peña, Senne Van Loon, Jordi D’hondt, Kurt Claeys, and Eric Demeester. 2021. "Influence of Electrically Powered Pedal Assistance on User-Induced Cycling Loads and Muscle Activity during Cycling" Applied Sciences 11, no. 5: 2032. https://doi.org/10.3390/app11052032
APA StyleDieltiens, S., Jiménez-Peña, C., Van Loon, S., D’hondt, J., Claeys, K., & Demeester, E. (2021). Influence of Electrically Powered Pedal Assistance on User-Induced Cycling Loads and Muscle Activity during Cycling. Applied Sciences, 11(5), 2032. https://doi.org/10.3390/app11052032