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Abstract: The ultimate goal of most neuromusculoskeletal modeling research is to improve the
treatment of movement impairments. However, even though neuromusculoskeletal models have
become more realistic anatomically, physiologically, and neurologically over the past 25 years, they
have yet to make a positive impact on the design of clinical treatments for movement impairments.
Such impairments are caused by common conditions such as stroke, osteoarthritis, Parkinson’s
disease, spinal cord injury, cerebral palsy, limb amputation, and even cancer. The lack of clinical
impact is somewhat surprising given that comparable computational technology has transformed
the design of airplanes, automobiles, and other commercial products over the same time period.
This paper provides the author’s personal perspective for how neuromusculoskeletal models can
become clinically useful. First, the paper motivates the potential value of neuromusculoskeletal
models for clinical treatment design. Next, it highlights five challenges to achieving clinical utility
and provides suggestions for how to overcome them. After that, it describes clinical, technical,
collaboration, and practical needs that must be addressed for neuromusculoskeletal models to fulfill
their clinical potential, along with recommendations for meeting them. Finally, it discusses how more
complex modeling and experimental methods could enhance neuromusculoskeletal model fidelity,
personalization, and utilization. The author hopes that these ideas will provide a conceptual blueprint
that will help the neuromusculoskeletal modeling research community work toward clinical utility.

Keywords: neuromusculoskeletal model; musculoskeletal model; computational model; model
personalization; treatment optimization; treatment design; predictive simulation; human movement

1. Introduction

Engineers love a challenging problem, and some of the most challenging problems
that engineers seek to tackle involve human health. From an engineering perspective,
the human neuromusculoskeletal system has the appearance of a well-designed mechan-
ical system. It possesses rigid segments connected by extremely low-friction rotational
joints. The joints are controlled by highly efficient linear actuators whose masses are
strategically located as far inboard as possible. The control system for the actuators can sta-
bilize a multi-segment inverted pendulum flawlessly under a wide variety of challenging
movement conditions. Because of these similarities to an engineered system, the human
neuromusculoskeletal system lends itself well to physics-based engineering analysis and
simulation. This observation raises the possibility that the same computational technolo-
gies that have revolutionized the design of airplanes and automobiles over the past 25 years
could also be used to revolutionize the design of surgical and rehabilitation treatments for
movement impairments. Clinical conditions that could potentially benefit include stroke,
osteoarthritis, Parkinson’s disease, spinal cord injury, cerebral palsy, limb amputation, and
orthopedic cancer.

Though computational models representing different aspects of the human neuro-
musculoskeletal system have been developed for decades [1–16], such models have yet
to make a positive impact on the design of treatments for movement impairments. The
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neuromusculoskeletal modeling literature is full of journal articles with titles like “A model
of x for doing y,” but actual clinical application of the model is rarely reported. Further-
more, few, if any, details are provided on how exactly the computational model would
be used to improve clinical treatment design. Nonetheless, a few research groups have
generated and validated initial clinical predictions using computational models, such as
how an individual with medial knee osteoarthritis should walk differently to relieve pain
and slow progression of the disease [17] and whether a child with an equinus deformity
due to cerebral palsy should receive gastrocnemius lengthening surgery to improve walk-
ing function [18]. Unfortunately, such examples are the exception rather than the rule.
As recently stated by the Stanford OpenSim team, “The potential to use subject-specific
simulations to understand the causes of movement deviations and to assess treatment
options is exciting, but has not been fully realized” [19].

Realization of this untapped potential could initiate a paradigm shift in the way
treatments are designed for movement impairments (Figure 1). The current treatment
design paradigm has not progressed substantially beyond generic interventions identified by
costly and time-consuming clinical trials and selected using subjective clinical judgment. A
clinical trial collects a large quantity of movement data from a large heterogeneous patient
population and uses statistical models to test whether a particular intervention induces
the desired outcome in general. In contrast, a future paradigm could use personalized
interventions identified and selected using inexpensive and efficient objective computational
models [20,21]. This alternate approach would collect a small quantity of movement data
from a specific patient and use a patient-specific computational model to test how a wide
variety of possible interventions would affect the patient’s functional outcome. In essence,
this new approach would systematically apply virtual treatments to a virtual patient with
the goal of identifying the most effective treatment for that patient. Computational treat-
ment design using patient-specific neuromusculoskeletal models would be consistent with
current clinical emphases on both personalized medicine and evidence-based medicine.

A computational approach to treatment design using personalized neuromusculoskele-
tal models possesses several advantages over the current treatment design paradigm. First,
a computational approach would increase objectivity in treatment planning. Second, it
would allow exploration of cause-and-effect relationships that map treatment decisions
directly onto the patient’s functional outcome and do so without burning bridges. Third, it
would facilitate identification of previously unknown treatments and sensitive treatment
parameters. In addition, by using physics-based rather than machine learning models, com-
putational treatment design would extrapolate well to new situations (e.g., post-treatment
patient function) for which no experimental data are available. These advantages go beyond
those provided by generic neuromusculoskeletal models, which can be used to elucidate
factors that are, in general, likely to contribute to the development and progression of
disease and thus may serve as targets for intervention (e.g., [22,23]).

This article provides the author’s personal perspective—a conceptual blueprint—for
moving computational neuromusculoskeletal models to the point of clinical utility. The
focus of the blueprint is on how the neuromusculoskeletal modeling research community
can use commonly-employed modeling methods (i.e., rigid body dynamic, geometric, and
lumped parameter) combined with commonly-available experimental data (i.e., video
motion capture, ground reaction force, and electromyographic (EMG)) to achieve clinical
utility. The article is structured as follows. In Section 2, motivation is provided for why
computational neuromusculoskeletal models have strong potential to become clinically
useful tools. Section 3 discusses challenges to progress that must be overcome if neuromus-
culoskeletal models are to become clinically useful and provides suggestions for how to
overcome them. Section 4 provides a description of the clinical, technical, collaboration,
and practical needs that must be satisfied for neuromusculoskeletal models to fulfill their
clinical potential, along with recommendations for meeting them. Section 5 discusses
opportunities involving more complex modeling and experimental methods that could
enhance neuromusculoskeletal model fidelity, personalization, and utilization. Finally,
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Section 6 provides concluding thoughts on getting neuromusculoskeletal models across the
threshold of clinical utility. While the emphasis of this article is on the computational design
of treatments for movement impairments affecting gait (the author’s primary research fo-
cus), the concepts presented should apply equally well to research involving computational
design of treatments for movement impairments affecting the upper extremities and spine.

Figure 1. Comparison of (a) current and (b) future treatment design paradigms. The current paradigm
relies on an implicit mental model in the mind of the clinician. Given clinical and imaging data and
proposed treatment parameters as inputs, the implicit mental model produces a subjective prediction
of post-treatment function, so different clinicians may propose extremely different treatment designs.
The future paradigm replaces the implicit mental model with an explicit computational model that
obeys laws of physics and principles of physiology. With this approach, movement data are added
to the inputs, the explicit computational model produces an objective prediction of post-treatment
function, and the entire process is wrapped in numerical optimization to identify the treatment
design that will maximize the patient’s functional outcome.

2. Motivation for Modeling

For neuromusculoskeletal modeling researchers, the motivation for modeling is clear—
there is significant potential for personalized models to improve the design of clinical treat-
ments for movement impairments. However, clinical and basic science researchers often
do not share the same perspective and are frequently skeptical about the potential benefits
of computational modeling for this clinical area. This perspective is understandable given
that computational treatment design for movement impairments has not yet produced
numerous clinical “wins.” However, this perspective also introduces funding challenges
that make rapid research progress difficult. For example, in the United States, the National
Science Foundation primarily uses engineering reviewers, funds innovative modeling
research, does not fund clinical research, and typically funds at a level that allows limited
research progress. In contrast, the National Institutes of Health uses a significant number
of clinical and basic science reviewers, primarily funds clinical and basic science research,
is less likely to fund innovative modeling research, but funds at a level that allows rapid
research progress. Thus, a potential funding mechanism gap exists for large innovative
neuromusculoskeletal modeling research projects. If more rapid advances are to be made,
modeling researchers need to provide clinical and basic science reviewers with strong,
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well-reasoned arguments for why model-based treatment design is worth pursuing. Below
are several observations to help with building such arguments.

To begin, consider the following question: What would it take to make neuromus-
culoskeletal modeling a clinically useful tool for improving the design of treatments for
movement impairments? To develop a computational process for treatment design, much
less than one might expect. Over the past 25 years, neuromusculoskeletal modeling research
has crept to the top of a precipice overlooking the “valley of death,” the proverbial chasm
between fundamental research on one side and clinical applicability on the other [24]. With
improvements in computational modeling capabilities and computer speed, the ability to
personalize a neuromusculoskeletal model to represent a specific patient and then use that
model to predict an optimal treatment for that patient is no longer science fiction [17,25–27].
“We have the technology.” [28] Instead, the main problem is making the computational
technology readily accessible by neuromusculoskeletal modeling researchers working in
collaboration with clinicians, which in turn is a problem tied to the funding mechanism
gap noted above.

Is it worth trying to cross the “valley of death” in the hope that computational model-
ing can transform the design of treatments for movement impairments? The author argues
that it is worth trying for at least four reasons. First, it is worth trying due to the signifi-
cance of the clinical problems being addressed. Osteoarthritis, stroke, spinal cord injury,
traumatic brain injury, and amputation affect roughly 19% of the U.S. adult population [29],
with osteoarthritis and stroke being leading causes of serious long-term disability in adults
worldwide [29–31]. Along with other conditions such as cerebral palsy, Parkinson’s disease,
and orthopedic cancer, these conditions often significantly impair movement, resulting in
substantial societal costs (e.g., health care, lost productivity), an increased risk of serious
secondary health conditions (e.g., heart disease, diabetes), a reduction or even loss of inde-
pendence, and a decreased quality of life [29,32]. Despite the significance of these clinical
problems and the uniqueness of each patient’s clinical situation, treatment design has not
progressed substantially beyond trial-and-error implementation of generic interventions
selected through subjective clinical judgment. Even when the latest technology is used
(e.g., rehabilitation robots, functional electrical stimulation), interventions are typically
standardized rather than customized to the unique needs of the patient [33,34]. This state of
affairs has contributed to suboptimal functional outcomes, with patients often recovering
less function than desired. For example, for individuals with physician-diagnosed arthritis,
approximately 44% experience significant functional limitations due to the disease [35].
Of those who receive total knee arthroplasty for knee osteoarthritis, as many as 17% are
not satisfied with the outcome [36]. For individuals who suffer a stroke, only 65% regain
ambulatory function, but their gait is typically slow, asymmetrical, and metabolically inef-
ficient [37–40]. Furthermore, only 50% of individuals with walking dysfunction following
stroke respond to intervention [41]. For individuals who suffer limb amputation, between
40% and 60% are not satisfied with their prosthesis [42]. For individuals who receive
limb-sparing hemipelvectomy surgery for pelvic sarcoma, few are able to regain normal
walking function [43,44]. We can and should do better. If individuals affected by impaired
movement are to recover the most function possible, a new approach—one that is more
effective, objective, and personalized—is needed for neurorehabilitation, surgical, and
prosthetic treatment design.

Second, it is worth trying since the same computational design approach has revolu-
tionized the design of products in the aerospace, automotive, heavy equipment, medical
device, and numerous other industries [45–50]. In the early 1990s, Boeing was faced with
the challenge of bringing a new long-range commercial airplane to market with signifi-
cantly reduced development time and cost. That airplane was the Boeing 777, the most
successful wide-body commercial airplane in aviation history [51,52]. To achieve its design
goals, Boeing made the bold decision to reject the costly and time-consuming traditional
design process involving trial-and-error design iterations performed experimentally on
physical prototypes. Instead, it followed a cheaper and faster emerging design process
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involving systematic design iterations performed computationally on virtual prototypes.
The Boeing 777 became the first airplane designed entirely on the computer [52,53], with
the final design being developed in reduced time, at reduced cost, and with increased flight
range, fuel efficiency, and mechanical reliability [52,54].

Twenty-five years later, it is impossible to fly in a new commercial aircraft or drive in
a new car that was not designed using computational modeling. Why? Because computa-
tional models identify better final designs than can be found through physical intuition and
manual iteration [45,55,56]. As noted in a recent BBC Future news story on airplane design,
“By trawling through an exhaustive set of [design] options, computers typically find ones
that a human would have missed” [45]. The Food and Drug Administration (FDA) in the
United States has also acknowledged the potential benefits of computational modeling
for the design of medical devices and interventions [57,58]. As recently stated by Dr. Tina
Morrison, Deputy Director of the FDA’s Center for Devices and Radiological Health:

“FDA recognizes the public health benefits offered by modeling and simulation, including
those in the area of in silico clinical trials (using individualized computer simulation
in development and or regulatory evaluation of medical products, medical devices, or
medical interventions).” [59]

Third, it is worth trying since the same computational design approach has already
demonstrated success for designing personalized interventions for other clinical problems
such as craniofacial bony defects [60–62] and occluded coronary arteries [57,63–65]. In
both cases, the interventions are personalized using patient-specific physics-based com-
puter models whose shapes are optimized. Unlike “black-box” machine learning models,
physics-based models extrapolate and can accurately predict function for situations (such
as post-treatment) outside the training boundaries. For craniofacial surgery, repeated
finite element simulations allow clinician-engineer teams to design and implant person-
alized craniofacial prostheses that restore a patient’s jaw function and aesthetics [60–62].
For coronary artery stenting procedures, large numbers of computational fluid dynam-
ics (CFD) simulations performed by the company HeartFlow allow clinician-engineer
teams to “identify significant coronary artery disease and determine the optimal treatment
pathway,” [63] reducing invasive coronary angiograms by 61%, unnecessary angiograms
by 81%, and healthcare costs by 26%, all while improving patient quality of life and
satisfaction [63,65,66]. Two related interventions designed using patient-specific physics-
based models are not far behind—nasal airway obstruction surgery planned using CFD
simulations [67] and atrial fibrillation ablation surgery planned using computational elec-
trophysiological simulations [64,68].

Fourth, it is worth trying since the same computational approach has already demon-
strated success for designing at least one personalized intervention for a movement
impairment—a novel rehabilitation treatment for medial knee osteoarthritis [69]. The
computational design process optimized the motion of a patient-specific full-body dynamic
skeletal model to predict a personalized gait modification that would minimize an external
indicator of medial knee contact force. The intervention was proven to work effectively
on the patient for whom it was designed, providing benefits similar to those of high tibial
osteotomy surgery simply by learning to walk differently [17]. It also reduced medial knee
contact force significantly in a subject implanted with an instrumented tibial prosthesis [70].
This novel intervention, which is now being investigated by research teams around the
world [71–77], was identified not by subjective clinical judgment but rather by an objective
computational model.

These four reasons suggest that it is both worthwhile and strategic to “help [neuro-
musculoskeletal modeling] researchers engage in clinical research—and cross the valley
of death” [24]. However, providing skeptical grant reviewers with a strong motivation is
not enough. Significant challenges to progress and significant needs must be addressed to
move neuromusculoskeletal modeling to the point of clinical utility.
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3. Challenges to Progress

At least five challenges help explain why neuromusculoskeletal modeling has not yet
progressed to the point of clinical utility.

3.1. Movement Data Alone Do Not Provide the Answer

Back in 1932, Schwartz and Heath stated in the Journal of Bone and Joint Surgery
(American): “Empiricism fostered by trial and error, must continue to govern the therapy of
abnormal function until measurement in some form improves the treatment of disabilities
affecting the back and lower extremities” [78]. Restated more succinctly, their hypothesis
was, “If we can measure it, we can fix it.” How has that hypothesis worked out over the
past 90 years? We can now measure more movement-related quantities than ever before.
Motion can be measured routinely using video-based motion capture technology, inertial
measurement units, and even raw video images. Forces exerted on the ground and the
environment can be measured using various types of load cells. Pressures under feet and
within prosthetic sockets can be measured using various types of pressure sensors. Muscle
electrical activity can be measured using surface and fine-wire EMG sensors. Highly
accurate bone motion can be measured using single-plane and bi-plane dynamic x-ray
techniques. Despite these advanced measurement capabilities, the resulting movement
data have yet to produce transformative improvements in the treatment of movement
impairments. The one exception is surgical treatment design for gait deficits caused
by cerebral palsy, where gait lab measurements often change surgical decisions [79,80].
However, even for that clinical application, different clinicians will make different surgical
recommendations given the same gait data for a specific patient [81]. Thus, as noted by
clinician and biomechanics researcher Richard Brand, “Although locomotion analysis has
always held great promise to aid the clinician, it has never lived up to its promise” [82].

Why has the ability to measure multiple aspects of human movement not lived up to its
promise? The problem is that movement data tell us what a patient does but not necessarily
how to fix the patient’s problem. Because the human neuromusculoskeletal system is a
highly nonlinear dynamic system, it is difficult to predict intuitively how a change in system
properties (e.g., changing the geometry of a bone, the length of a muscle, the attachment
point of a muscle, the control strategy of the central nervous system, or the design of an
assistive device) will change the patient’s movement function. The relationship between
muscle excitation (as measured by EMG) and muscle force is described by nonlinear
activation and contraction dynamics and nonlinear muscle force-length and force-velocity
relationships [83]. The relationship between muscle force and muscle moments is described
by nonlinear muscle moment arms [6]. Finally, the relationship between muscle moments
and resulting body motion is described by nonlinear skeletal dynamics. Each of these
nonlinearities contributes to the complexity of the human neuromusculoskeletal system,
making intuition about how a particular treatment will affect the patient’s functional
outcome unreliable. A more objective and reliable approach is needed to replace intuition.

3.2. Every Patient Is Unique

Each individual suffering from a movement impairment is unique neurologically,
physiologically, and/or anatomically. Depending on the type and cause of movement im-
pairment, individual differences can significantly impact the effectiveness of any proposed
surgical or rehabilitation intervention. For example, “At present, the stroke rehabilitation
field faces the challenge to tailor evidence-based treatment strategies to the needs of the
individual stroke patient” [84]. For this reason, personalized rather than generic neuromus-
culoskeletal models are needed to support model-based intervention design for clinical
conditions where patients exhibit significant heterogeneity [21,85]. Furthermore, without
appropriate personalization, neuromusculoskeletal models do not reliably predict internal
muscle and joint contact forces, body motion, or metabolic cost [25,86–94]. Unfortunately,
the model personalization process is challenging, as some model parameter values cannot
be measured directly and are only weakly observable. To make matters worse, individuals
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with movement impairments are likely to have important model parameter values that
differ substantially from typical values obtained from healthy individuals. As stated in
more general terms by the National Academy of Engineering, “Doctors have long known
that people differ in susceptibility to disease and response to medicines. But with little
guidance for understanding and adjusting to individual differences, treatments developed
have generally been standardized for the many, rather than the few.” [95]

3.3. People Change over Time

By definition, “biomechanics” is the application of engineering mechanics to biological
systems. One of the primary differences between a biological system and a man-made
system is that biological systems have the capacity to adapt, either positively or negatively,
over time. Such adaptation can influence both progression of and recovery from disease.
However, how the human neuromusculoskeletal system will adapt over time to a specific
clinical situation or intervention is difficult to simulate or predict. Apart from simulation
studies of bone [96–101] and muscle [102] adaptation in response to mechanical loading,
computational simulation of adaptation in the human neuromusculoskeletal system re-
mains understudied. As noted by Richard Brand, “[D]espite powerful investigational
tools, I would argue biomechanics has made a relatively minor impact in clinical practice
primarily because most studies fail to account for the major distinction between living
and nonliving systems: adaptability. While any study requires a clear question or hy-
pothesis or goal, without accounting for adaptability, these studies might well be termed
‘necromechanical’” [103]. Although treatments for movement impairments by definition
seek to elicit a change in function over time, most biomechanical research investigates only
a snapshot in time and thus might be better labeled as necromechanical.

At least two methods exist for simulating neuromusculoskeletal adaptation. The
first method is harder and involves simulating the process of adaptation. This method
requires the development of fundamental adaptation principles that describe how the
neuromusculoskeletal system changes gradually in response to an intervention, a change in
mechanical environment, or simply the progression of time. For example, Reinkensmeyer
and colleagues have suggested that the ability to model time-dependent mechanisms of
neuroplasticity and motor learning, which reflect neural adaptation, could help predict a
patient’s potential for recovery [104]. The second method is easier and involves predicting
the outcome of adaptation. This method relies on identification of optimization principles
that successfully predict a patient’s functional outcome once recovery has plateaued. For
example, Meyer and colleagues have shown that minimization of changes in the modular
control signals of an individual post-stroke can successfully predict how the individual
will walk under new conditions [25]. For both methods, significant additional research is
needed to identify appropriate methods for modeling and simulating adaptation so that
functional outcome can be predicted reliably for individual patients.

3.4. Validation Is Often Weak

Although a computational neuromusculoskeletal model is only as useful as its ability
to predict reality, the research community has made only limited progress at validating
its predictions of human movement and the internal forces experienced by muscles, liga-
ments, and articular surfaces [105]. Since muscles are the actuators of human movement,
unvalidated muscle force predictions have, in turn, limited progress in using computa-
tional models to predict post-treatment patient function for different treatment scenarios.
Prediction of the internal forces experienced by muscles, ligaments, and articular surfaces
is challenging due to the muscle redundancy problem [106–109]. Because the human
body possesses approximately three times more muscles than degrees of freedom in the
skeleton, no unique mathematical solution exists for the muscle forces generated during
human movement.

The main reason for limited model validation is the lack of direct in vivo measure-
ments of internal forces before treatment and of internal forces and patient function after
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treatment. In vivo measurement of hip and knee contact forces during walking and other
activities has become possible through the use of instrumented implants [110–122]. Though
limited to a small number of patients with implanted rather than healthy joints, these mea-
surements provide valuable information about the in vivo loads experienced by articular
contact surfaces during various functional activities. Several research groups have shared
extensive human movement data sets that include in vivo hip or knee contact force mea-
surements along with video motion capture, ground reaction force, EMG, single- or bi-plane
fluoroscopy, and CT and/or MR data [121–123]. Some research groups are making exten-
sive use of these unique shared data sets for model validation purposes. However, other
research groups have not used them and consequently are now receiving negative grant
proposal reviews in the United States from reviewers who are aware of these validation data
sets. Direct measurement of muscle or tendon forces in vivo has historically been possible
only under special circumstances [124–129]. However, researchers have recently developed
a novel shear wave tensiometer to measure tendon forces in vivo during human move-
ment [130,131]. These measurements are likely to become the gold standard for validating
muscle force predictions generated by computational neuromusculoskeletal models.

An associated reason for limited model validation is that even when unique experi-
mental data sets exist, some research groups are unwilling to share them with the research
community. The main reason is the fear of generating research competition that could result
in getting “scooped” on grant proposals or journal publications. To facilitate the “Grand
Challenge Competition to Predict In Vivo Knee Loads,” the author and colleagues [121]
freely disseminated the most widely utilized human movement data sets to date with over
18,000 downloads from SimTK [132]. Since the release of the first data set in 2011, the
author’s research group has yet to be “scooped” in any grant proposal or journal publica-
tion, even though the data sets continue to be used extensively by the research community.
While freely distributing these unique data sets has been nothing but beneficial for the
author’s research program, taking the same step will likely require a “leap of faith” for
some research groups. Regardless, funding agencies and publishers are providing a strong
nudge by requiring that collected data sets used in publications be made freely available to
the entire research community [133].

To date, no shared human movement data sets have been published that provide
extensive measurements of patient function both before and after treatment, along with a
quantitative and qualitative description of the treatment decisions implemented for the
patient. Such data sets are needed so that model predictions of a patient’s post-treatment
function can be validated given the patient’s pre-treatment movement data and the treat-
ment plan implemented clinically. Since inaccurate musculoskeletal model predictions
could lead to the design of ineffective or even harmful treatments, it is imperative that
the neuromusculoskeletal modeling research community makes model validation efforts a
higher priority.

3.5. Prediction of Post-Treatment Function Is Difficult

Even given a personalized neuromusculoskeletal model, it remains challenging to
predict computationally how a particular patient will function following a planned inter-
vention. This difficulty arises for at least two reasons. The first reason involves challenges in
generating predictive simulations of human movement. In 2001, Anderson and Pandy [134]
published a seminal paper on predicting human walking using a full-body neuromuscu-
loskeletal model. The walking model was three-dimensional (3D), possessed 23 degrees of
freedom controlled by 54 muscles, and included deformable foot-ground contact. 10,000 h
of CPU time on a cluster was required to solve the nonlinear parameter optimization
problem used to predict the walking motion. That study became the standard against
which all other human walking predictions would be evaluated, and it inspired subsequent
efforts to generate 3D walking predictions [17,25,26,135–143]. However, even today, few
research groups possess the knowledge and technical expertise needed to generate complex
muscle-actuated 3D predictions of human movement.
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The second reason why prediction of patient function under novel conditions is diffi-
cult involves challenges in modeling a patient’s neural control strategy. To generate reliable
predictions of a patient’s post-treatment movement function, researchers must be able to
predict how a patient’s neural control strategy will change for the post-treatment conditions.
When pain or fear of movement is a significant contributing factor to functional impairment,
prediction of the patient’s post-treatment neural control strategy is especially challenging
and will require further research. Recent studies have shown that to predict patient function
under novel conditions, personalized neural control models are likely to be necessary [25],
and furthermore, that pre-treatment muscle synergies may facilitate the prediction of post-
treatment muscle excitations [144]. While numerous studies exist that describe complex,
realistic sensorimotor control models incorporating elements such as supraspinal control,
modularity, central pattern generators, and proprioceptive feedback [22,145–159], these
models are generic rather than personalized and are typically applied to simplified planar
dynamic systems. More realistic musculoskeletal models have been coupled with simpler
neural control models employing modular control [25–27,136,137,160–163] or propriocep-
tive feedback [164–166], but these models have yet to be evaluated in clinical treatment
design scenarios. Since human movement impairments often involve a significant neu-
rological component (e.g., stroke, spinal cord injury, cerebral palsy, even osteoarthritis),
modeling approaches that can reliably predict a patient’s neural control strategy following
a planned intervention are important to develop.

4. Description of Needs

To address these five challenges and turn neuromusculoskeletal modeling into a clini-
cally useful tool, the neuromusculoskeletal modeling research community must address at
least four categories of needs: (1) clinical, (2) technical, (3) collaboration, and (4) practical.
Clinical needs address the scope of clinical problems that can potentially be tackled with
computational models and the paradigm needed for using models to design personalized
interventions. Technical needs address the scope of technical developments required for
model-based treatment design to become broadly feasible for the neuromusculoskeletal
modeling research community. Collaboration needs address the scope of collaboration
between clinicians and neuromusculoskeletal modeling researchers needed to move model-
designed treatments from benchtop to bedside. Finally, practical needs address the scope
of additional issues that must be addressed for neuromusculoskeletal modeling to become
clinically useful.

4.1. Clinical Needs

Only certain clinical problems involving impaired movement are likely to benefit
from a treatment design approach based on computational modeling. For example, there
would be little benefit to performing computational modeling for clinical problems where
“cookie-cutter” treatment plans already work well. At the other extreme, there would
also be little benefit for clinical problems where genetic and molecular factors play a
predominant role. Clinical problems involving orthopedic surgery, physical rehabilitation,
or neurorehabilitation are likely to benefit the most from a computational approach to
treatment design.

Clinical situations where a patient could benefit from computational treatment de-
sign can be identified by the presence of three elements. The first element is a “clinical
measure” [82]. This element is logical since computational models produce quantitative
predictions. As stated by Richard Brand, “The ‘acid tests’ of clinical usefulness of any
measure ... are whether that measure predicts a different outcome than would be pre-
dicted without the measure, or whether the measure suggests a different treatment (or a
different implementation of the same treatment) than would be recommended without
the measure” [82]. In essence, an appropriate clinical measure will define a quantifiable
“target” that the clinician wants to “hit” through treatment. Clinical measures that meet
these criteria will be highly correlated with some direct measure of clinical outcome, such
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as slowing disease progression, decreasing pain, or increasing function. Examples of clini-
cal measures include medial knee contact force or the peak knee adduction moment for
individuals with medial knee osteoarthritis or walking speed and bilateral symmetry for
individuals with stroke or Parkinson’s disease. Identification of the best clinical measure
for any particular patient and movement impairment will require the combined input of
clinicians, the patient, and researchers.

The second element is “clinical requirements.” For computational models to be used
for orthopedic surgery, physical rehabilitation, or neurorehabilitation treatment design, five
clinical requirements should be met. First, the movement impairment should be influenced
heavily by patient-specific factors. Such factors include unique neurological, physiological,
or anatomical characteristics, as noted above. Second, standard treatment approaches
should be either ineffective or inconsistent at restoring movement function. If standard
treatment approaches already work well, then a computational approach to treatment
design is unnecessary. Third, a clinical measure can be identified that can quantify initial
clinical state and final treatment outcome. Without such a measure, the computational
model would have no quantitative “target” to be “hit” through treatment. Fourth, clinical
treatment parameters can be identified that can be changed by the clinician, can be modified
in the model, and can affect the clinical measure. Identification of appropriate clinical
treatment parameters requires close collaboration between clinician and researcher. Fifth,
the clinical measure can be measured in the lab prior to treatment, predicted with a
computational model to design the treatment, and measured again in the lab following
the treatment. This process of “closing the loop” is essential for evaluating whether a
computational model can predict functional outcome initially for treatments not designed
with the model and subsequently for treatments designed using the model.

The third element is a “clinical model.” Three model requirements should be met for a
computational model to be used for clinical treatment design. First, a clinical model should
be predictive, capable of predicting how the clinical measure will change in response
to a proposed treatment implementation. Second, a clinical model should be minimally
complex, containing only those model elements necessary to predict the clinical measure
reliably for an individual patient. Third, a clinical model should be patient-specific, capa-
ble of having relevant model parameter values calibrated to the patient’s pre-treatment
movement and other data.

A real-life example involving computational design of a personalized rehabilitation
treatment for medial knee osteoarthritis demonstrates how these three elements work
together [17]. The patient studied had knee pain due to medial compartment knee os-
teoarthritis and was seeking an effective non-surgical treatment option. The goal became
to design a modified gait pattern that reduced the patient’s knee pain. The selected clinical
measure was the peak knee adduction moment. This quantity is highly correlated with the
rate of medial knee osteoarthritis progression [167], and a low value following high tibial
osteotomy surgery is associated with the best long-term functional outcome [168]. For clin-
ical requirements, knee loading is heavily influenced by patient-specific leg alignment and
walking pattern, standard non-surgical treatment approaches are ineffective at relieving
pain and restoring walking function, the peak knee adduction moment can quantify initial
clinical state and final treatment outcome, the subject’s walking motion can be modified
and will change the peak knee adduction moment, and finally the peak knee adduction
moment can be measured in the lab prior to treatment, predicted with a computational
walking model to design treatment, and measured again in the lab following treatment.
The clinical model predicted the patient’s peak knee adduction moment for different mod-
ified walking motions, was minimally complex by modeling only the skeleton (i.e., no
muscle or neural control models) and omitting foot-ground contact models, and utilized
a patient-specific kinematic structure and mass distribution. An optimization problem
was formulated to predict the patient-specific gait modifications that would minimize the
patient’s knee adduction moment while still producing a normal-looking walking motion.
The optimization predicted that a modified gait pattern involving knee medialization
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during stance phase could produce a 34% reduction in the patient’s peak knee adduction
moment. After learning to perform the predicted gait modification, the patient was able to
achieve a 37% reduction when retested in a gait lab [17]. This reduction was comparable to
that expected from high tibial osteotomy surgery [169] and decreased the patient’s risk of
osteoarthritis progression by a factor of 10 [167]. The patient incorporated the modified gait
pattern into his daily life, experienced significant pain reduction, and was able to return to
running and recreational sports activities.

4.2. Technical Needs

While the potential is great for using computational models to design more effective
treatments for movement impairments, realization of this potential is currently limited by
two technical challenges. The first technical challenge involves model personalization. As
noted above, for clinical conditions where every patient is unique, personalized models are
needed to support model-based intervention design. For movement impairments in par-
ticular, it can be beneficial to personalize four aspects of a patient’s neuromusculoskeletal
model using the patient’s pre-treatment movement and neurophysiological data [25,26],
where the model elements requiring personalization will depend on the clinical problem at
hand. These four aspects are: (1) joint model personalization, where parameters defining
patient-specific joint centers and functional axes are calibrated [170–176], (2) muscle-tendon
model personalization, where parameters defining patient-specific Hill-type muscle force
generation [83,88,90,177–184] and (if desired) surrogate musculoskeletal geometry [185,186]
are calibrated, (3) foot-ground contact model personalization (for walking impairments),
where parameters defining patient-specific deformable ground contact force generation are
calibrated [187], and (4) neural control model personalization, where parameters defining
a patient-specific neural control structure are calibrated [25].

While computational methods already exist for personalizing each of these four
aspects of a neuromusculoskeletal model (Table 1, 2nd through 5th columns), few research
groups are personalizing their models. Furthermore, those that do typically personalize
only one or two aspects of their models (review Table 1). The main reason is simple—model
personalization is hard, requiring development of specialized optimization approaches
that identify model parameter values that fit a patient’s movement and neurophysiological
data as closely as possible. Even within the author’s research group where all four aspects
are personalized [25,26], it takes a new Ph.D. student six months or longer to learn how to
use the lab’s existing model personalization processes. While musculoskeletal modeling
software such as OpenSim [19,188] and AnyBody [189] facilitate the process of constructing
models and performing standard analyses (e.g., model scaling, inverse kinematics, inverse
dynamics, forward dynamics, static optimization), these tools do not currently provide
standard methods for personalizing these four model aspects. Realizing this gap, the
Stanford OpenSim team recently noted, “More development is needed to streamline the
process of creating and validating simulations of individuals with impairments” [19].

The second technical challenge involves treatment optimization. Treatment optimiza-
tion adjusts neural control signals along with surgical, neural control, internal implant,
and/or external device parameters in the patient’s personalized model to achieve a speci-
fied treatment goal (e.g., maximize walking speed and symmetry). As recently stated by
the OpenSim team, “The prediction of outcome due to treatment or intervention (surgery,
physical training, biofeedback, etc.) remains the ultimate goal of musculoskeletal modeling
and simulation” [19]. However, even if an appropriately personalized neuromusculoskele-
tal model is available, using that model to predict how the patient will function following a
specific type of intervention or a specific implementation of the intervention remains chal-
lenging. Since Anderson and Pandy’s foundational predictive walking simulation [134],
a number of research groups have developed the capability to predict human movement
under novel conditions (Table 1, last column). Despite these advances, most predictive
simulations of human movement use scaled generic two-dimensional models rather than
personalized 3D models and are rarely performed for treatment optimization purposes.
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Furthermore, most predictive movement simulations solve a tracking optimization prob-
lem, where the goal is to reproduce an experimentally measured motion rather than predict
a new motion for a post-treatment situation. Similar to model personalization, the main
reason why treatment optimization has not gained widespread use is that it is hard, again
requiring specialized optimization approaches, in this case to predict how the patient will
function after a planned intervention is applied to the patient’s model.

Table 1. Overview of neuromusculoskeletal modeling research involving model personalization and motion prediction
using optimization methods.

Model Personalization

Researchers Joint Structure Muscle-Tendon Foot-Ground
Contact Neural Control Motion Prediction

Ton van den Bogert [170] [190–197]
Tom Buchanan/Kurt

Manal [89,179,184,198–202]

Javier Cuadrado [203]
Scott Delp [204–209]

Dario Farina/Massimo
Sartori [161,183,210–212]

Josep Font-Llagunes [213,214]
B.J. Fregly [17,91,172,173] [25,90] [25,187,215] [25,26,216] [17,25,26,173,217–220]

Ilse Jonkers/Friedl De
Groote [27,221] [27] [27,135,136,222,223]

David Lloyd/Thor
Besier [161,179,183,210,211,224]

John McPhee [225–227] [225,228–231]
Ross Miller [138,139,232,233]

Rick Neptune [137,234–236] [12,137,204,234–238]
Marcus Pandy [8,134,205–207,239–242]

Brian Umberger [232,243–245]

Realizing this challenge, neuromusculoskeletal modeling researchers have explored
different nonlinear optimization methods derived from the field of optimal control for
performing predictive simulations of human movement. Early efforts employed a direct
shooting method [8,246]. For this method, the optimization design variables are model
controls (e.g., muscle excitations), repeated forward dynamic simulations are performed ex-
plicitly through numerical integration, and individual time frames are solved sequentially
by time marching. The disadvantages of this approach are that repeated forward dynamic
simulations are susceptible to numerical integration drift and other integration problems,
especially when intermittent foot-ground contact is involved, plus unstable movements
such as walking cannot be predicted without some form of stabilizing feedback control. To
circumvent these problems, researchers have recently converged on direct collocation as
the preferred method for predicting human movement [25,26,190,232,242,243,245,247,248].
For this method, the optimization design variables are model controls as well as states,
repeated forward dynamic simulations are performed implicitly as part of the optimization
problem formulation, and all time frames are solved simultaneously, thereby eliminating
time marching. While this approach produces a larger nonlinear optimization problem,
it eliminates numerical integration drift and stability problems, and it is generally more
reliable for predicting new motions. While some researchers have implemented their own
direct collocation optimal control methods [190,191,242,243,245,247,249–251], implemen-
tation of these methods is non-trivial, leading other researchers to use academic direct
collocation software such as GPOPS-II [25,26], CasADi [135,136], and OpenSim Moco [248].
Despite the availability of these programs, incorporating a generic or personalized neuro-
musculoskeletal model into one of these packages remains challenging, limiting the use of
this approach by the neuromusculoskeletal modeling research community.

The common thread in these two technical challenges is ease of use, which includes
ease of implementation. Ideally in a matter of hours, researchers would be able to personal-
ize a neuromusculoskeletal model to a patient’s movement and neurophysiological data
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and then use the model to predict the optimal treatment for the patient. Given the computa-
tional technologies and methods that exist today, the main reason this ideal situation is not
already a reality (at least for some clinical problems) is the lack of the software tools neces-
sary to make the model personalization and treatment optimization processes fast and easy
to set up and perform. As stated in a recently review article on the use of musculoskeletal
models in clinical practice, “A specific focus should be increasing the access and usability
for non-expert users” [252]. For model personalization and treatment optimization to
become widespread, the barriers to entry need to be lowered substantially and the entire
process needs to be made easily accessible to the broader neuromusculoskeletal modeling
research community.

4.3. Collaboration Needs

Even if the technical needs described above were satisfied, a significant collaboration
challenge would still exist. This challenge involves finding clinical and neuromusculoskele-
tal modeling researchers who have the mindsets needed to work effectively together.

An illustration is helpful for understanding the joint mindset needed for effective
collaboration. The illustration involves two children playing in the same sandbox and high-
lights the need for a concept called “shared intellectual investment.” One child represents
a clinician, the other child represents a modeler, and the sandbox represents the clinical
problem at hand. In the least productive scenario, the clinician says to the modeler, “I don’t
need modeling capabilities. Why are you in my sandbox?” Similarly, the modeler says to
the clinician, “I don’t need clinical perspective. Why are you in my sandbox?” While rarely
stated explicitly, this scenario is probably the most common, contributing greatly to the
lack of progress. In a slightly more productive scenario, the clinician says to the modeler,
“Come work on my clinical problem. Come build in my sandbox.” In this case, intellectual
investment in solving the clinical problem comes primarily from the clinical side. Similarly,
the modeler says to the clinician, “Come use my models. Come build in my sandbox.”
Here, intellectual investment comes primarily from the modeling side. While this scenario
is better than the first one, it is still far from ideal, as each side sees itself as independent
from the other. In the most productive scenario, the clinician and modeler say to each other,
“How could modeling help clinical problems? Let’s build in the sandbox together.” For this
scenario, the sandbox becomes a shared space of shared intellectual investment, where the
clinician wants to work closely with the modeler and vice versa. Both sides enter into the
sandbox together with humility and appreciation for the capabilities and perspective that
the other side brings to the problem. Though such collaborations exist today, they are far
less common than they need to be for computational models to make a significant positive
impact on treatment design for movement impairments.

Creation of a collaboration marked by “shared intellectual investment” requires a
commitment from both the clinician and the modeler. The clinician needs to be willing to
teach the modeler about the details of the clinical problem and to document and measure
the treatment decisions implemented in the patient’s treatment plan. That information is
critical to allow the modeler to evaluate post-treatment predictions of patient function given
a model of the patient constructed from pre-treatment data and the treatment decisions
implemented by the clinician. On the other side, the modeler needs to be willing to teach
the clinician about the quantities that models can reliably predict and to learn as much
as possible about the issues present in the clinical problem. While the urgency of daily
required tasks (e.g., surgery, clinical care, teaching, research, administration) makes this
additional effort inconvenient for both sides, it is a long-term investment with the potential
to pay high dividends.

4.4. Practical Needs

Beyond the previous three categories of needs, a fourth category involves practical
considerations that are not rocket science but rather strategic decisions. One practical
consideration is the focus of neuromusculoskeletal modeling research. Engineering re-
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searchers love technology development. It can be difficult for us to know when to stop
developing technology and start applying the technology we have been developing to
important problems. It is the author’s belief that a subset of movement impairment clinical
problems exists today that could benefit greatly from existing computational modeling
methods. A greater focus on identifying those problems, rather than on developing more
technology, could lead to the initial “clinical wins” that would help propel model-based
treatment design forward.

Another practical consideration is the need for extensive experimental data sets
that would allow neuromusculoskeletal modeling researchers to develop and evaluate
model-based treatment design methods. Such data sets would be collected from specific
patients and include pre- and post-treatment (following plateau in recovery) movement
and neurophysiological data, along with documented and measured treatment decisions
implemented by the clinician. The specific experimental data needed would depend on the
clinical problem but could include video motion capture, EMG, and (for walking) ground
reaction data, along with medical imaging data (e.g., CT and/or MR). Pre- and post-
treatment imaging data could be valuable for improving personalization of the patient’s
pre-treatment model and measuring certain treatment decisions made by the clinician
(e.g., locations of bone cuts). Having pre- and post-treatment data and treatment decisions
available for specific patients would allow researchers to apply the actual treatment deci-
sions to the patient’s pre-treatment model and predict the patient’s post-treatment function.
Differences between measured and predicted post-treatment function would then be used
to improve and refine the modeling methods without the risk of negatively impacting the
patient’s clinical care. Once retrospective prediction of post-treatment patient function can
be performed reliably, prospective prediction of post-treatment function could begin to
be utilized clinically as long as any necessary regulatory approvals had been addressed.
The author is aware of only one study to date that has “closed the loop” by validating
a prospective patient-specific model-based prediction of post-treatment function using
post-treatment movement data collected from the patient [17].

Since few neuromusculoskeletal modeling research groups possess the financial, exper-
imental, and clinical resources needed to generate pre- and post-treatment movement and
neurophysiological data, the research community will need well-curated data sets to begin
learning how to “close the loop” for model-based treatment design. One way to accelerate
the generation and distribution of such data sets would be to organize international com-
petitions similar to the “Knee Grand Challenge Competition” organized previously by the
author and colleagues [121]. For example, modelers and clinicians together could develop
a “Cerebral Palsy Grand Challenge Competition,” “Stroke Grand Challenge Competition,”
or “Pelvic Sarcoma Grand Challenge Competition.” Competition organizers would provide
pre-treatment movement and neurophysiological data collected from a specific patient,
along with details of the treatment plan implemented by the clinician. Competing research
teams would create a personalized neuromusculoskeletal model of the patient using the
pre-treatment data, implement the patient’s actual treatment plan in the patient’s model,
and then generate a blinded post-treatment prediction of the specified clinical measure. The
blinded prediction would be submitted to the competition organizers, and only then would
competitors be given the patient’s post-treatment movement and neurophysiological data,
including the specified clinical measure, to evaluate their predictions and identify the weak
links in their modeling methods. The best blinded predictions, and the subsequent model-
ing modifications that improved the predictions, would be presented in a special session of
an annual conference and published in a special issue of a relevant journal, similar to the
approach used successfully for the “Knee Grand Challenge Competition.” Following sev-
eral competitions, designing and evaluating treatments for movement impairments would
become common practice for at least a segment of the neuromusculoskeletal modeling
research community.
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5. Opportunities for Enhancement

Thus far, this article has focused on how to get neuromusculoskeletal modeling to
the point of clinical utility using commonly-employed modeling methods (i.e., rigid body
dynamic, geometric, and lumped parameter) and commonly-available experimental data
(i.e., video motion capture, ground reaction force, and EMG). This focus is consistent
with the well-known principle of minimum model complexity–engineers should use the
minimum complexity model that can reliably predict the quantities of interest. In the
author’s opinion, significant clinical utility can be achieved in the near future without
moving beyond commonly-used and minimally-complex modeling and experimental
approaches. Furthermore, personalized modeling and predictive simulation capabilities
that are based on commonly-used approaches are the most likely to gain widespread
use by the neuromusculoskeletal modeling research community. At the same time, if
researchers are willing to go beyond common approaches, then related research areas
employing more complex modeling and experimental methods could enhance model
fidelity, personalization, and utilization.

5.1. Enhanced Model Fidelity

Opportunities for enhancement exist for generating higher fidelity neuromusculo-
skeletal models that capture short- and long-term tissue-level behavior. For some clinical
problems where functional outcome depends on tissue-level stresses and strains, rigid
body skeletal models controlled by lumped-parameter Hill-type muscle-tendon models
will not be sufficient. To capture tissue-level effects in muscles, ligaments, bones, and/or
articular cartilage, finite element (FE) models with deformable tissue properties are the
logical choice [102,253–263]. In muscles, for example, non-uniform tissue-level behavior
could be important for predicting muscle hypertrophy or injury in response to exercise, the
effects of aging and disuse, the progression of muscular dystrophy, and muscle function in
microgravity. In ligaments, it could be important for predicting failure mechanisms and
the best way to perform reconstructions. In bones, it could be important for predicting the
risk of fracture due to unfavorable loading conditions, osteoporosis, or joint replacement.
In articular cartilage, it could be important for predicting conditions that initiate, accelerate,
or slow the development of osteoarthritis.

For more complex clinical problems where functional outcome depends on how mus-
cle, bone, and/or cartilage tissue changes over time, FE models can be combined with
either empirical or agent-based adaptation models. As noted earlier, bone adaptation to an
altered loading environment is the classic historical example of adaptive simulations. How-
ever, recent work has extended adaptive FE simulation methods to muscle and articular
cartilage as well. For example, 3D FE models of muscle have been combined with agent-
based adaptation models to simulate disease-related changes in muscle function caused
by muscular dystrophy [255] and to propose improved tissue regeneration approaches
to treat severe muscle injuries [102]. For articular cartilage, a specimen-specific 3D FE
model of a patellofemoral joint has been coupled with an empirical adaptation model to
predict articular cartilage wear over time during in vitro testing [264]. The challenge with
adaptive simulations is that a new FE analysis must be performed each time the adaptation
model updates the FE model’s tissue properties. Furthermore, since it is unrealistic to
simulate thousands or millions of motion cycles, the number of cycles for which the most
recent FE simulation results can be extrapolated must be determined (see [265,266] for
further details).

5.2. Enhanced Model Personalization

Opportunities for enhancement also exist for personalizing important properties of
musculoskeletal models. Personalization of musculoskeletal geometry can be enhanced
using imaging data and recently published software tools. These tools, which include
NMSBuilder [267], the MAP Client [268], and STAPLE [269], can turn patient imaging
(e.g., CT, MR) and/or surface marker data into personalized geometric OpenSim models
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(for a comparison of the capabilities of these three tools, see [270]). Together, such tools
allow for generation of personalized bone geometries, muscle lines of action, and/or
joint definitions, significantly improving the speed and accuracy with which personalized
geometric musculoskeletal models can be created. A recent study has also provided a
detailed step-by-step procedure for creating subject-specific lower limb musculoskeletal
geometric models from MR imaging data [271].

Personalization of model parameter values can be enhanced using probabilistic model-
ing methods. Probabilistic modeling samples combinations of model inputs to characterize
the distribution of corresponding model outputs. This approach can help identify model
parameter values to which the outputs of interest are sensitive, thereby revealing which
parameter values are worth personalizing and which are not [272,273]. For example,
one probabilistic modeling study showed that when calculating lower extremity inverse
dynamic joint moments during walking, errors in body segment mass properties have
little influence, while errors in joint positions and orientations can have a significant in-
fluence [91]. Other probabilistic modeling studies have investigated which parameters
in Hill-type muscle-tendon models and geometric musculoskeletal models are the most
important to personalize when estimating lower extremity muscle forces during walk-
ing [274–277]. These studies have reported that optimal muscle fiber length, tendon slack
length, and peak isometric force in Hill-type muscle-tendon models [274–276] and the
attachment points of the iliacus and psoas muscles, but not those of other muscles [277],
are the most critical to calibrate to subject data when estimating muscle forces.

Personalization of model parameter values can also be enhanced using various imag-
ing methods. In some cases, imaging methods permit direct measurement of model
parameter values. For example, magnetic resonance imaging (MRI) can be used to mea-
sure in vivo muscle volumes [278], which can then be converted to muscle peak isometric
forces. Diffusion-tensor MRI can be used to perform in vivo measurements of muscle
pennation angle and fiber type distributions [279,280]. Ultrasonography can be used
to identify subject-specific force-strain parameters for tendons and optimal fiber length
and pennation angle for muscles [281–283]. In other cases, imaging methods provide
novel in vivo measurements that could improve estimation of model parameter values
using optimization methods. For example, tendon forces measured in vivo by shear wave
tensiometry [130,131] could be employed as additional constraints when personalizing
muscle-tendon model parameter values using EMG, kinematic, and kinetic data.

5.3. Enhanced Model Utilization

Finally, opportunities for enhancement exist for making utilization of complex models
faster and easier through surrogate modeling methods. Surrogate modeling is a special
case of supervised machine learning that fits a computationally “fast” model to the input-
output characteristics of a computationally “slow” model, simulation, or optimization
(for a broader perspective on the use of machine learning methods for personalizing
neuromusculoskeletal models, see [284]). The surrogate model essentially becomes a fast
black-box model that replaces the slow original model, simulation, or optimization.

The surrogate modeling process generally involves a sequence of six steps [285]. First,
identify one or more outputs of interest from the model, simulation, or optimization. Sec-
ond, identify the inputs that affect the outputs of interest, where the number of inputs
will ideally be small (e.g., <10) so that the surrogate model fitting process will not become
overly complex. Third, sample combinations of inputs (called “sample points”) within
pre-defined bounds using design of experiments (e.g., Latin hypercube) to spread out the
sample points evenly throughout the (possibly high-dimensional) design space. Fourth,
perform an analysis, simulation, or optimization for each sample point to generate the cor-
responding outputs of interest. Fifth, fit each output of interest as a function of the sample
point inputs using a black box fitting method (e.g., polynomial response surfaces, Kriging,
support vector machines, artificial neural networks). Sixth, evaluate the accuracy of the
resulting surrogate models using sample points not included in the fitting process. While it
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can take hours or days of computation time to evaluate all of the input combinations, this
computational cost is paid only once upfront, and the final surrogate models will be orders
of magnitude faster.

For neuromusculoskeletal modeling applications, surrogate models have two primary
benefits. First, surrogate models can make “slow” computational models “fast” for use
within other “fast” models. In the context of neuromusculoskeletal modeling, the “fast”
model is typically a rigid body dynamic skeletal model controlled by lumped-parameter
muscle-tendon models, while the “slow” model is typically a geometric musculoskeletal
model or a tissue-level elastic continuum model. Since the mechanics of the slow and fast
models interact, the two models should ideally be simulated simultaneously rather than
sequentially. Surrogate models have been developed to calculate muscle-tendon lengths
and moment arms produced by geometric musculoskeletal models [185,186], stresses in
foot tissues produced by FE models [192], strain fields in long bones produced by FE
models [286], and contact forces, stresses, and/or wear in natural and artificial knees
produced by FE or elastic foundation models [220,287–292].

Second, surrogate models can make “slow” computational simulations or optimiza-
tions “fast” for clinical implementation. Performing treatment design iterations with a
physics-based model can require extensive computation time. If the clinician is satis-
fied with the final predicted treatment design, then long computation time may not be a
problem. However, if the clinician would like to interact with the model and observe in
real time the effect of different treatment decisions, then long computation time will be
unacceptable. To circumvent this problem, one can fit a surrogate model to the outputs
(e.g., clinical measures) of repeated simulations or optimizations [173,293]. The resulting
surrogate models would allow the clinician to evaluate different treatment scenarios in real
time. This approach has been used successfully with FDA approval by HeartFlow [63],
where the barrier to clinical implementation was excessive computation time for thousands
of CFD simulations. The same surrogate models can also be used to perform ultra-fast
optimizations [285]. Clinicians and engineers working together could rapidly investigate
tradeoffs in functional outcomes for different decisions about the relative importance of
different simulation outputs included in the cost function.

6. Conclusions

In this article, the author has provided a conceptual blueprint for how neuromuscu-
loskeletal models can become clinically useful. At the core of this blueprint is the need to
make model personalization and treatment optimization easy to implement and easy to
use by the broad neuromusculoskeletal modeling research community. In addition to moti-
vating the use of neuromusculoskeletal models to improve treatment design for movement
impairments, the author has highlighted challenges to progress along with suggestions
for overcoming them, a description of needs with recommendations for addressing them,
and opportunities for enhancement involving more complex modeling and experimental
methods. In the short term, if a subset of movement impairment problems can be identified
to which existing neuromusculoskeletal modeling methods could be applied effectively,
the field could generate some initial clinical “wins” that would help propel it across the
threshold of clinical utility and open up a new paradigm for treatment design. In the long
term, model-based treatment design for movement impairments will need the endorse-
ment of regulatory (e.g., the FDA in the United States, the European Medicines Agency
in Europe) and health technology assessment (e.g., the Health Technology Assessment
Programme in the United Kingdom) agencies, which would certify the clinical utility of
the approach and facilitate crossing the “valley of death.” If computational modeling and
simulation can do for the design of movement impairment treatments even a fraction of
what they have done for the design of airplanes and automobiles, their clinical impact will
be transformative.
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