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Abstract: The purpose of the present paper is the identification of optimal trajectories of quadruped
robots through genetic algorithms. The method is based on the identification of the optimal time
history of forces and torques exchanged between the ground and the body, without any constraints on
leg kinematics. The solutions show how it is possible to obtain similar trajectories to those of a horse’s
walk but obtaining better performance in terms of energy cost. Finally, a map of the optimal gaits
found according to the different speeds is presented, identifying the transition threshold between the
walk and the trot as a function of the total energy spent.

Keywords: gait optimization; quadruped robot; genetic algorithm; quadrupedal locomotion; evolu-
tionary programming; optimal contact forces; cost of transport

1. Introduction

Nature has always been a source of inspiration for engineers and scientists who tried to
replicate or mimick natural bio-mechanisms. In fact, this can be a smart strategy, since any
natural living being is a highly optimized system over millions of years of evolution [1–3].
Magnificent examples of engineering bio-inspired devices date from very ancient Magna
Greece times, as the Archita’s dove automaton, and a large number of automata within
the Erone’s tradition. The masterful Leonardo’s machines, such as the lion or the knight
automaton, or the flying machines, some inspired by the flapping wings of birds, are also
astonishing examples.

To date, the development of automatic systems, in particular quadrupedal robots,
has found great motivation in the field of human assistance. To assist and cooperate with
humans, robots must be able to move easily in workplaces originally designed according to
human needs [4]. For example, climbing stairs, avoiding obstacles, or opening doors [5,6].
Among the many technical difficulties to be faced and solved, one of the most important
aspects is related to portability and its duration. This scenario justifies the need to optimize
the power and energy of locomotion to make these systems more efficient, compact,
characterized by limited energy consumption, and using small size and weight actuators.

Interesting questions arise: is it possible to conceive more efficient quadrupeds
than those proposed by nature? Is it possible to disclose a different kind of gaits for
a quadrupedal mechanism as the product of a strict optimization process? For example,
depending on speed, energy consumption, or jerk minimization. Many engineers and
robot designers assume the gait of animals is optimal since they would have been able
to survive the competition and natural selection [7–10]. For this reason, the quadruped
robot tends to be designed inspired by the examples of nature [11,12]. However, biological
kinematics of locomotion is not reproducible directly by a legged robot, since biological
muscles are extraordinarily efficient components, and animals can produce energy for their
actuation by grabbing nutritive elements from the environment, transformed into actuation
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energy by a digestive process. This permits them to have a relatively light energy storage
system. Moreover, artificial sensors are still inferior, in terms of number, miniaturization,
and sensitivity against the ones owned by animals [13].

To date, designers tend to create robots that resemble nature as closely as possible,
such as imposing specific gaits such as walking, trotting, or galloping and developing
mathematical optimization processes that only concern sub-systems, to overcome the
technological limitations [14,15]. There are many different approaches for performing the
optimization. In [16], for example, the authors use harmonic functions to describe foot
trajectory and tune some parameters such as amplitude, phase, and frequency. In [17,18] the
authors generate leg trajectories for overcoming small terrain irregularities by optimizing
consumed energy. In [19] the authors optimize contact forces to walk on a high-slope
terrain, but the gait is imposed a priori.

Evolutionary computation, such as genetic algorithms (GAs), is often a natural choice
for the gait optimization of legged robots since it uses optimization methods based on
evolutionary theory [20]. Also, the controls of the mentioned cases, tend to mimic or
approach the natural movement of the quadrupeds found in nature. Typical controls are
central pattern generators [21,22], hybrid zero dynamics [23], or the usual PD [24].

The present work breaks from all the problems relating to technological limitations
and lays the foundations of how it is possible to identify, a priori, optimal gaits through
parametric optimization algorithms. The authors propose an algorithm that does not
depend either on the kinematic chains of the legs or power actuators. The method directly
handles the contact forces that the hypothetical legs exchange with the ground, identifying
the sequence that guarantees minimum energy consumption and smooth motion during a
single stride cycle. The genetic algorithm (GA) is used to minimize the kinetic and potential
energy as well as restraining the jerk, identifying the optimal profile of normal and friction
forces. The equations of motion are solved through some periodicity constraints of the
gait, thus ensuring a stable and continuous motion. The optimal gaits identified are very
similar to those found in nature. The authors have optimized the gait of a heavy and bulky
horse-like robot, obtaining a walking trot as the optimal gait, and then comparing it with
experimental data from real horses. Additionally, a gait transition analysis is performed as
a function of locomotion speed and gait cycle length, showing why it is convenient to walk
or trot.

The paper is organized as follows: Section 2 describes the dynamic model and ground
reaction force shapes; Section 3 defines the optimization parameters and objective functions
while introducing stability constraints to assure a periodic motion; Section 4 provides the
resulting optimal gait, along with the comparison with horse experiments and identification
of gait transition; Section 5 discusses the limitations and future challenges of the method
and finally the conclusions.

2. Mathematical Model for the Gait Optimization

The considered quadrupedal model is sketched in Figure 1, where the body, suspended
on four legs, transmits forces and moments thanks to the interaction with the ground.

The optimization model proposed in this paper consists of an optimal gait identifica-
tion, capable of moving the quadrupedal body through the succession of four alternating
thrusts generated by legs with some desirable characteristics. This approach is innovative.
In fact, the kinematic linkages and actuators of the leg mechanism are not directly involved
but left to a second engineering phase of design, not investigated in the present paper.
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Figure 1. 3D view of the quadruped.

The legs are labelled as FL (front left), FR (front right), HL (hind left), HR (hind
right). The period during which a single leg maintains its contact with the ground is the
conctact phase (CP), while the one during which the leg is flying in the air moving towards
the next contact point, is the swing phase (SP). In general, these times can be set differently
for each leg.

The legs sequencing, sketched in Figure 2, originates a periodic motion of each
leg, of period T. The time at which each leg touches the ground is ti ∈ [0, T], where
i = FR,FL, HR, HL. The time duration of the contact phase is Ti, and the time duration of
the swing phase is T − Ti.

Newton–Euler equations of rigid body dynamics are:

m
..
r = fe

I
.

ω = me −ω× (Iω)
.
θ = E(θ)ω

(1)

where the first equation holds in the fixed reference frame, the second in the body reference
frame (principal inertia axes), r = [x, y, z] identifies the gravity center position of the
quadruped body of total mass m, fe is the total external force, I = diag

[
Ix, Iy, Iz

]
the matrix

of inertia, me is the total external moment, θ = [ψ, θ, φ], the Tait–Bryan angles (yaw pitch
and roll), ω is the angular velocity, and E is the Jacobian matrix.

Assuming small pitch and roll angles and vanishing yaw, the equations can be reduced
into the same fixed reference frame:

m
..
x = Fx

m
..
y = Fy

m
..
z = Fz

Ix
..
φ = Mx

Iy
..
θ = My

(2)

where Fx, Fy, Fz, Mx, My are the total force and moment transmitted by the four legs FR,
FL, HR, and HL, respectively.

When the quadruped moves on the ground, the leg-ground contact produces a re-
action force. Its vertical component Fz supports the quadrupedal weight, the horizontal
component Fx drives the longitudinal motion of the body, and Fy affects the lateral body
oscillations.

The vertical force Fzi for each leg acts only in the CP; that implies Fzi (ti) = 0 and
Fzi (ti + Ti) = 0, that is, its time history, during the CP, starts and ends with vanishing
values, associated with the incipient contact and incipient detachment of the leg with and
from the ground, respectively. The force-time history along the CP is identified through
three additional points

[
P1i ; P2i ; P3i

]
(besides the two previously identified) and is fitted by

a suitable spline (Figure 3a).
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Figure 2. Time diagram of the quadruped’s locomotion over the entire period T shows the times ti at
which each leg touches the ground and the time duration Ti of each contact phase. The subscripts
i = FR, FL, HR, HL are FL (front left), FR (front right), HL (hind left), and HR (hind right).

The longitudinal and lateral ground reactions for each leg are assumed to belong to
the static friction cone. With this assumption, any contact slip condition is absent, and the
contact model is purely conservative. Therefore:√

F2
xi
+ F2

yi
≤ µsFzi (3)

where µs is the static friction coefficient.
For the planar forces Fxi and Fyi , one can introduce suitable constitutive relationships

(Figure 3). Several experiments available in the technical literature [25,26] suggest the
following gait dynamics for leg locomotion. When the leg touches the ground, in the
first phase, a backward longitudinal reaction brakes the body run, followed by a second
phase, in which the leg accelerates the body through a forward longitudinal reaction force
(Figure 3d). Moreover, the amplitude of the longitudinal reaction force is roughly propor-
tional to the normal vertical force. A similar force trend holds for the lateral force that is
responsible for the unavoidable lateral staggering of the quadruped’s body. For both longi-
tudinal and lateral forces, one can introduce the suitable factorization form as constitutive
relationships:

Fxi (t) = µxi (t)Fzi (t)
Fyi (t) = µyi (t)Fzi (t)

(4)

that use the proportionality of the planar forces to the vertical one. Moreover, the role of
the factors µxi (t), µyi (t) is that of reproducing the time history of the planar force, Fxi (t) or
Fyi (t), as reported in Figure 3c,d, modulating the amplitude of the vertical reaction Fzi (t).
In particular, µxi (t), µyi (t) are vanishing outside of the CP. Within the CP, in the first part
of the contact, µxi (t) takes negative values to reproduce the braking effect, while, in the
second part, it becomes positive, to reproduce the acceleration effect.
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Combining Equations (4) and (3), the two modulating factors must satisfy the condi-
tion: √

µ2
xi
+ µ2

yi
≤ µs (5)

Looking at Figure 3b, this implies that at any time the point Qji

[
µxji

(t), µyji
(t)
]

remains
confined in the circle of radius µs over the plane µxi (t), µyi (t). Moreover, we assume a cor-
relation between the modulating factors during the gait. This implies, concerning Figure 3b,
the point Qji

[
µxji

(t), µyji
(t)
]

describes a closed curve in the plane µxji
(t), µyji

(t) as time
is spent, and Q completes the loop in a period T. More precisely, the time histories of
µxi (t), µyi (t) are determined by a spline passing through the points

[
Q1i ; Q2i ; Q3i

]
selected

by the designer within the contact cone (see Figure 3b).
The expressions for the moments Mx and My follow directly from the leg’s reactions.

From Figure 4, let’s consider, for example, the FR foot at the incipient contact phase and
foot position (xFR, yFR, zFR):

My = Fx∆zFR − Fz∆xFR
Mx = Fy∆zFR + Fz∆yFR

(6)

where ∆xFR(t) = xFR − x, ∆zFR(t) = zFR − z and ∆yFR = yFR − y.



Appl. Sci. 2021, 11, 2102 6 of 22Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 22 
 

 
Figure 4. Point of application of the leg force FR and distances Δ𝑥ிோ and Δ𝑧ிோ referred to the cen-
ter of gravity 𝐺. 

3. Optimization Model 
Usually, in the legged locomotion, the stability of a gait is guaranteed by using a 

criterion such as zero-moment point [27,28]. Other studies face the stability problem with 
the Poincare map [29,30] or ground reference points [31]. In this paper, unlike the classical 
approaches, the gait stability is guaranteed by satisfying periodic limit cycle conditions. 

The optimization operates over a single period 𝑇 using a genetic algorithm (GA) 
which provides the stride length, frequency, and velocity, and additionally the time his-
tory of the contact forces. Therefore, a vector of gait parameters 𝒑ீ஺ is optimized by using 
the GA algorithm. Let us explicitly set 𝒑ீ஺. The relative phases of the leg motion are 𝑡௜, 
the normalized time duration 𝑇௜ of the CP is 𝛽௜ = ்೔், the time history of the normal, lon-
gitudinal and lateral contact forces are determined by the interpolation of the points 𝑃௝௜ 
and 𝑄௝௜ with 𝑗 = 1,2,3, respectively. Therefore: 𝒑ீ஺  = ቂ𝑡௜, 𝛽௜, 𝑃௝௜, 𝑄௝௜ቃ (7)

The structure of the optimization process involves the optimal vector 𝒑ீ஺ and, using 
several constraints derived from the equations of motion, it looks for solutions that mini-
mize a multi-objective cost function related to the dissipated energy and looking for 
smooth forces trends. Let us examine in detail these constraints. 

Note, as a preliminary consideration, that we can impose the continuity kinematic 
conditions over the stride period:  𝑦(0) = 𝑦(𝑇);       𝑧(0) = 𝑧(𝑇) 𝑥ሶ(0) = 𝑥ሶ(𝑇);    𝑦ሶ (0) = 𝑦ሶ(𝑇);   𝑧ሶ(0) = 𝑧ሶ(𝑇) 𝜙(0) = 𝜙(𝑇);   𝜃(0) = 𝜃(𝑇) 𝜙ሶ (0) = 𝜙ሶ (𝑇);  𝜃ሶ (0) = 𝜃ሶ(𝑇) 

(8)

Moreover, the average speeds over the period T are 𝑥ሶ̅ = 𝑉, 𝑦ሶത = 0, 𝑧ሶ ̅ = 0, 𝜃ሶ ̅=0, 𝜙ሶത = 0, 
where V is the average longitudinal speed of the quadruped body. 

We start with the vertical equation of motion (an identical procedure applies to the 
other equations of motion) that produces: 𝑚𝑧ሷ = ෍ 𝐹௭೔ ቀ𝑃௝௜ቁ௜ − 𝑚𝑔      →      𝑧ሶ = 1𝑚 න ෍ 𝐹௭೔ ቀ𝑃௝௜ቁ௜

௧
଴  𝑑𝑡 − 𝑔𝑡 + 𝐶 (9)

where 𝑔 is the gravity acceleration and 𝐶 is an integration constant. Therefore: 𝑧ሶ(𝑇) = 1𝑚 න ෍ 𝐹௭೔ ቀ𝑃௝௜ቁ௜
்

଴  𝑑𝑡 − 𝑔𝑇 + 𝐶 (10)

and 

Figure 4. Point of application of the leg force FR and distances ∆xFR and ∆zFR referred to the center
of gravity G.

3. Optimization Model

Usually, in the legged locomotion, the stability of a gait is guaranteed by using a
criterion such as zero-moment point [27,28]. Other studies face the stability problem with
the Poincare map [29,30] or ground reference points [31]. In this paper, unlike the classical
approaches, the gait stability is guaranteed by satisfying periodic limit cycle conditions.

The optimization operates over a single period T using a genetic algorithm (GA)
which provides the stride length, frequency, and velocity, and additionally the time history
of the contact forces. Therefore, a vector of gait parameters pGA is optimized by using
the GA algorithm. Let us explicitly set pGA. The relative phases of the leg motion are
ti, the normalized time duration Ti of the CP is βi =

Ti
T , the time history of the normal,

longitudinal and lateral contact forces are determined by the interpolation of the points Pji
and Qji with j = 1, 2, 3, respectively. Therefore:

pGA =
[
ti, βi, Pji , Qji

]
(7)

The structure of the optimization process involves the optimal vector pGA and, us-
ing several constraints derived from the equations of motion, it looks for solutions that
minimize a multi-objective cost function related to the dissipated energy and looking for
smooth forces trends. Let us examine in detail these constraints.

Note, as a preliminary consideration, that we can impose the continuity kinematic
conditions over the stride period:

y(0) = y(T); z(0) = z(T)
.
x(0) =

.
x(T);

.
y(0) =

.
y(T);

.
z(0) =

.
z(T)

φ(0) = φ(T); θ(0) = θ(T)
.
φ(0) =

.
φ(T);

.
θ(0) =

.
θ(T)

(8)

Moreover, the average speeds over the period T are
.
x = V,

.
y = 0,

.
z = 0,

.
θ=0,

.
φ = 0,

where V is the average longitudinal speed of the quadruped body.
We start with the vertical equation of motion (an identical procedure applies to the

other equations of motion) that produces:

m
..
z = ∑

i
Fzi

(
Pji
)
−mg → .

z =
1
m

∫ t

0
∑

i
Fzi

(
Pji
)

dt− gt + C (9)
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where g is the gravity acceleration and C is an integration constant. Therefore:

.
z(T) =

1
m

∫ T

0
∑

i
Fzi

(
Pji
)

dt− gT + C (10)

and
.
z(0) = C (11)

Using the condition
.
z(0) =

.
z(T), it follows:

1
T

∫ T

0
∑

i
Fzi

(
Pji
)

dt = mg (12)

The force-time history is set by randomly selecting the point Pji by the GA and using
a spline interpolation. Further integration of Equation (10) produces:

.
z(t) =

1
m

∫ t

0
∑

i
Fzi

(
Pji
)

dτ − gt +
.
z(0)→ z(t)

=
1
m

∫ t

0

∫ τ

0
(∑

i
Fzi

(
Pji
)
−mg ) dtdτ +

.
z(0)t + z(0)

(13)

and:

z(T) =
1
m

∫ T

0

∫ τ

0
(∑

i
Fzi

(
Pji
)
−mg )dt dτ +

.
z(0)T + z(0) (14)

Using the periodicity condition z(0) = z(T), it follows:

.
z(0) = − 1

mT

∫ T

0

∫ τ

0

(
∑

i
Fzi

(
Pji
)
−mg

)
dtdτ (15)

Equation (15) automatically satisfies the condition of zero average speed
.
z = 0. In fact:

.
z(t) =

1
m

∫ t

0
∑

i
Fzi

(
Pji
)

dτ − gt +
.
z(0) → .

z

=
1

mT

∫ T

0

∫ τ

0

(
∑

i
Fzi

(
Pji
)
−mg

)
dt dτ +

.
z(0) = 0

(16)

The longitudinal dynamics takes into account two inertia effects: one related to the
longitudinal motion of the robot body mass mB, and the second due to the reciprocating
motion of the legs of mass mpi . The total robot mass m is consequently:

m = mB + ∑
i

mpi (17)

Let us make the point about the leg motion. Looking at Figure 5, it appears that,
during the contact phase, the horizontal speed of the leg is negative, and becomes positive
during the swing phase. Therefore, along the gait period, the leg mass behaves as an
oscillator that, attached to the primary body mass, generates a back and forth horizontal
inertia force.
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phases, respectively.

The mathematical counterpart of this physical behaviour appears as follows:

mB
..
x−∑

i
mpi wi(t)

..
x = ∑

i
Fxi −∑

i
mpi (1− wi(t))

..
xswi (18)

xswi describes the leg mass longitudinal motion during the swing phase. The term
mpi (1− wi(t))

..
xswi takes into account the inertia force during the swing phase, while,

complementarily, mpi wi(t)
..
x accounts for the added mass effect during the contact phase,

within which the leg motion depends essentially on the body motion. The switch function
wi(t) is defined as:

wi(t) =
{

1 i f the ith leg is in CP
0 i f the ith leg is in SP

(19)

that activates alternatively the inertia effects of the contact and swing phase, respectively.
The swing motion xswi (t) is designed through βi and T by using a spline with initial and
final slope equal to the average body velocity V (as an example see Figure 6).
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Figure 6. An example of the time history of xswi of the leg.

The analogous Equation (12) is determined for the longitudinal motion using the
condition

.
x(0) =

.
x(T):

∫ T

0

∑i Fxi

(
Pji , Qxji

)
−∑i mpi (1− wi(t))

..
xswi

mB −∑i mpi wi(t)
dt = 0 (20)

Then the average speed
.
x = V over the period T is:

.
x = V =

1
T

∫ T

0

∫ τ

0

∑i Fxi

(
Pji , Qxji

)
−∑i mpi (1− wi(t))

..
xswi

mB −∑i mpi wi(t)
dτ dt +

.
x(0) (21)
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that, together with the periodicity condition, produces:

.
x(0) =

.
x(T) = V − 1

T

∫ T

0

∫ τ

0

∑i Fxi

(
Pji , Qxji

)
−∑i mpi (1− wi(t))

..
xswi

mB −∑i mpi wi(t)
dτ dt (22)

If the same procedure is applied to the lateral motion, it follows:

m
..
y = ∑

i
Fyi

(
Pji , Qyji

)
→

∫ T

0
∑

i
Fyi

(
Pji , Qyji

)
dt = 0 (23)

derived under the condition
.
y(0) =

.
y(T). Using the other periodicity condition y(0) = y(T),

and
.
y = 0, we obtain:

.
y(0) = − 1

mT

∫ T

0

∫ τ

0
∑

i
Fyi

(
Pji , Qyji

)
dt dτ (24)

We can apply the same procedure to the remaining cardinal equations. Using the
conditions

.
θ(0) =

.
θ(T),

.
φ(0) =

.
φ(T), the following constraints are obtained:∫ T

0
∑

i
Myi (x0) dt = 0

∫ T

0
∑

i
Mxi (y0) dt = 0

(25)

These can be solved in closed form in terms of the initial conditions x0 e y0. The arms
of the moments are:

∆xi(t, x0) = xi(t)− x(t, x0)

∆yi(t, y0) = yi(t)− y(t, y0)

∆zi(t, z0) = zi − z(t, z0)

(26)

Assuming a flat ground, zi = 0, and

x(t, x0) =
∫ t

0

∫ τ

0

Fx

mB −∑i mpi wi(t)
dtdτ +

.
x0t + x0

y(t, y0) =
1
m

∫ t

0

∫ τ

0
Fy dtdτ +

.
y0t + y0

z(t, z0 = h) =
1
m

∫ t

0

∫ τ

0
(Fz −mg) dtdτ +

.
z0t + h

(27)

Finally, using again the same technique with the conditions φ(0) = φ(T), θ(0) = θ(T),
the final equations yield:

.
θ(0) =

.
θ(T) = − 1

IyT

∫ T

0

∫ τ

0
My(x0) dtdτ

.
φ(0) =

.
φ(T) = − 1

IxT

∫ T

0

∫ τ

0
Mx(y0) dtdτ

(28)

The previous constraints are based on the linear approximation (see Equation (2)) of
the equations of motion, and they provide the initial guess of the kinematic variables at
the initial and final times, 0 and T. Moreover, the force and the moments, through their
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spline approximations, satisfy the set of conditions from (7) to (27). With this starting guess,
we can solve the following iterative nonlinear optimization problem:

minimize ω(0)−ω(T) = 03x1
θ(0)− θ(T) = 03x1

subject to
.

ω = me −ω× (Iω)
.
θ = E(θ)ω
|ω| < ωmax
|θ| < θmax

initial guess θ0 = [θ0, φ0, ψ0]
T = [0, 0, 0]T

ω0 =
[ .
θ0,

.
φ0, 0

]T

r0 = [x0, y0, z0]
T

(29)

The unknown vector to be determined is pNLP =
[
θ0, φ0, ψ0,

.
ωx0 ,

.
ωy0 ,

.
ωz0 , x0, y0, z0

]
.

Figure 7 illustrates the flow chart of the GA solution’s scheme. The setting of the GA which
led to good balancing between learning and overfitting is a size population of 50 individ-
uals, 110 generations, a crossover of 80% and mutation of 1%. Specifically, the genetic
algorithm with multi-objective optimization is used for which simultaneous optimization
of multiple, often competing, objectives take place [32,33]. The related pseudocode is
shown below:

Algorithms 1 Pseudo code for the gait optimization algorithm.

1: t← 0
2: Initialization parameters

[
T, V, m, Ix, Iy, Iz, L, h, mp

]
3: GA random population initialization of pGA vector
4: While {GA’s stop criterion is not met}
5: Vertical ground force definition with continuity kinematic constraints (periodicity condition)
6: Longitudinal and lateral forces with continuity kinematic and static friction cone constraints
7: Torques with continuity kinematic constraints in the linear case (small angles)
8: Initialization guess parameters for Nonlinear Programming
9: Evaluate Objective function for Nonlinear Programming
10: While {Nonlinear Programming’s stop criterion is not met and the constraints are satisfied}
11: Sequential Quadratic Algorithm
12: Evaluate Objective function
13: Endwhile
14: Evaluate fitness function for each individuals
15: Select of the individuals
16: Recombine of the individuals
17: Mutate of the individuals
18: Generations of new population
19: t← t + 1
20: Endwhile
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Eventually, we introduce the multi-objective function to be minimized for the most
efficient gait. The GA’s fitness function is defined through the total specific energy Ed,
that is, the energy per traveled distance x(T)− x0 over the period, and the ground reaction
jerk JGRF.

The specific energy Ed includes the mechanical energy of the body and the swinging
leg energy:

Ed =
1

x(T)− x0

∫ T

0

∣∣Fx
.
x
∣∣+ ∣∣Fy

.
y
∣∣+ ∣∣Fz

.
z
∣∣+ ∣∣∣Mx

.
φ
∣∣∣+ ∣∣∣My

.
θ
∣∣∣+ ∣∣mg

.
z
∣∣

+

∣∣∣∣∣
(

∑
i

mpi (1− wi(t))
..
xswi

)
.
xswi

∣∣∣∣∣ dt
(30)

One can expect power fluctuations along the period with positive and negative values,
perfectly balanced since these fluctuations have zero average (the system is conservative).
Since Ed integrates the absolute value of the power, it measures the intensity of the power
fluctuations. Requiring a small value for Ed means asking for small fluctuations of the
power, which implies a benefit in terms of the actuator dimensions and power and thus
of energy consumption. On the other hand, the request of a small jerk JGRF assures
traditionally smooth contact forces:

JGRF =
1
T

∫ T

0
‖

.
F ‖ dt (31)

where F =
[
Fx; Fy; Fz

]
.

Multi-objective optimization is used to determine the Pareto frontier, the set of solu-
tions that provides the optimal trade-off between the two criteria.

4. Results
4.1. Optimal Gait Solution

For certain optimization variable sets pGA, the solver may not converge, or the solution
may be unrealistic or impractical. A maximum foot stride smax has been imposed to avoid
solutions that required unrealistic leg dimensions. The condition was applied to the upper
bound of the duty factor: βimax = smax

VT , where V is the mean target speed of the simulation:

0 < βi ≤ βimax (32)

The optimization finds an efficient gait (in the sense specified in the previous section)
that moves the body at an average speed of 1.35 m/s, with a gait period T of 1 s. The mass
properties of the body are selected considering the characteristic parameters of quadrupeds
in nature, in particular horses (Table 1, see reference [34]). In addition, some simplification
but reasonable assumptions are made, namely: βFR = βFL = βF, βHR = βHL = βH ,
FzFR = FzFL , FzHR = FzHL , FxFR = FxFL , FxHR = FxHL , FyFR = −FyFL , and FyHR = −FyHL .
The obtained solutions are plotted in Figure 8, where a correlation between the energy cost
and contact-forces jerk is shown (Pareto frontier). The resulting gaits present a specific leg
sequence classified as walk and trot gaits. In nature, walking gaits involve overlapping
contact phase such that β > 0.5. In particular, in a trot gait, the diagonal forelimb and
hindlimb move in phase, while in a walking gait the limbs have a lag of 0.25 between the
two legs.



Appl. Sci. 2021, 11, 2102 13 of 22Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 22 
 

 

Figure 8. Pareto curve of optimal gaits for 𝑉 = 1.35 𝑚/𝑠 and 𝑇 =  1 𝑠. 

The best solution according to the Pareto frontier is presented in Figure 9. It can be 

seen how the body keeps a steady longitudinal speed 𝑥̇, about the target speed of 𝑉 =

1.35 𝑚/𝑠, maintaining a stable and restrained attitude and assuring the periodicity con-

straints. 

 

Figure 9. Trajectory and attitude of the selected optimal solution. 

This case is classified as a walking trot since it presents a duty cycle 𝛽𝐹𝑅 = 𝛽𝐹𝐿 =

𝛽𝐻𝑅 = 𝛽𝐻𝐿 = 0.55, equal for the hind and forelimbs, and 𝑡𝑖 =  [0.7; 0.2; 0.2; 0.7] (Figure 

10). The contact forces are instead shown in Figure 11, and the friction coefficients in Fig-

ure 12. It can be observed how the normal forces 𝐹𝑧𝑖
 have a flat double-hump time his-

tory, typical of quadrupeds’ locomotion [2,35]. All other significant parameters are shown 

in Table 1. 
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The best solution according to the Pareto frontier is presented in Figure 9. It can
be seen how the body keeps a steady longitudinal speed

.
x, about the target speed of

V = 1.35 m/s, maintaining a stable and restrained attitude and assuring the periodicity
constraints.
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This case is classified as a walking trot since it presents a duty cycle βFR = βFL =
βHR = βHL = 0.55, equal for the hind and forelimbs, and ti = [0.7; 0.2; 0.2; 0.7] (Figure 10).
The contact forces are instead shown in Figure 11, and the friction coefficients in Figure 12.
It can be observed how the normal forces Fzi have a flat double-hump time history, typical
of quadrupeds’ locomotion [2,35]. All other significant parameters are shown in Table 1.
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Figure 10. Gait sequence of the optimal walking trot solution: FL (front left), FR (front right), HL
(hind left), HR (hind right), CP (contact phase), and SP (swing phase).
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Table 1. Simulation setting parameters and results.

Parameter Value Unit

m 520 kg
mp 26 kg
Ix 103 kg m2

Iy 26.2 kg m2

Iz 103 kg m2

L 1.44 m
h 1 m
T 1 s
V 1.35 m/s

∆xFR,FLmax ; ∆xFR,FLmin 1.08; 0.27 m
∆xHR,HLmax ; ∆xHR,HLmin −0.36; −1.17 m
sFR = sFL = sHR = sHL 0.81 m

x0 0.36 m
y0 0.0027 m
z0 1 m

βFR = βFL = βHR = βHL 0.55
tFR = tHL 0.7 s
tFL = tHR 0.2 s

In Figure 13 we can see the trajectory performed by the foot FR during one complete
cycle.
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Figure 13. FR foot trajectory during contact and swing phase starting from tFR.

To better assess the variability of the results, a statistical analysis on 10 runs of the
optimization algorithm was performed. In all cases, the best gait found was the walking-
trot and the ratio between the value of the objective function and its average differs by a
maximum of 2.5%, as observed in Figure 14.
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Eventually, a comparison between the cumulative mechanical energy of the exper-
imental and numerical optimization data is shown in Figure 15. For the experimental
campaign [34], a group of horses with a weight ranging between 417 and 673 kg, was used.
For each animal, ten sequences were considered within the speed range from 0.7 to 1.9 m/s.
Five markers, positioned along the horses’ backbones, identify the vertical and longitudinal
motion of their center of mass (CoMrigid). The considered mechanical energy is defined by
the expression (a special case of expression (29)):

ECoMrigid =
∫ T

0

∣∣Fz
.
z|+ |Fx

.
x|+mg| .z

∣∣ dt (33)
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It is clear how the resulting energies are comparable.

4.2. Gaits Analysis for Different Speed and Cycle Duration T

The optimization solutions are tested for different speeds and cycle period T.
Figure 16 depicts the trend of the walking gait representing Ed, following Equation

(30), as dependent on the cycle duration, for different speeds between 0.7 and 2 m/s.
This map permits finding natural associations between convenient gait period and body
velocity, to obtain gaits with a reasonably limited energy cost and smooth forces.

We notice that for T < 0.5 s the total energy is very large, because the swing phase has
a very limited duration, needing very high energy to relocate the foot at its initial position.
On the other hand, at high values for T, again the energy cost increases. Therefore, the map
suggests that for any desired speed, there is an intermediate region for the gait period
that allows a low energy consumption. Minimum energy expenditures are identified at
T = 1.25 s for speed 1.35 m/s, at T = 1 s for speed 2 m/s, and T = 1.66 s for speed 0.7 m/s
(blue square, green triangle, and red diamond, respectively).
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In Figure 17, the trend of the trot gait is depicted. We notice the same behavior of low
energy cost for the walking gait in the middle region, with an optimal association between
periods and speed: T = 1.25 s for 1.35 m/s, T = 1 s for 2 m/s, and T = 1.66 s for 0.7 m/s.
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Then, taking the minimum points for each gait and comparing them with the energy
cost and jerk performances (Figure 18), we see how the transition between walking and
trotting takes place at a speed between 0.7 m/s and 1.35 m/s, by using a Pareto criterion.
In fact, for the lowest speed, 0.7 m/s, the walk is optimal, in a Pareto sense, since energy
cost is lower, and jerk substantially similar. Increasing the speed at 1.35 m/s, a trot performs
much better, since both energy and jerk indexes are lower with respect to the walking gait.
For higher speeds, the trend of the two curves shows the trot gait is better than walking.
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5. Discussion

Based on the previous models and results, we can conjecture the optimal gait observed
in nature can be derived as an evolutionary effect that combines minimum energy require-
ments and minimum jerk contact forces, to obtain a gait that is energy-saving and with a
moderated mechanical impact on the legs articulations. This point of view has importance
also for a quadrupedal robot design that would be aimed at imitating or even enhancing
nature’s results.

Nevertheless, the previous analysis introduces several approximations with related
inaccuracies in the representation of quadrupedal mechanics.

As a first remark, dissipation effects are not taken into considerations. Credible dissi-
pation models need indeed a fine-tuning and require specific and non-trivial experimental
tests. This approximation introduces larger errors when increasing the leg’s speed since the
non-modeled effects of dissipation increase with some power of the velocity. Furthermore,
one of the advantages of the previous analysis is the absence of a detailed leg model, that is
on the other hand a limitation in the accuracy of the model. Additionally, the absence of a
head in the model and its coordinated motion with legs is another approximation when
analyzing the quadruped gaits.

Finally, the presence of flexible and deformable elements in the animal mechanical
structure is not considered in the model, and these elements absorb elastic energy that
plays a role in the global energy balance.

Actuators and their related power are not explicitly included in the animal mechan-
ical model. Besides their obvious importance in the energy balance in the robot design,
they guarantee the optimal gait is suitably tracked by the leg motion, with no obvious im-
plications for their performances in terms of supplied maximum force and power, weights,
and volumes.

Finally, the contact model is an approximate empirical model, and it will be necessary
to check its reliability on the experimental ground.

Future work challenges will be related to overcoming these limitations. More specifi-
cally related to quadruped robot design implications, the kinematics and dynamics of leg
implementation will be further optimized to be able to pursue the trajectories determined
by the optimal gait generator. Non-linear optimal control algorithms recently developed by
the authors [36,37] will be used to track kinematic references and forces exchanged on the
ground. Such algorithms can be combined with reference trajectory generators [38,39] but
can also incorporate the dynamics model and the power actuators by variational feedback
control methods [40,41]. Therefore, it is possible to verify and confirm the validity of the
results and then extend the work to the optimization of speed changes, changes of gaits,
changes of direction, and optimal handling in the presence of obstacles and irregularities
of the terrain [42,43].

The present analysis lays the groundwork for the design of new highly efficient
quadrupedal robots.

6. Conclusions

This paper presents an investigation related to the optimal gaits for a quadrupedal
robot. The interest of this analysis clearly relies on the use of such legged robots in many
engineering areas, where the replacement of wheels by legs is highly desirable in an
environmental scenario that has an uneven ground with obstacles and in the absence of
specific infrastructure that permits a wheeled robot to operate comfortably.

The analysis presents several elements of originality. The optimal gait problem is
formulated independently of any specific architecture for the leg mechanisms. The focus
is the leg–ground reaction forces that control the quadruped’s body motion. A detailed
analysis of the contact introduces constitutive relationships for the reaction forces that
permit their use in the formulation of the dynamic equation of the body. With the help
of the periodicity conditions, that characterize the state variables of the robot involved in
its gait and using them an initial guess based on a linearization of the equation of motion,
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a GA optimization algorithm produces the optimal gaits of the quadruped. A multi-
objective function introduces two basic principles of optimization. The first relies on the
minimization of the maximum actuators’ power and energy consumption. The second
relies on the minimization of the contact jerks; that implies a requirement for preventing
overload and stressful conditions for the robot mechanisms and its kinematic joints. Their
combination, subjected to the Pareto frontier analysis, suggests optimal gaits.

The method is applied to a quadruped the size and mass of which are those of a horse,
and the optimal gaits obtained by this optimization method are compared with results
found in the technical literature for a real animal. The comparison shows that the different
gaits, such as walk and trot, and the convenient transition from the first to the second,
depends on the desired speed of the quadruped. The need for a transition comes out as a
requirement of energy and jerk optimization; when the speed overcomes a given threshold
(located between 0.7 m/s and 1.35 m/s) it is clearly convenient to change the gait. One may
speculate this result could explain the origin of the quadruped gaits, as driven by nature,
under a very long evolutionary process.
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