Research of the Technical Seismicity Due to Blasting Works in Quarries and Their Impact on the Environment and Population
Abstract
:1. Introduction
- (1)
- Application of time-delay between individual boreholes;
- (2)
- Reduction in the borehole number at the same time of the time-delay;
- (3)
- Application of the periodic blasts and the appropriate time between sequencies of the blasts;
- (4)
- Application of the graduated charge and appropriate timing between the charges;
- (5)
- Distribution of the quarry wall in more benches and, as a consequence, reduction in the charge capacity for one borehole.
2. Materials and Methods
2.1. Blasting Works and Seismic Effects in Quarries
2.2. Geological Construction of the Rock Environment in the Surroundings of Trebejov
2.3. Positions of Measurement and Apparatus Used for Measuring Technical Seismisity
2.3.1. Minimate Pro 6—Instantel
2.3.2. Svantek 958 A—Class 1
2.4. Parameters of Research Blasts in Trebejov Quarry
2.5. Methods for Evaluation of Seismic Effects of Blasting Works in Quarries
2.6. Permissible Vibration Limit Values
- day: awmax,p = 0.11 m.s−2,
- measured max. values: awmax = 0.078 m.s−2.
3. Results
3.1. Methodology of Measurement and Evaluation of Measured Data
3.2. Analysis and Evaluation of Measured Data
4. Comparison of Measured Data in Research and Everyday Aperture Blasting
5. Conclusions
- v = 0–10 mm.s−1—there is no damage to the building;
- v = 10–30 mm.s−1—possibility of the first signs of damage;
- v = 30–60 mm/s−1—possibility of a minor damage.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coltrinari, G. Detecting seismic waves induced by blast operations at a limestone quarry by means of different transducer mounting. Int. J. Sustain. Dev. Plan. 2016, 11, 959–969. [Google Scholar] [CrossRef] [Green Version]
- Jacko, S.; Farkašovský, R.; Dirnerová, D.; Kondela, J.; Rzepa, G.; Zakršmídová, B. The late cretaceous conditions of the Gombasek beds sedimentation (silica nappe, western carpathians). Acta Montan. Slovaca 2016, 21, 259–271. [Google Scholar]
- Gheorghiosu, E.; Vasilescu, G.; Ghicioi, E.; Kovacs, A.; Rus, D.C. Research on decreasing the seismic effect generated by blasting works performed in quarries. In Proceedings of the 15th Anniversary International Multidisciplinary Scientific Geoconferences SGEM (2015), Albena, Bulgaria, 18–24 June 2015; SGEM: Albena, Bulgaria, 2015. [Google Scholar]
- Malbašic, V.; Stojanovic, L. Determination of Seismic Safety Zones during the Surface Mining Operation Development in the Case of the “Buvac” Open Pit. Minerals 2018, 8, 71. [Google Scholar] [CrossRef] [Green Version]
- Winzer, J.; Sołtys, A.; Pyra, J. Impact on the Environment of Works with Explosives; Wydawnictwa AGH Krakow: Krakow, Poland, 2016. [Google Scholar]
- Hasanipanah, M.; Armaghani, D.J.; Amnieh, H.B.; Abd Majid, M.Z.; Tahir, M.M. Application of PSO to develop a powerful equation for prediction of flyrock due to blasting. Neural Comput. Appl. 2017, 28, 1043–1050. [Google Scholar] [CrossRef]
- Hinzen, K.-G. Modelling of blast vibrations. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1988, 25, 439–445. [Google Scholar] [CrossRef]
- Barker, T.G.; McLaughlin, K.L.; Stevens, J.L. Numerical Simulation of Quarry Blast Sources; Maxwell Laboratories Inc.: La Jolla, CA, USA, 1993. [Google Scholar]
- Toraño, J.; Rodríguez, R.; Diego, I.; Rivas, J.M.; Casal, M.D. FEM models including randomness and its application to the blasting vibrations prediction. Comput. Geotech. 2006, 33, 15–28. [Google Scholar] [CrossRef]
- Dehghani, H. Development of a model to predict peak particle velocity in a blasting operation. Int. J. Rock Mech. Min. Sci. 2011, 48, 51–58. [Google Scholar] [CrossRef]
- Fişne, A.; Kuzu, C.; Hüdaverdi, T. Prediction of environmental impacts of quarry blasting operation using fuzzy logic. Environ. Monit. Assess 2011, 174, 461–470. [Google Scholar] [CrossRef]
- Mohammadnejad, M.; Gholami, R.; Ramezanzadeh, A.; Jalali, M.E. Prediction of blast-induced vibrations in limestone quarries using Support Vector Machine. J. Vib. Control 2011, 18, 1322–1329. [Google Scholar] [CrossRef]
- Armaghani, D.J.; Momeni, E.; Abad, S.V.A.N.K.; Khandelwal, M. Feasibility of ANFIS model for prediction of ground vibrations resulting from quarry blasting. Environ. Earth Sci. 2015, 74, 2845–2860. [Google Scholar] [CrossRef] [Green Version]
- Keshtegar, B.; Hasanipanah, M.; Bakhshayeshi, I.; Sarafraz, M.E. A novel nonlinear modeling for the prediction of blast-induced airblast using a modified conjugate FR method. Measurement 2019, 131, 35–41. [Google Scholar] [CrossRef]
- Azimia, Y.; Khoshrou, S.H.; Osanloo, M. Prediction of blast induced ground vibration (BIGV) of quarry mining using hybrid genetic algorithm optimized artificial neural network. Measurement 2019, 147, 106874. [Google Scholar] [CrossRef]
- Hosseini, S.A.; Tavana, A.; Abdolahi, S.M.; Darvishmaslak, S. Prediction of blast‑induced ground vibrations in quarry sites: A comparison of GP, RSM and MARS. Soil Dyn. Earthq. Eng. 2019, 119, 118–129. [Google Scholar] [CrossRef]
- Zhang, X.; Nguyen, H.; Bui, X.N.; Tran, Q.H.; Nguyen, D.A.; Bui, D.T.; Moayedi, H. Novel Soft Computing Model for Predicting Blast-Induced Ground Vibration in Open-Pit Mines Based on Particle Swarm Optimization and XGBoost. Nat. Resour. Res. 2020, 29, 711–721. [Google Scholar] [CrossRef]
- Koteleva, N.; Frenkel, I. Digital Processing of Seismic Data from Open-Pit Mining Blasts. Appl. Sci. 2021, 11, 383. [Google Scholar] [CrossRef]
- Zhou, J.; Li, C.h.; Koopialipoor, M.; Armaghani, D.J.; Pham, B.T. Development of a new methodology for estimating the amount of PPV in surface mines based on prediction and probabilistic models (GEP-MC). Int. J. Min. Reclam. Environ. 2021, 35, 48–68. [Google Scholar] [CrossRef]
- Sołtys, A.; Winzer, J.; Twardosz, M. Control and documentation studies of the impact of blasting, on buildings in the surroundings of open pit mines. J. Sustain. Min. 2017, 16, 179–188. [Google Scholar] [CrossRef]
- Gheorghiosu, E.; Kovacs, A.; Vasilescu, G.D.; Rus, D.C.; Radoi, F. Assessment of the ground vibration generated by blasting in quarries. Environ. Eng. Manag. J. 2019, 18, 817–824. [Google Scholar] [CrossRef]
- Hudaverdi, T.; Kuzu, C.; Fisne, A. Analysis of blast induced vibrations in aggregate mining. Turkish Acoustical Society. In Proceedings of the 36th International Congress and Exhibition on Noise Control Engineering, INTER-NOISE 2007, Istanbul, Turkey, 28–31 August 2007; INTER-NOISE: Istanbul, Turkey, 2007. [Google Scholar]
- Singh, P.; Roy, P.P.; Singh, R.B. Ground vibration assessment under varying circumstances in a limestone quarry in India. International Journal of Surface Mining. Reclam. Environ. 1994, 8, 121–123. [Google Scholar]
- Segarra, P.; López, L.M.; Sanchidrián, J.A. Uncertainty in measurements of vibrations from blasting. Rock Mech. Rock Eng. 2012, 45, 1119–1126. [Google Scholar] [CrossRef]
- Vandeloise, R. Vibrations caused by massive blasting in quarries. Ann. Mines Belg. 1971, 1, 173–176. [Google Scholar]
- Coltrinari, G. Measuring of blast-induced ground vibrations; comparison between two different methods. In Proceedings of the 24th International Congress on Sound and Vibration, London, UK, 23–27 July 2017; ICSV: London, UK, 2017. [Google Scholar]
- Roy, D.; Beaudoin, R.; Bilodeau, M.; Labrie, D.; Caron, G. Impact of electronic blasting detonators on rock quarry environment, productivity and energy savings. In Proceedings of the EXPLO 2007–Blasting: Techniques and Technology, Wollongong, NSW, Australia, 3–4 September 2007. [Google Scholar]
- Lownds, C.M.; Steiner, U. Safety of blasting with electronic detonators. In SME Annual Meeting and Exhibit; SME: Phoenix, AZ, USA, 2010. [Google Scholar]
- Verma, H.K.; Thote, N.R. Electronic detonators—A technological update. J. Mines Metals Fuels 2006, 52, 290–292. [Google Scholar]
- Kondela, J.; Pandula, B. Timing of quarry blasts and its impact on seismic effects. Acta Geodyn. Et Geomater. 2012, 9, 155–163. [Google Scholar]
- Don Leet, L. Vibration from Blasting Rock; Harvard University Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Dojčár, O.; Horky, J.; Korinek, R. Blasting Technique; Montanex: Ostrava, Czech Republic, 1996; (In Czech and Slovak). [Google Scholar]
- Dvořák, A. Fundamentals of Engineering Seismics; Charles University: Prague, Czech Republic, 1969. (In Czech) [Google Scholar]
- Pandula, B.; Kondela, J. Methodology of Seismic Blasting Works; SSTVP DEKI Design, Ltd.: Banská Bystrica, Slovakia, 2010. (In Slovak) [Google Scholar]
- Kaláb, Z.; Knejzlík, J. Interpretation of seismic records of blasting works performed in the Jeroným tunnel in Čistá. Civ. Eng. Ser. 2004, 6, 31–37. [Google Scholar]
- Poděl, R.; Voda, J. Spreading of Seismic Blasting Waves and Their Transfer to Structures, Final Report of the Research task no. III-8-6/2c; Brno, Czech Republic, 1980; p. 40. (In Czech) [Google Scholar]
- Mosinec, V.N. Drobjaščeje i Sejsmičeskoje Dejstvija Vzryva v Gornych Porodach; Nedra: Moscow, Russia, 1976. (In Russian) [Google Scholar]
- Langefors, U.; Kihlström, B. The Modern Technique of Rock Blasting; Wiley: New York, NY, USA, 1978; 438p. [Google Scholar]
- Kumar, R.; Choudhury, D.; Bhargava, K. Determination of blast-induced ground vibration equations for rocks using mechanical and geological properties. J. Rock Mech. Geotech. Eng. 2016, 8, 341–349. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.A.; Winzer, S.R.; Ritter, A.P. Blast Design for Optimizing Fragmentation While Controlling Frequency of Ground Vibration. In Proceedings of the Eighth Conference on Explosives and Blasting Technique, New Orleans, LA, USA, 31 January–4 February 1982; pp. 69–89. [Google Scholar]
- Yugo, N.; Shin, W. Analysis of blasting damage in adjacent mining excavations. J. Rock Mech. Geotech. Eng. 2015, 7, 282–290. [Google Scholar] [CrossRef] [Green Version]
- Hoshino, T.; Mogi, G.; Shaoquan, K. Optimum delay time design in delay blasting. Fragblast 2000, 4, 139–148. [Google Scholar] [CrossRef]
- Fu, T.G.; Sun, Y. Analysis of the blasting effect on the electric shove loading efficiency of the open pit. J. Coal Sci. Eng. 2008, 14, 651–654. [Google Scholar] [CrossRef]
- Wang, Z.; Cheng, F.; Chen, Y.; Cheng, W. A comparative study of delay time identification by vibration energy analysis in millisecond blasting. Int. J. Rock Mech. Min. Sci. 2013, 60, 389–400. [Google Scholar] [CrossRef]
- Yi, C.P.; Daniel, J.; Ulf, N.; Ali, B. Stress Wave Interaction Between Two Adjacent Blast Holes. Rock Mech. Rock Eng. 2015, 49, 1803–1812. [Google Scholar] [CrossRef]
- Shi, X.Z.; Chen, S.R. Delay time optimization in blasting operations for mitigating the vibration-effects on final pit walls’ stability. Soil Dyn. Earthq. Eng. 2011, 31, 1154–1158. [Google Scholar] [CrossRef]
- Professional Handbook for Shooters and Technical Blasting Leaders; Slovak Company for Blasting and Drilling Works: Banská Bystrica, Slovakia, 2011. (In Slovak)
- Pandula, B.; Kondela, J.; Budinský, V.; Buchla, I.; Sabol, P.; Šoltys, J.; Kolesar, M.; Baulovič, J.; Feher, J.; Čambal, J.; et al. Research of the Impact of Milisecond Delay Timing of Blasting in the Quarry Trebejov on the Surrouding Trebejov Village Development; Research Report F BERG Technical University of Košice: Košice, Slovakia, 2018; p. 30. (In Slovak) [Google Scholar]
- Openstreetmap Carmeus Slovakia. Available online: https://www.openstreetmap.org/#map=7/48.637/18.743 (accessed on 3 February 2021).
- The Minimate Pro Series Product. Available online: http://geonor.com/live/products/vibration-monitors/minimate-pro6/ (accessed on 1 December 2020).
- STN Eurokod 8, 2010, Design of Structures for Seismic Resistance. Part 1, National Annex, Amendment 1 (STN EN 1998-1/NA/Z1); Slovak Institute of Technical Standardization: Bratislava, Slovakia, 2010. (In Slovak)
- SVAN 958A Four Channels Sound & Vibration Analyser Product. Available online: http://svantek.com/lang-en/product/6/svan_958a_four_channels_sound_vibration_analyser.html#about (accessed on 1 December 2020).
- POLADYN-31ECO. Available online: https://nitroerg.pl/wp-content/uploads/2019/03/POLADYN-31ECO.pdf (accessed on 3 February 2021).
- ORICA. Available online: https://www.oricaminingservices.com/uploads/uploads/200281_%20Selection%20of%20Blasting%20Limits%20for%20Quarries%20and%20Civil%20and%20Construction%20Projects.pdf (accessed on 3 February 2021).
- Aldas, G.G. Explosive charge mass and peak particle velocity (PPV)—Frequency relation in mining blast. J. Geophys. Eng. 2010, 7, 223–231. [Google Scholar] [CrossRef]
- Dojčár, O.; Pandula, B. Výskum technickej seizmicity v lome Včeláre, Výskumná správa. F BERG TU Košice 1998, 1, 7–10. [Google Scholar]
- Act of the National Council of the Slovak Republic No. 355 of 21 June 2007 on the Protection, Promotion and Development of Public Health and Amending Certain Laws; National Council of the Slovak Republic: Bratislava, Slovakia, 2007. (In Slovak)
- Decree of the Ministry of Health of the Slovak Republic no. Commission Regulation (EC) No 549 of 16 August 2007 Laying Down Details of Permissible Levels of Noise, Infrasound and Vibration and of the Requirements for Objectifying Noise, Infrasound and Vibration in the Environment; Ministry of Health of the Slovak Republic: Bratislava, Slovakia, 2007. (In Slovak)
- Decree of the Ministry of Health of the Slovak Republic No. 237 of 15 January 2009 Amending Decree of the Ministry of Health of the Slovak Republic no. Laying Down Details on Permissible Values of Noise, Infrasound and Vibration and Requirements for Objectification of Noise, Infrasound and Vibration in the Environment; Ministry of Health of the Slovak Republic: Bratislava, Slovakia, 2009. (In Slovak)
- Google Maps Carmeus Slovakia. Available online: https://www.google.sk/maps/place/CARMEUSE+SLOVAKIA+sro/@48.8337622,21.2256392,1239m/data=!3m1!1e3!4m13!1m7!3m6!1s0x473ee5c241e3797d:0x400f7d1c69749b0!2s044+81+Trebejov!3b1!8m2!3d48.8351963!4d21.2194712!3m4!1s0x0:0x55a1ae853df9793b!8m2!3d48.8326407!4d21.2278497 (accessed on 3 February 2021).
Parameters | Poladyn 31 Eco |
---|---|
Oxygen balance [%] | 4.8 |
Heat of explosion [kJ/kg] | 3973 |
Concentration of energy [kJ/dm3] | 5364 |
Volume of gaseous products of explosion [dm3/kg] | 883 |
Specific energy [kJ/kg] | 1001 |
Consistency | plastic |
Density [g/cm3] | 1.40 ± 0.14 |
Trauzl test [cm3], average | 380 |
RWS [%Hx], minimum | 80 |
VOD [m/s], minimum (in cartridges) | >2000 m/s (ø 25 ÷ 32 mm) >4500 m/s (>ø 32 mm) |
VOD [m/s] (plastic pipe ø 32 mm) | 5000 |
VOD [m/s] (steel pipe ø 34 mm) | 6000 |
Parameters | ANDEX M |
Density (g/cm3) | 0.78–0.88 |
Minimum borehole diameter (mm) | 34 |
Borehole type | dry |
Typical detonation velocity (m/s) | 2500–3500 |
Relative gravimetric energy density (%) | 100 |
Relative bulk energy density (%) | 104 |
CO2 (kg/t) | 178 |
Consistency | anfo |
Blasts | Borehole | ANDEX M (kg) | Poladyn (kg) | Total Charge in Borehole (kg) | Total Charge for Blast (kg) | Lower Timing (millisec.) | Upper Timing (millisec.) | Time of Blast (hh, mm) |
---|---|---|---|---|---|---|---|---|
693 | V1 | 180 | 5 | 185 | 185 | 0 | 50 | 11.09 |
694 | V2 | 180 | 5 | 185 | 370 | 0 | 50 | 11.18 |
V3 | 180 | 5 | 185 | 1 | 51 | |||
695 | V4 | 180 | 5 | 185 | 370 | 0 | 50 | 12.07 |
V5 | 180 | 5 | 185 | 5 | 55 | |||
696 | V6 | 175 | 10 | 185 | 370 | 0 | 50 | 12.25 |
V7 | 180 | 5 | 185 | 10 | 60 | |||
697 | V8 | 180 | 10 | 190 | 377.5 | 0 | 50 | 13.03 |
V9 | 180 | 7.5 | 187.5 | 15 | 65 | |||
698 | V10 | 180 | 5 | 185 | 370 | 0 | 50 | 13.47 |
V11 | 180 | 5 | 185 | 20 | 70 |
Maximum Particle Velocities for the Frequency Area | Level of Damage | Class of Resistance of an Object | Type of Foundation | ||
---|---|---|---|---|---|
ƒk < 10 Hz | 10 Hz < ƒk < 50 Hz | ƒk > 50 Hz | |||
Up to 3 | 3 to 6 | 6 to 5 | 0 | A | a |
3 to 6 | 6 to 12 | 12 to 20 | 0 | A | b,c |
B | a | ||||
6 to 10 | 10 to 20 | 15 to 30 | 0 | B | b,c |
C | a | ||||
1 | A | a | |||
8 to 15 | 15 to 30 | 20 to 30 | 0 | C | b |
B | c | ||||
1 | A | b,c | |||
B | a | ||||
10 to 20 | 20 to 30 | 30 to 50 | 0 | C | c |
D | a | ||||
1 | B | b | |||
C | a | ||||
2 | A | a | |||
15 to 25 | 25 to 40 | 40 to 70 | 0 | D | b,c |
E | a | ||||
1 | C | b | |||
B | c | ||||
2 | A | b,c | |||
B | a | ||||
20 to 40 | 40 to 60 | 60 to 100 | 0 | E | b,c |
Description of the Protected Room in Buildings | Reference Time Interval | Continuous or Intermittent, Periodic or Steady-State Random Vibration | Shocks and Vibrations with Large Dynamics Occurring Several Times a Day |
---|---|---|---|
Enhanced areas (such as hospital rooms, spa patients) | Time of occurrence for day, evening and night | 0.004 | 0.008 |
Residential rooms, dormitories, retirement homes | Time of occurrence for day evening night | 0.008 0.008 0.005 | 0.11 0.11 0.05 |
Nurseries, schools and libraries | Time of occurrence while using the room | 0.008 | 0.11 |
Blast No. | Profile | Position of the Measurement | vx [mm.s−1] | vy [mm.s−1] | vz [mm.s−1] |
---|---|---|---|---|---|
693. | - | S1/Minimate | 0.81 | 1.15 | 0.81 |
694. | - | S1/Minimate | 1.46 | 1.55 | 1.26 |
695. | - | S1/Minimate | 1.59 | 1.13 | 0.87 |
696. | - | S1/Minimate | 1.23 | 1.63 | 0.81 |
697. | - | S1/Minimate | 1.2 | 1.62 | 0.82 |
698. | - | S1/Minimate | 0.98 | 1.58 | 0.58 |
Blast No. | Profile | Position of the Measurement | awmax,x [mm.s−2] | awmax,y [mm.s−2] | awmax,z [mm.s−2] |
---|---|---|---|---|---|
693. | - | S2/Svantek | 28.05 | 42.36 | 49.20 |
694. | - | S2/Svantek | 47.64 | 49.09 | 78.25 |
695. | - | S2/Svantek | 48.19 | 45.49 | 51.70 |
696. | - | S2/Svantek | 35.72 | 49.31 | 58.68 |
697. | - | S2/Svantek | 27.41 | 52.24 | 58.68 |
698. | - | S2/Svantek | 24.43 | 44.87 | 19.54 |
Date of Blast | Blast No. | Weight of Explosives/Charge Weight per Delay [kg] | Timing of Blast Delay [ms] | Peak Particle Velocities [mm.s−1] | Frequency [Hz] | Number of Bench Blast | Distance Blast- Building [m] | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
x | y | z | x | y | z | ||||||
09.01. 2020 | 700 | 3667.5/187.5 | 25 | 1.58 | 2.21 | 1.09 | 38 | 16.9 | 24.1 | 2 | 644 |
31.01. 2020 | 701 | 4000/155 | 17 | 0.66 | 0.72 | 0.37 | 7.8 | 5.28 | 12.9 | 1 | 743 |
16.04. 2020 | 705 | 1725/195 | 25 | 1.53 | 1.08 | 0.70 | 12 | 8.6 | 32 | 2 | 636 |
24.04. 2020 | 706 | 2000/188 | 17 | 0.43 | 0.30 | 0.20 | 5.8 | 5.85 | 11.7 | 2 | 631 |
11.06. 2020 | 709 | 1175/125 | 25 | 0.57 | 0.78 | 1.04 | 6.6 | 6.04 | 15.8 | 4 | 540 |
25.06. 2020 | 710 | 2675/165 | 25 | 1.08 | 1.65 | 1.07 | 6.3 | 13.5 | 23.2 | 2 | 642 |
10.07. 2020 | 711 | 1945/155 | 17 | 0.48 | 0.65 | 0.37 | 5.8 | 5.8 | 14.6 | 1 | 743 |
24.07. 2020 | 712 | 1560/130 | 25 | 1.33 | 1.23 | 1.01 | 18 | 5.8 | 24.3 | 3 | 570 |
30.07. 2020 | 713 | 660/165 | 25 | 1.3 | 1.66 | 0.55 | 16 | 5.8 | 22.2 | 2 | 648 |
17.08. 2020 | 716 | 2514/165 | 17 | 1.19 | 0.93 | 0.52 | 10 | 8.4 | 27.4 | 1 | 744 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feher, J.; Cambal, J.; Pandula, B.; Kondela, J.; Sofranko, M.; Mudarri, T.; Buchla, I. Research of the Technical Seismicity Due to Blasting Works in Quarries and Their Impact on the Environment and Population. Appl. Sci. 2021, 11, 2118. https://doi.org/10.3390/app11052118
Feher J, Cambal J, Pandula B, Kondela J, Sofranko M, Mudarri T, Buchla I. Research of the Technical Seismicity Due to Blasting Works in Quarries and Their Impact on the Environment and Population. Applied Sciences. 2021; 11(5):2118. https://doi.org/10.3390/app11052118
Chicago/Turabian StyleFeher, Jan, Jozef Cambal, Blazej Pandula, Julian Kondela, Marian Sofranko, Tawfik Mudarri, and Ivan Buchla. 2021. "Research of the Technical Seismicity Due to Blasting Works in Quarries and Their Impact on the Environment and Population" Applied Sciences 11, no. 5: 2118. https://doi.org/10.3390/app11052118
APA StyleFeher, J., Cambal, J., Pandula, B., Kondela, J., Sofranko, M., Mudarri, T., & Buchla, I. (2021). Research of the Technical Seismicity Due to Blasting Works in Quarries and Their Impact on the Environment and Population. Applied Sciences, 11(5), 2118. https://doi.org/10.3390/app11052118