Edible Flowers Extracts as a Source of Bioactive Compounds with Antioxidant Properties—In Vitro Studies
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Preparation of Alcoholic Extract
2.3. Spectrophotometric Analysis of Ethanol Extracts Prepared from the Flowers of White Clover and Red Clover
2.3.1. Antioxidant Activity of Extracts by the DPPH Methods
2.3.2. Determination of Reduction Potential of Extracts by the Ferric Reducing Antioxidant Power (FRAP) Method
2.3.3. Determination of the Total Polyphenols Content (TPC) in Extracts
2.4. Cell Cultures
2.5. Measurement of the Total Antioxidant Capacity and the Activity of Antioxidant Enzymes
2.6. Determination of Cell Proliferation
2.7. Statistical Analysis
3. Results
3.1. Analysis of the Antioxidant Properties of Flower Extracts
3.2. The Influence of Flower Extracts on Cytotoxicity—The Proliferation of THP-1 Cells Line
3.3. The Influence of Flower Extracts on Antioxidant Properties—THP-1 Cell Line
4. Discussion
4.1. The Analysis of the Antioxidant Properties of Flower Extracts
4.2. The Influence of Flower Extracts on the Proliferation of THP-1 Cells
4.3. The Influence of Flower Extracts on Antioxidant Cellular Status—THP-1 Cell Line
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chlubek, D. Fluoride and Oxidative Stress. Fluoride 2003, 36, 217–228. [Google Scholar]
- Jiang, T.; Sun, Q.; Chen, S. Oxidative stress: A major pathogenesis and potential therapeutic target of antioxidative agents in Parkinson’s disease and Alzheimer’s disease. Prog. Neurobiol. 2016, 147, 1–19. [Google Scholar] [CrossRef]
- Panth, N.; Paudel, K.R.; Parajuli, K. Reactive Oxygen Species: A Key Hallmark of Cardiovascular Disease. Adv. Med. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Gutowska, I.; Baranowska-Bosiacka, I.; Siennicka, A. Fluoride and Generation of Pro-Inflammatory Factors in Human Macrophages. Res. Rep. 2011, 44, 125–134. [Google Scholar]
- Lobo, R.O.; Shenoy, C.K. Myocardial potency of Bio-tea against Isoproterenol induced myocardial damage in rats. J. Food Sci. Technol. 2015, 52, 4491–4498. [Google Scholar] [CrossRef] [Green Version]
- Vlaisavljevic, S.; Kaurinovic, B.; Popovic, M.; Djurendic-Brenesel, M.; Vasiljevic, B.; Cvetkovic, D.; Vasiljevic, S. Trifolium pratense L. as a Potential Natural Antioxidant. Molecules 2014, 19, 713–725. [Google Scholar] [CrossRef]
- Esmaeili, A.K.; Taha, R.M.; Mohajer, S.; Banisalam, B. Antioxidant Activity and Total Phenolic and Flavonoid Content of Various Solvent Extracts from In Vivo and In Vitro Grown Trifolium pratense L. (Red Clover). BioMed. Res. Int. 2015. [Google Scholar] [CrossRef] [Green Version]
- Tundis, R.; Marrelli, M.; Conforti, F.; Tenuta, M.; Bonesi, M.; Menichini, F.; Loizzo, M. Trifolium pratense and T. repens (Leguminosae): Edible Flower Extracts as Functional Ingredients. Foods 2015, 4, 338–348. [Google Scholar] [CrossRef] [Green Version]
- Mlček, J.; Rop, O. Fresh edible flowers of ornamental plants-A new source of nutraceutical foods. Trends Food Sci. Technol. 2011. [Google Scholar] [CrossRef]
- Wróblewska, A.; Janda, K.; Makuch, E.; Walasek, M.; Miądlicki, P.; Jakubczyk, K. Effect of extraction method on the antioxidative activity of ground elder (Aegopodium podagraria L.). Pol. J. Chem. Technol. 2019, 21, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, L.; Casal, S.; Pereira, J.A.; Saraiva, J.A.; Ramalhosa, E. Edible flowers: A review of the nutritional, antioxidant, antimicrobial properties and effects on human health. J. Food Compos. Anal. 2017, 60, 38–50. [Google Scholar] [CrossRef]
- Kolodziejczyk-Czepas, J. Trifolium species-derived substances and extracts-Biological activity and prospects for medicinal applications. J. Ethnopharmacol. 2012, 143, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Saviranta, N.M.; Anttonen, M.J.; Von Wright, A.; Karjalainen, R.O. Red clover (Trifolium pratense L.) isoflavones: Determination of concentrations by plant stage, flower colour, plant part and cultivar. J. Sci. Food Agric. 2008, 88, 125–132. [Google Scholar] [CrossRef]
- Khazaei, M.; Pazhouhi, M. Protective effect of hydroalcoholic extracts of Trifolium pratense L. on pancreatic β cell line (RIN-5F) against cytotoxicty of streptozotocin. Res. Pharm. Sci. 2018, 13, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Chedraui, P.; Miguel, G.S.; Hidalgo, L.; Morocho, N.; Ross, S. Effect of Trifolium pratense-Derived isoflavones on the lipid profile of postmenopausal women with increased body mass index. Gynecol. Endocrinol. 2008, 24, 620–624. [Google Scholar] [CrossRef]
- Khan, S.W.; Khatoon, S. Ethnobotanical Studies on Some Useful Herbs of Haramosh and Bugrote Valleys in Gilgit, Northern Areas of Pakistan. 2008, 40, 43–58. [Google Scholar]
- Booth, N.L.; Overk, C.R.; Yao, P.; Totura, S.; Deng, Y.; Hedayat, A.S.; Bolton, J.L.; Pauli, G.F.; Farnsworth, N.R. Seasonal Variation of Red Clover (Trifolium pratense L., Fabaceae) Isoflavones and Estrogenic Activity. J. Agric. Food Chem. 2006, 54, 1277–1282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Pekkarinen, S.S.; Stöckmann, H.; Schwarz, K.; Heinonen, I.M.; Hopia, A.I. Antioxidant activity and partitioning of phenolic acids in bulk and emulsified methyl linoleate. J. Agric. Food Chem. 1999, 47, 3036–3043. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Benzie, I.F.; Strain, J.J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999, 299, 15–27. [Google Scholar] [PubMed]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Dec, K.; Łukomska, A.; Maciejewska, D.; Jakubczyk, K.; Baranowska-Bosiacka, I.; Chlubek, D.; Wąsik, A.; Gutowska, I. The Influence of Fluorine on the Disturbances of Homeostasis in the Central Nervous System. Biol. Trace Elem. Res. 2017, 177, 224–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Violante, G.D.; Zerrouk, N.; Richard, I.; Provot, G.; Chaumeil, J.C.; Arnaud, P. Evaluation of the cytotoxicity effect of dimethyl sulfoxide (DMSO) on Caco2/TC7 colon tumor cell cultures. Biol. Pharm. Bull. 2002, 25, 1600–1603. [Google Scholar] [CrossRef] [Green Version]
- Zawierta, J.; Dąbkowska, E.; Jakubowska, K.; Olszewska, M.; Noceń, I. The fluorine, iron, copper, zinc and selenium contents in plasma of healthy people living in Szczecin and its vicinity. Met Fluorine 1998, 200-5. [Google Scholar]
- Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010, 2, 1231–1246. [Google Scholar] [CrossRef]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kicel, A.; Wolbiś, M. Study on the phenolic constituents of the flowers and leaves of Trifolium repens L. Nat. Prod. Res. 2012, 26, 2050–2054. [Google Scholar] [CrossRef]
- Kaurinovic, B.; Popovic, M.; Vlaisavljevic, S.; Schwartsova, H.; Vojinovic-Miloradov, M. Antioxidant Profile of Trifolium pratense L. Molecules 2012, 17, 1156–1172. [Google Scholar] [CrossRef] [Green Version]
- Cosentino, M.; Marino, F.; Rasini, E.; Legnaro, M.; Bombelli, R.; Luini, A.; Pacchetti, B. Improved solubility and increased biological activity of NeoSolTM RCL40, a novel Red Clover Isoflavone Aglycones extract preparation. BioMed. Pharmacother. 2019, 111, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Malca-Garcia, G.R.; Zagal, D.; Graham, J.; Nikolić, D.; Friesen, J.B.; Lankin, D.C.; Chen, S.-N.; Pauli, G.F. Dynamics of the isoflavone metabolome of traditional preparations of Trifolium pratense L. J. Ethnopharmacol. 2019, 238, 111865. [Google Scholar] [CrossRef]
- Ahmad, S.; Zeb, A. Effects of phenolic compounds from aqueous extract of Trifolium repens against acetaminophen-induced hepatotoxicity in mice. J. Food Biochem. 2019, 43, e12963. [Google Scholar] [CrossRef] [PubMed]
- Tava, A.; Pecio, Ł.; Scalzo, R.L.; Stochmal, A.; Pecetti, L. Phenolic Content and Antioxidant Activity in Trifolium Germplasm from Different Environments. Molecules 2019, 24, 298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiriac, E.R.; Chiţescu, C.L.; Borda, D.; Lupoae, M.; Gird, C.E.; Geană, E.-I.; Blaga, G.-V.; Boscencu, R. Comparison of the Polyphenolic Profile of Medicago sativa L. and Trifolium pratense L. Sprouts in Different Germination Stages Using the UHPLC-Q Exactive Hybrid Quadrupole Orbitrap High-Resolution Mass Spectrometry. Molecules 2020, 25, 2321. [Google Scholar] [CrossRef]
- Vlaisavljević, S.; Kaurinović, B.; Popović, M.; Vasiljević, S. Profile of phenolic compounds in Trifolium pratense L. extracts at different growth stages and their biological activities. Int. J. Food Prop. 2017, 20, 3090–3101. [Google Scholar] [CrossRef] [Green Version]
- Dec, K.; Łukomska, A.; Baranowska-Bosiacka, I.; Pilutin, A.; Maciejewska, D.; Skonieczna-Żydecka, K.; Derkacz, R.; Goschorska, M.; Wąsik, A.; Rębacz-Maron, E.; et al. Pre-and postnatal exposition to fluorides induce changes in rats liver morphology by impairment of antioxidant defense mechanisms and COX induction. Chemosphere 2018, 211, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Łukomska, A.; Baranowska-Bosiacka, I.; Jakubczyk, K.; Wolska, J.; Piotrowska, K.; Janda, K.; Banaszczak, M.; Bosiacka, B.; Gutowska, I.; Chlubek, D. Extract from Nettle Seeds (Urtica dioica L.) Decreases the Synthesis of Lipoxin A4 through Inhibition of the Development of Fluoride-Induced Inflammation in thp1 Monocytes/Macrophages. Fluoride 2017, 50, 455–467. [Google Scholar]
- Jakubczyk, K.; Łukomska, A.; Baranowska-Bosiacka, I.; Goschorska, M.; Dec, K.; Wolska, J.; Janda, K.; Piotrowska, K.; Kupnicka, P.; Kupczak, P.; et al. The Influence of Extracts from the Seeds of the Common Nettle (Urtica dioica L.) on the Activity of Antioxidative Enzymes in Macrophages Incubated with Sodium Fluoride. Fluoride 2018, 51, 65–76. [Google Scholar]
- Gutowska, I.; Jakubczyk, K.; Dec, K.; Baranowska-Bosiacka, I.; Drozd, A.; Janda, K.; Wolska, J.; Łukomska, A.; Dębia, K.; Chlubek, D. Effect of the extract from nettle (Urtica dioica L.) fruit cluster on the synthesis of pro-inflammatory agents in hepatocytes treated wuth fluoride. Fluoride 2014, 47, 109–118. [Google Scholar]
- Liang, C.; Zhou, A.; Sui, C.; Huang, Z. The effect of formononetin on the proliferation and migration of human umbilical vein endothelial cells and its mechanism. BioMed. Pharmacother. 2018, 111, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Massih, R.M.; Fares, R.; Bazzi, S.; El-Chami, N.; Baydoun, E. The apoptotic and anti-proliferative activity of Origanum majorana extracts on human leukemic cell line. Leuk. Res. 2010, 34, 1052–1056. [Google Scholar] [CrossRef] [PubMed]
- Gutowska, I.; Baranowska-Bosiacka, I.; Baśkiewicz, M.; Milo, B.; Siennicka, A.; Marchlewicz, M.; Wiszniewska, B.; Machaliński, B.; Stachowska, E. Fluoride as a pro-inflammatory factor and inhibitor of ATP bioavailability in differentiated human THP1 monocytic cells. Toxicol. Lett. 2010, 196, 74–79. [Google Scholar] [CrossRef]
- Barbier, O.; Arreola-Mendoza, L.; Del Razo, L.M. Molecular mechanisms of fluoride toxicity. Chem. Biol. Interact. 2010, 188, 319–333. [Google Scholar] [CrossRef] [PubMed]
- Chawla, S.L.; Raoa, M.V.B. Protective effect of melatonin against fluoride-induced oxidative stress in the mouse ovary; Research report. Fluoride 2012, 45, 125–132. [Google Scholar]
- Chlubek, D.; Grucka-Mamczar, E.; Birkner, E.; Polaniak, R.; Stawiarska-Pieta, B.; Duliban, H. Activity of pancreatic antioxidative enzymes and malondialdehyde concentrations in rats with hyperglycemia caused by fluoride intoxication. J. Trace Elem. Med. Biol. Organ. Soc. Miner. Trace Elem. GMS 2003, 17, 57–60. [Google Scholar] [CrossRef]
- Dec, K.; Łukomska, A.; Skonieczna-Żydecka, K.; Kolasa-Wołosiuk, A.; Tarnowski, M.; Baranowska-Bosiacka, I.; Gutowska, I. Long-term exposure to fluoride as a factor promoting changes in the expression and activity of cyclooxygenases (COX1 and COX2) in various rat brain structures. NeuroToxicology 2019, 74, 81–90. [Google Scholar] [CrossRef]
- Kolodziejczyk-Czepas, J.; Nowak, P.; Kowalska, I.; Stochmal, A. Antioxidant action of six Trifolium species in blood platelet experimental system in vitro. Mol. Cell. Biochem. 2015, 410, 229–237. [Google Scholar] [CrossRef] [Green Version]
- Mu, H.; Bai, Y.-H.; Wang, S.-T.; Zhu, Z.-M.; Zhang, Y.-W. Research on antioxidant effects and estrogenic effect of formononetin from Trifolium pratense (red clover). Phytomedicine Int. J. Phytother. Phytopharm. 2009, 16, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Popa, D.-S.; Hanganu, D.; Kiss, B.; Loghin, F.; Crișan, G. Protective effect of Trifolium pratense extract on oxidative stress induced by bisphenol a in rats. Farmacia 2014, 62, 341–349. [Google Scholar]
- Gounden, T.; Moodley, R.; Jonnalagadda, S.B. Elemental analysis and nutritional value of edible Trifolium (clover) species. J. Environ. Sci. Health Part B 2018, 53, 487–492. Available online: https://www.tandfonline.com/doi/abs/10.1080/03601234.2018.1462923?scroll=top&needAccess=true&journalCode=lesb20 (accessed on 26 July 2019). [CrossRef]
- Masella, R.; Di Benedetto, R.; Varì, R.; Filesi, C.; Giovannini, C. Novel mechanisms of natural antioxidant compounds in biological systems: Involvement of glutathione and glutathione-related enzymes. J. Nutr. Biochem. 2005, 16, 577–586. [Google Scholar] [CrossRef]
- Fernández-Pachón, M.S.; Berná, G.; Otaolaurruchi, E.; Troncoso, A.M.; Martín, F.; García-Parrilla, M.C. Changes in antioxidant endogenous enzymes (activity and gene expression levels) after repeated red wine intake. J. Agric. Food Chem. 2009, 57, 6578–6583. [Google Scholar] [CrossRef]
- Rodrigo, R.; Bosco, C. Oxidative stress and protective effects of polyphenols: Comparative studies in human and rodent kidney. A review. Comp. Biochem. Physiol. Toxicol. Pharmacol. CBP 2006, 142, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Piao, M.J.; Yoo, E.S.; Koh, Y.S.; Kang, H.K.; Kim, J.; Kim, Y.J.; Kang, H.H.; Hyun, J.W. Antioxidant Effects of the Ethanol Extract from Flower of Camellia japonica via Scavenging of Reactive Oxygen Species and Induction of Antioxidant Enzymes. Int. J. Mol. Sci. 2011, 12, 2618–2630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noh, J.-R.; Gang, G.-T.; Kim, Y.-H.; Yang, K.-J.; Hwang, J.-H.; Lee, H.-S.; Oh, W.-K.; Song, K.-S.; Lee, C.-H. Antioxidant effects of the chestnut (Castanea crenata) inner shell extract in t-BHP-treated HepG2 cells, and CCl4- and high-fat diet-treated mice. Food Chem. Toxicol. 2010, 48, 3177–3183. [Google Scholar] [CrossRef]
Extract | DPPH [%] | FRAP [uM Fe(II)/L] | TPC [mg/L] |
---|---|---|---|
Red Clover a | 4.48 ± 0.21 *b | 100.20 ± 4.96 *b | 19.20 ± 0.71 *b |
White Clover b | 3.86 ± 0.16 *a | 88.71 ± 3.16 *a | 14.29 ± 1.19 *a |
Sample | Negative Control a | Water (NaF Solvent) b | DMSO (Extract Solvent) c | Water and DMSO (NaF and Extract Solvent) d | NaF 10uM e | White Clover f | White Clover + NaF g | Red Clover h | Red Clover + NaF i |
---|---|---|---|---|---|---|---|---|---|
BrdU [Ab] | 1.12 ± 0.03 *e | 1.079 ± 0.001 | 1.052 ± 0.03 | 0.967 ± 0.03 *h | 0.762 ± 0.001 *a,f,h | 1.164 ± 0.004 *e,g | 0.937 ± 0.001 *f,h | 1.408 ± 0.001 *d,e,g | 1.078 ± 0.004 |
Sample | ABTS [mM] | SOD [U/mL] | CAT [nmol/min/mL/protein] |
---|---|---|---|
Negative control a | 23.36 ± 1.93 *c,d,f,g,h,i | 31.42 ± 6.38 *b,c,d | 151.33 ± 8.07 *e,h |
Water (NaF solvent) b | 36.69 ± 7.79 *c,f,g,h,i | 30.11 ± 12.49 *c,d,e,h | 164.46 ± 35.65 *e,h |
DMSO (extract solvent) c | 67.01 ± 6.61 *a,b,e,h | 11. 44 ± 2.36 *a,b,f,h,i, | 203.50 ± 30.15 *e,h |
DMSO + water (extract and NaF solvent) d | 57.23 ± 15.70 *a,e,f,h,i | 12.26 ± 1.18 *a,b,f,h,i, | 219.38 ± 55.45 *e,h |
NaF 10uMe | 13.83 ± 3.20 *c,d,f,g,h,i | 8.69 ± 1.45 *a,b,f,g,h,i | 46.32 ± 9.32 *a,b,c,d,f,g,h,i |
White cloverf | 91.41 ± 16,02 *a,b,d,e | 32.89 ± 6.15 *c,d,e, | 232.12 ± 50.34 *e,h |
White clover + NaFg | 69.40 ± 5.06 *a,b,e | 24.78 ± 10.02 *e,h | 157.39 ± 45.03 *e,h |
Red Cloverh | 94.09 ± 24.25 *a,b,c,d,e | 44.55 ± 5.57 *b,c,d,e,g | 328.81 ± 68.82 *a,b,c,d,e,f,g,i |
Red Clover + NaFi | 84.37 ± 9.46 *a,b,d,e | 32.89 ± 6.15 *c,d,e | 227.28 ± 22.00 *e,h |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakubczyk, K.; Łukomska, A.; Gutowska, I.; Kochman, J.; Janił, J.; Janda, K. Edible Flowers Extracts as a Source of Bioactive Compounds with Antioxidant Properties—In Vitro Studies. Appl. Sci. 2021, 11, 2120. https://doi.org/10.3390/app11052120
Jakubczyk K, Łukomska A, Gutowska I, Kochman J, Janił J, Janda K. Edible Flowers Extracts as a Source of Bioactive Compounds with Antioxidant Properties—In Vitro Studies. Applied Sciences. 2021; 11(5):2120. https://doi.org/10.3390/app11052120
Chicago/Turabian StyleJakubczyk, Karolina, Agnieszka Łukomska, Izabela Gutowska, Joanna Kochman, Joanna Janił, and Katarzyna Janda. 2021. "Edible Flowers Extracts as a Source of Bioactive Compounds with Antioxidant Properties—In Vitro Studies" Applied Sciences 11, no. 5: 2120. https://doi.org/10.3390/app11052120
APA StyleJakubczyk, K., Łukomska, A., Gutowska, I., Kochman, J., Janił, J., & Janda, K. (2021). Edible Flowers Extracts as a Source of Bioactive Compounds with Antioxidant Properties—In Vitro Studies. Applied Sciences, 11(5), 2120. https://doi.org/10.3390/app11052120