Rootstock Effect on Volatile Composition of Albariño Wines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vineyard Locations and Weather Conditions
2.2. Musts Samples, Must Chemical Parameters and Yield Components
2.3. Vinifications and Wine Chemical Analysis
2.4. Wine Volatile Compounds Analysis
2.5. Analysis of the Data
3. Results and Discussion
3.1. Chemical Composition of Musts
3.2. Chemical Composition of Wines
3.3. Wine Volatile Composition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, M.; Guo, Z.; Yuam, J.; Han, B.; Yin, Y.; Sun, Y.; Liu, C.; Zhao, S. Evalution of eight rootstocks on the growth and berry qualities of “Marcelan” grapevines. Sci. Hortic 2019, 248, 58–61. [Google Scholar] [CrossRef]
- Rodrigues da Silva, M.J.; Paiva, A.P.M.; Junior, A.P.; Pereira, C.A.; Sánchez, C.; Callili, D.; Moura, M.F.; Leonel, S.; Tecchio, M.A. Yield performance of new juice grape varieties grafted onto different rootstocks under tropical conditions. Sci. Hortic 2018, 241, 94–200. [Google Scholar]
- Sampaio, T.L.B. Using Rootstocks to Manipulate Vine Physiological Performance and Mediate Changes in Fruit and Wine Composition. Ph.D. Thesis, Oregon State University, Corvallis, OR, USA, 2007. [Google Scholar]
- Ollat, N.; Tandonnet, J.P.; Lafontaine, M.; Schultz, R. Short- and long-term effects of three rootstocks on Cabernet Sauvignon vine behavior and wine quality. Acta Hortic 2003, 617, 95–99. [Google Scholar] [CrossRef]
- Renouf, V.; Tregoat, O.; Roby, J.P.; van Leeuwen, C. Soils, rootstocks and grapevine varieties in prestigious Bordeaux vineyards and their impact on yield and quality. J. Int. Sci. Vigne Vin. 2010, 44, 127–134. [Google Scholar] [CrossRef]
- Souza, C.R.; Mota, R.V.; Cardozo, D.V.; Pinentel, R.M.; Regina, M.A. Cabernet Sauvignon grapevine grafted onto rootstocks during the autumn-winter season in southeastern Brazilian. Sci. Agricol. 2015, 72, 138–146. [Google Scholar] [CrossRef] [Green Version]
- Stevens, R.M.; Pech, J.M.; Taylor, J.; Clingeleffer, P.; Walker, R.R.; Nicholas, P.R. Effects of irrigation and rootstock on Vitis vinifera (L.) cv. Shiraz berry composition and shrivel, and wine composition and wine score. Aust. J. Grape Wine Res. 2016, 22, 124–136. [Google Scholar] [CrossRef]
- Wooldridge, J.; Loow, P.J.E.; Conradie, W.J. Effects of rootstocks on grapevine performance, petiole and must composition, and overall wine score of Vitis vinifera cv Chardonnay and Pinot Noir. S. Afr. J. Enol. Vitic. 2010, 31, 45–48. [Google Scholar] [CrossRef] [Green Version]
- Carrasco-Quiroz, M.; Martínez-Gil, A.M.; Gutiérrez-Gamboa, G.; Moreno-Simunovic, Y. Effect of rootstocks on volatile composition of Merlot wines. J. Sci. Food Agric. 2020, 100, 3517–3524. [Google Scholar] [CrossRef]
- Gutiérrez-Gamboa, G.; Garde-Cerdán, T.; Marioli Carrasco-Quiroz, M.; Pérez-Álvarez, E.P.; Martínez-Gil, A.M.; Alamo-Sanzac, M.; Moreno-Simunovica, Y. Volatile composition of Carignan noir wines from ungrafted and grafted onto País (Vitis vinifera L.) grapevines from ten wine-growing sites in Maule Valley, Chile. J. Sci. Food Agric. 2018, 98, 4268–4278. [Google Scholar]
- Koundouras, S.; Hatzidimitriou, E.; Karamolegkou, M.; Dimopoulou, E.; Kallithraka, S.; Tsialtas, J.T.; Zioziou, E.; Nikolau, N.; Kotseridis, Y. Irrigation and rootstock effects on the phenolic concentration and aroma potential of Vitis vinifera L. cv. Cabernet Sauvignon grapes. J. Agric. Food Chem. 2009, 57, 7805–7813. [Google Scholar] [CrossRef] [PubMed]
- Miele, A.; Rizzon, L.A. Rootstock-scion interaction: 3. Effect on the composition of Cabernet Sauvignon wine. Rev. Bras. Frutic. 2019, 41, e642. [Google Scholar] [CrossRef]
- Ough, C.S.; Cook, J.A.; Lider, L.A. Rootstock-scion interactions concerning wine making. II. Wine compositional and sensory changes attributed to rootstock and fertilizer level differences. Am. J. Enol. Vitic. 1968, 19, 254–265. [Google Scholar]
- Wang, Y.; Chen, W.K.; Gao, X.T.; He, L.; Yang, X.H.; He, F.; Duan, C.Q.; Wang, J. Rootstock-mediated effects on Cabernet Sauvignon performance: Vine growth, berry ripening, flavonoids, and aromatic profiles. Int. J. Mol. Sci. 2019, 20, 401. [Google Scholar] [CrossRef] [Green Version]
- International Organisation of Vine and Wine (OIV). Compendium of International Methods of Wine and Must Analysis; International Organisation of Vine and Wine (OIV): Paris, France, 2019. [Google Scholar]
- Coelho, E.; Lemos, M.; Genisheva, Z.; Domingues, L.; Vilanova, M.; Oliveira, J.M. Simple and quick LLME/GC-MS methodology to quantify minor volatile compounds in alcoholic beverages. Molecules 2020, 25, 621. [Google Scholar] [CrossRef] [Green Version]
- Keller, M.; Mills, L.J.; Harbertson, J.F. Rootstock effects on deficit-irrigated winegrapes in a dry climate: Vigor, yield formation, and fruit ripening. Am. J. Enol. Vitic. 2012, 63, 29–39. [Google Scholar] [CrossRef]
- Jin, Z.X.; Sun, T.Y.; Sun, H.; Yue, Q.Y.; Yao, Y.X. Modifications of ‘Summer Black’ grape berry quality as affected by the different rootstocks. Sci. Hortic 2016, 210, 130–137. [Google Scholar] [CrossRef]
- Catalogue of Vine Varieties and Clones Grown in France. Available online: https://plantgrape.plantnet-project.org/en/porte-greffes (accessed on 14 May 2020).
- Wolpert, J.A.; Russell-Smart, D.; Anderson, M. Lower petiole potassium concentration at bloom in rootstocks with Vitis berlandieri genetic backgrounds. Am. J. Enol. Vitic. 2005, 56, 163–169. [Google Scholar]
- Kodur, S.; Tisdall, J.M.; Clingeleffer, P.R.; Walker, R.R. Regulation of berry quality parameters in ‘Shiraz’ grapevines through rootstocks (Vitis). Vitis 2013, 52, 125–128. [Google Scholar]
- Pulko, B.; Vršic, S.; Valdhuber, J. Influence of various rootstocks on the yield and grape composition of Sauvignon blanc. Czech J. Food Sci. 2012, 30, 467–473. [Google Scholar] [CrossRef] [Green Version]
- Loureiro, M.D.; Moreno-Sanz, P.; García, A.; Fernández, O.; Fernández, N.; Suárez, B. Influence of rootstock on the performance of the Albarin Negro minority grapevine cultivar. Sci. Hortic 2016, 201, 145–152. [Google Scholar] [CrossRef]
- Habran, A.; Commisso, M.; Helwi, P.; Hilbert, G.; Negri, S.; Ollat, N.; Gomès, E.; van Leeuwen, C.; Guzzo, F.; Delrot, S. Roostocks/scion/nitrogen interactions affect secondary metabolism in the grape berry. Front. Plant Sci. 2016, 7, 1134. [Google Scholar] [CrossRef] [Green Version]
- Genisheva, Z.; Macedo, S.; Mussatto, S.I.; Teixeira, J.A.; Oliveira, J.M. Production of white wine by Saccharomyces cerevisiae immobilized on grape pomace. J. Inst. Brew. 2012, 118, 163–173. [Google Scholar] [CrossRef] [Green Version]
- Vilanova, M.; Genisheva, Z.; Masa, A.; Oliveira, J.M. Correlation between volatile composition and sensory properties in Spanish Albariño wines. Microchem. J. 2010, 95, 240–246. [Google Scholar] [CrossRef]
- Vilanova, M.; Genisheva, Z.; Tubio, M.; Álvarez, K.; Lissarrague, J.R.; Oliveira, J.M. Effect of vertical Shoot-Positioned, Scott-Henry, Geneva Double-Curtain, Arch-Cane, and Parral sraining Systems on the volatile composition of Albariño wines. Molecules 2017, 22, 1500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clemente-Jimenez, J.M.; Mingorance-Cazorla, L.; Martínez-Rodríguez, S.; Las Heras-Vázquez, F.J.; Rodríguez-Vico, F. Molecular characterization and oenological properties of wine yeasts isolated during spontaneous fermentation of six varieties of grape must. Food Microbiol. 2004, 21, 149–155. [Google Scholar] [CrossRef]
- Katarína, F.; Katarína, M.; Katarína, D.; Ivan, D.; Fedor, M. Influence of yeast strain on aromatic profile of Gewürztraminer wine. LWT-Food Sci. Technol. 2014, 59, 256–262. [Google Scholar]
- Rapp, A.; Mandery, H. Wine aroma. Experientia 1986, 42, 873–884. [Google Scholar] [CrossRef]
- Etievant, P. Wine. In Volatile Compounds in Foods and Beverages; Maarse, H., Ed.; Marcel Dekker: New York, NY, USA, 1991; pp. 483–546. [Google Scholar]
- Ferreira, V.; Lopez, R.; Cacho, J. Quantitative determination of the odorants of young red wines from different grape varieties. J. Sci. Food Agric. 2000, 80, 1659–1667. [Google Scholar] [CrossRef]
- Mateo, J.J.; Jiménez, J. Monoterpenes in grape juice and wines. A Review. J. Chromatogr. A 2000, 881, 557–567. [Google Scholar] [CrossRef]
- Olarte-Mantilla, S.M.; Collins, C.; Iland, P.G.; Kidman, C.M.; Ristic, R.; Boss, P.K.; Jordans, C.; Bastian, S.E.P. Shiraz (Vitis vinifera L.) berry and wine sensory profiles and composition are modulated by rootstocks. Am. J. Enol. Vitic. 2018, 69, 32–44. [Google Scholar] [CrossRef]
Climatic Conditions | Year (April–September) | |
---|---|---|
2009 | 2010 | |
Mean Temperature (°C) | 16.38 | 16.80 |
Maximum Temperature (°C) | 22.26 | 22.90 |
Minimum Temperature (°C) | 11.59 | 11.83 |
Rain (L/m2) | 480.90 | 413.70 |
Rootstock | Cluster/Shoot | Clusters/Vine | Cluster Mass (g) | Yield (kg/ha) | oBrix | pH | Titratable Acidity (g/L) | Tartaric Acid (g/L) | Malic Acid(g/L) |
---|---|---|---|---|---|---|---|---|---|
2009 vintage | |||||||||
110R | 2.07 ± 0.84 | 38.37 ± 12.48 | 80.11 ± 16.65 | 9700 ± 1290 | 24.2 ± 0.38 | 3.39 ± 0-07 | 8.14 ± 0.55 | 6.04 ± 0.31 | 4.32 ± 0.51 |
SO4 | 2.13 ± 1.14 | 36.93 ± 15.29 | 77.09 ± 29.15 | 8940 ± 3075 | 23.6 ± 0.35 | 3.35 ± 0.04 | 9.21 ± 1.23 | 6.10 ± 0.17 | 5.00 ± 0.93 |
196-17C | 1.90 ± 0.27 | 34.80 ± 7.38 | 76.51 ± 28.81 | 8492 ± 2250 | 24.8 ± 0.21 | 3.39 ± 0.01 | 7.85 ± 0.61 | 5.91 ± 0.06 | 4.20 ± 0.74 |
Riparia Gloria | 1.95 ± 0.54 | 34.73 ± 12.64 | 67.55 ± 22.47 | 7268 ± 2059 | 24.0 ± 0.42 | 3.40 ± 0.02 | 7.95 ± 0.61 | 5.84 ± 0.49 | 4.41 ± 0.49 |
161-49C | 1.98 ± 0.34 | 39.12 ± 5.66 | 90.35 ± 23.07 | 11,768 ± 3397 | 23.7 ± 0.15 | 3.36 ± 0.04 | 8.00 ± 1,38 | 5.90 ± 0.59 | 4.10 ± 1.08 |
420A | 2.03 ± 0.57 | 38.96 ± 10.88 | 74.34 ± 13.65 | 9844 ± 3579 | 22.7 ± 0.50 | 3.40 ± 0.04 | 7.52 ± 0.45 | 6.32 ± 0.06 | 3.73 ± 0.56 |
Gravesac | 1.88 ± 0.32 | 39.52 ± 9.73 | 67.33 ± 22.93 | 9001 ± 4049 | 23.9 ± 0.55 | 3.47 ± 0.03 | 7.90 ± 1.00 | 6.21 ± 0.21 | 4.02 ± 0.97 |
3309C | 1.83 ± 0.49 | 37.73 ± 11.80 | 61.52 ± 21.76 | 7700 ± 3196 | 23.4 ± 0.40 | 3.39 ± 0.11 | 7.67 ± 0.68 | 6.33 ± 0.64 | 4.10 ± 1.66 |
41B | 1.93 ± 0.20 | 41.12 ± 7.11 | 79.53 ± 13.59 | 10,882 ± 2415 | 24.4 ± 0.35 | 3.47 ± 0.05 | 7.35 ± 1.00 | 6.10 ± 0.31 | 4.15 ± 0.69 |
2010 vintage | |||||||||
110R | 1.84 ± 0.22 | 38.27 ± 4.88 | 135.45 ± 28.63 | 17,161 ± 3594 | 21.8 ± 0.32 | 2.96 ± 0.03 | 10.48 ± 0.41 | 5.40 ± 0.26 | 4.20 ± 0.12 |
SO4 | 1.98 ± 0.19 | 40.96 ± 3.95 | 124.77 ± 12.46 | 17,077 ± 2677 | 21.5 ± 0.17 | 2.98 ± 0.03 | 11.44 ± 0.96 | 5.41 ± 0.12 | 5.02 ± 0.75 |
196-17C | 1.93 ± 0.20 | 40.95 ± 5.68 | 106.18 ± 36.47 | 14,112 ± 4070 | 22.0 ± 0.55 | 2.91 ± 0.05 | 10.71 ± 0.31 | 4.70 ± 0.36 | 4.40 ± 0.31 |
Riparia Gloria | 2.04 ± 0.05 | 44.90 ± 2.45 | 113.58 ± 28.74 | 17,128 ± 4951 | 21.9 ± 0.51 | 3.16 ± 0.03 | 9.19 ± 0.14 | 3.52 ± 0.38 | 4.81 ± 0.12 |
161-49C | 1.84 ± 0.09 | 41.08 ± 3.91 | 115.85 ± 21.89 | 15,730 ± 2438 | 22.6 ± 0.47 | 3.01 ± 0.02 | 10.31 ± 0.38 | 5.51 ± 0.10 | 3.82 ± 0.55 |
420A | 1.53 ± 0.29 | 32.43 ± 7.70 | 110.81 ± 34.33 | 11,852 ± 3735 | 22.0 ± 0.18 | 2.98 ± 0.05 | 10.78 ± 1.01 | 5.71 ± 0.32 | 4.42 ± 1.01 |
Gravesac | 1.95 ± 0.09 | 41.90 ± 2.82 | 138.24 ± 35.12 | 19,137 ± 3820 | 22.0 ± 0.58 | 3.01 ± 0.02 | 10.60 ± 0.14 | 5.42 ± 0.17 | 4.30 ± 0.30 |
3309C | 2.02 ± 0.16 | 39.92 ± 3.31 | 128.04 ± 27.37 | 16,887 ± 3299 | 22.3 ± 0.51 | 2.93 ± 0.01 | 10.24 ± 0.44 | 5.40 ± 0.46 | 3.52 ± 0.31 |
41B | 1.91 ± 0.17 | 39.46 ± 4.88 | 133.72 ± 29.88 | 17,764 ± 5720 | 22.5 ± 0.21 | 2.95 ± 0.03 | 10.22 ± 0.68 | 4.70 ± 0.20 | 4.12 ± 0.78 |
Rootstock | pH | Titratable | Tartaric Acid | Malic Acid | Alcoholic |
---|---|---|---|---|---|
Acidity (g/L) | (g/L) | (g/L) | Strength by Volume | ||
2009 vintage | |||||
110R | 3.42 ± 0.02 | 8.63 ± 1.05 | 3.31 ± 0.33 | 4.01 ± 0.56 | 14.35 ± 0.20 |
SO4 | 3.39 ± 0.02 | 9.40 ± 0.55 | 3.50 ± 0.24 | 4.73 ± 0.98 | 13.88 ± 0.32 |
196-17C | 3.45 ± 0.04 | 8.28 ± 0.71 | 2.91 ± 0.54 | 4.05 ± 0.65 | 14.16 ± 0.70 |
Riparia G | 3.46 ± 0.01 | 8.79 ± 0.60 | 3.21 ± 0.43 | 4.04 ± 0.60 | 14.04 ± 0.45 |
161-49C | 3.40 ± 0.02 | 8.56 ± 0.45 | 3.55 ± 0.33 | 3.89 ± 0.88 | 14.12 ± 0.67 |
420A | 3.37 ± 0.01 | 8.65 ± 0.76 | 4.15 ± 0.23 | 3.49 ± 0.45 | 13.42 ± 0.40 |
Gravesac | 3.46 ± 0.03 | 8.89 ± 1.03 | 3.60 ± 0.54 | 4.08 ± 0.30 | 14.06 ± 0.45 |
3309C | 3.41 ± 0.04 | 8.38 ± 0.9 | 3.54 ± 0.56 | 3.64 ± 0.55 | 13.87 ± 0.34 |
41B | 3.53 ± 0.10 | 7.78 ± 0.33 | 2.99 ± 0.35 | 3.92 ± 0.88 | 14.48 ± 0.67 |
2010 vintage | |||||
110 R | 2.96 ± 0.01 | 9.77 ± 0.35 | 5.17 ± 0.46 | 4.07 ± 0.55 | 13.15 ± 0.76 |
SO4 | 2.91 ± 0.01 | 10.33 ± 0.45 | 5.30 ± 0.34 | 4.56 ± 0.45 | 12.83 ± 0.43 |
196-17C | 2.96 ± 0.01 | 10.06 ± 1.36 | 5.17 ± 0.45 | 4.24 ± 0.35 | 13.22 ± 0.30 |
Riparia Gloria | 3.20 ± 0.02 | 8.37 ± 0.87 | 2.64 ± 0.65 | 4.68 ± 0.98 | 12.99 ± 0.42 |
161-49C | 2.99 ± 0.01 | 9.22 ± 0.36 | 4.75 ± 0.22 | 3.60 ± 0.70 | 13.44 ± 0.33 |
420A | 3.02 ± 0.03 | 9.62 ± 1.04 | 5.17 ± 0.76 | 4.04 ± 0.49 | 13.18 ± 0.46 |
Gravesac | 2.97 ± 0.02 | 9.86 ± 0.87 | 5.31 ± 0.44 | 4.26 ± 0.57 | 13.21 ± 0.62 |
3309C | 2.95 ± 0.01 | 9.13 ± 0.34 | 4.57 ± 0.45 | 3.59 ± 0.55 | 13.55 ± 0.27 |
41B | 2.97 ± 0.02 | 9.58 ± 0.23 | 5.07 ± 0.66 | 3.97 ± 0.63 | 13.44 ± 0.30 |
2009 | 2010 | Sig. | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Volatile Compounds | 110R | SO4 | 196-17C | RipariaG G | 161-49C | 420A | Gravesac | 3309C | 41B | 110R | SO4 | 196-17C | RipariaG G | 161-49C | 420A | Gravesac | 3309C | 41B | R | V | R*V |
1-propanol | 245 ± 86 | 218 ± 51 | 184 ± 36 | 215 ± 16 | 305 ± 45 | 220 ± 29 | 227 ± 20 | 149 ± 132 | 276 ± 17 | 159 ± 24 | 96 ± 38 | 109 ± 17 | 98 ± 0 | 100 ± 4 | 153 ± 3 | 71 ± 83 | 137 ± 64 | 126 ± 19 | ns | *** | ns |
2-methyl-1-propanol | 959 ± 386 | 721 ± 185 | 575 ± 154 | 794 ± 79 | 766 ± 182 | 1065 ± 178 | 1090 ± 97 | 437 ± 376 | 1021 ± 133 | 674 ± 123a | 302 ± 189ab | 367 ± 84ab | 247 ± 1ab | 355 ± 64ab | 405 ± 8ab | 317 ± 12ab | 591 ± 283ab | 167 ± 191b | ns | *** | * |
1-butanol | 42 ± 16 | 38 ± 10 | 29 ± 6 | 37 ± 5 | 41 ± 8 | 37 ± 8 | 44 ± 3 | 28 ± 13 | 57 ± 7 | nd | 14 ± 11 | 50 ± 54 | 7 ± 1 | 13 ± 2 | 16 ± 2 | 13 ± 3 | 18 ± 3 | 15 ± 2 | ns | *** | * |
2+3-methyl-1-butanol | 25078 ± 10529 | 20290 ± 4902 | 15576 ± 2850 | 19468 ± 2059 | 19873 ± 4276 | 23288 ± 3400 | 25033 ± 2897 | 17184 ± 3050 | 25020 ± 1147 | 25031 ± 4073a | 11503 ± 6789ab | 14436 ± 2136ab | 7572 ± 162b | 14158 ± 2854ab | 15787 ± 8ab | 11903 ± 973ab | 22583 ± 8943ab | 12355 ± 669ab | * | *** | ns |
2-methyl-1-pentanol | 36 ± 13a | 29 ± 7ab | 18 ± 3ab | 26 ± 2ab | 36 ± 4a | 13 ± 5b | 25 ± 5ab | 33 ± 4a | 11 ± 5b | 17 ± 2ab | 8 ± 6abc | 11 ± 0abc | 6 ± 1c | 10 ± 1abc | 13 ± 1abc | 7 ± 2bc | 19 ± 5a | 9 ± 1abc | *** | *** | ** |
3-methyl-1-pentanol | 17 ± 6 | 14 ± 3 | 11 ± 2 | 12 ± 1 | 16 ± 3 | 15 ± 2 | 16 ± 2 | 13 ± 1 | 18 ± 1 | 41 ± 6a | 13 ± 6cd | 27 ± 1abc | 7 ± 3d | 28 ± 1abc | 24 ± 4bc | 18 ± 2cd | 36 ± 7ab | 18 ± 3cd | *** | *** | *** |
2-phenylethanol | 5415 ± 956a | 4636 ± 320ab | 4676 ± 442ab | 4426 ± 179ab | 4109 ± 783ab | 3414 ± 1273b | 5009 ± 1654ab | 4578 ± 125ab | 4876 ± 272ab | 25112 ± 2722a | 8145 ± 4395c | 14352 ± 28bc | 5500 ± 115c | 14829 ± 1372bc | 12262 ± 157bc | 7547 ± 465c | 20274 ± 5516ab | 7999 ± 22c | *** | *** | *** |
2,3-butanediol | nd | nd | nd | nd | nd | nd | nd | nd | nd | 339 ± 43a | 109 ± 40ab | 245 ± 35ab | 70 ± 74b | 212 ± 51ab | 199 ± 33ab | 204 ± 25ab | 311 ± 171ab | 248 ± 5ab | * | ns | - |
Methionol | 5 ± 1 | 5 ± 2 | 5 ± 1 | 5 ± 1 | 3 ± 1 | 6 ± 1 | 6 ± 1 | 5 ± 0 | 6 ± 1 | 49 ± 3a | 17 ± 8c | 24 ± 3c | 9 ± 2c | 27 ± 3bc | 19 ± 0c | 14 ± 1c | 44 ± 11ab | 12 ± 0c | *** | *** | *** |
Benzyl alcohol | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | 8 ± 0 | nd | nd | 9 ± 3 | 10 ± 5 | nd | nd | 11 ± 4 | ns | - | - |
Total Alcohols (%) | 68.8 | 68.4 | 65.7 | 69.1 | 64.6 | 69.6 | 71.1 | 65.6 | 70.0 | 66.9 | 35.3 | 62.5 | 56.2 | 66.3 | 59.0 | 51.6 | 67.8 | 51.9 | |||
1-hexanol | 332 ± 121 | 287 ± 54 | 240 ± 39 | 339 ± 31 | 309 ± 30 | 285 ± 57 | 313 ± 42 | 258 ± 7 | 330 ± 39 | 227 ± 19 | 158 ± 86 | 209 ± 1 | 210 ± 5 | 140 ± 16 | 144 ± 168 | 129 ± 7 | 303 ± 76 | 163 ± 4 | ns | *** | ns |
(E)-3-hexen-1-ol | 22 ± 9 | 20 ± 5 | 11 ± 1 | 15 ± 2 | 16 ± 2 | 17 ± 1 | 21 ± 2 | 15 ± 1 | 12 ± 3 | 11 ± 1 | 10 ± 7 | 8 ± 1 | 7 ± 0 | 8 ± 0 | 13 ± 3 | 19 ± 4 | 15 ± 2 | 15 ± 2 | * | *** | ns |
(Z)-3-hexen-1-ol | 24 ± 9ab | 37 ± 10ab | 32 ± 7ab | 18 ± 23ab | 35 ± 8ab | 11 ± 13b | 46 ± 17ab | 33 ± 1ab | 50 ± 5a | 13 ± 5ab | 8 ± 4b | 15 ± 0ab | 15 ± 1ab | 7 ± 3b | 23 ± 4a | 20 ± 1ab | 19 ± 4ab | 13 ± 4ab | ns | *** | * |
Total C6 compounds (%) | 0.8 | 0.9 | 0.9 | 1.0 | 0.9 | 0.8 | 0.9 | 0.9 | 0.9 | 0.3 | 0.3 | 0.5 | 1.0 | 0.3 | 0.4 | 0.4 | 0.5 | 0.5 | |||
Ethyl butytate | 1199 ± 406 | 753 ± 320 | 447 ± 384 | 792 ± 261 | 994 ± 110 | 940 ± 399 | 52 ± 8 | 666 ± 509 | 1160 ± 182 | 175 ± 24a | 67 ± 33cd | 124 ± 19abc | 83 ± 11bcd | 57 ± 9d | 161 ± 10a | 134 ± 7abc | 118 ± 17abcd | 141 ± 2ab | ns | *** | ns |
Ethyl hexanoate | 755 ± 240 | 680 ± 124 | 613 ± 60 | 647 ± 46 | 832 ± 127 | 689 ± 64 | 691 ± 87 | 552 ± 46 | 738 ± 19 | 680 ± 58a | 297 ± 135bc | 526 ± 133abc | 297 ± 5bc | 272 ± 31c | 635 ± 1a | 553 ± 32ab | 453 ± 32abc | 534 ± 10ab | ** | *** | ** |
Ethyl octanoate | 868 ± 190 | 743 ± 15 | 763 ± 53 | 733 ± 39 | 776 ± 64 | 710 ± 7 | 729 ± 12 | 679 ± 37 | 734 ± 36 | 418 ± 41ab | 101 ± 36f | 290 ± 83cd | 190 ± 8def | 123 ± 4ef | 513 ± 11a | 348 ± 1bc | 234 ± 6cdef | 246 ± 3cde | *** | *** | *** |
Ethyl lactate | 234 ± 86ab | 182 ± 65ab | 101 ± 15b | 153 ± 15b | 121 ± 26b | 311 ± 52a | 231 ± 26ab | 146 ± 18b | 146 ± 10b | 575 ± 113a | 347 ± 207ab | 335 ± 41ab | 163 ± 1b | 331 ± 54ab | 414 ± 1ab | 375 ± 43ab | 525 ± 232ab | 408 ± 27ab | ** | *** | * |
Ethyl decanoate | 247 ± 21a | 199 ± 6cd | 254 ± 13a | 236 ± 6ab | 228 ± 23abc | 190 ± 4cd | 223 ± 8abcd | 205 ± 3bcd | 182 ± 11d | 69 ± 8 | 44 ± 48 | 44 ± 14 | 31 ± 2 | 33 ± 15 | 70 ± 15 | 36 ± 40 | 51 ± 8 | 54 ± 6 | * | *** | ** |
Diethyl succinate | 7 ± 1a | 3 ± 1bc | 3 ± 1abc | 5 ± 1abc | 4 ± 0abc | 6 ± 1abc | 6 ± 1ab | 1 ± 0c | 7 ± 0abc | 256 ± 30a | 107 ± 55cd | 199 ± 34abc | 83 ± 1d | 206 ± 4ab | 206 ± 11ab | 156 ± 3bcd | 252 ± 9ab | 173 ± 3abcd | *** | *** | *** |
Diethyl malate | nd | nd | nd | nd | nd | nd | nd | nd | nd | 741 ± 74a | 456 ± 239ab | 499 ± 19ab | 142 ± 5d | 441 ± 11ab | 436 ± 32ab | 441 ± 50ab | 670 ± 146a | 480 ± 2ab | ** | - | - |
Hexyl acetate | 158 ± 49 | 135 ± 24 | 130 ± 12 | 149 ± 10 | 180 ± 34 | 134 ± 10 | 163 ± 16 | 124 ± 11 | 185 ± 3 | 44 ± 9cd | 38 ± 17cd | 72 ± 17abc | 81 ± 6ab | 16 ± 0d | 103 ± 7a | 66 ± 4bc | 64 ± 2bc | 62 ± 4bc | ns | *** | *** |
Isoamyl acetate | 4372 ± 1554ab | 3567 ± 783ab | 2687 ± 467b | 3041 ± 249b | 4848 ± 785ab | 3517 ± 409ab | 4868 ± 542ab | 3579 ± 458ab | 5372 ± 229a | 2348 ± 241bcd | 1355 ± 675ef | 1874 ± 330cdef | 1990 ± 10cde | 868 ± 108f | 3329 ± 18a | 3077 ± 86ab | 1522 ± 105def | 2854 ± 39abc | *** | *** | ** |
2-phenylethyl acetate | 460 ± 71a | 245 ± 160ab | 258 ± 30ab | 207 ± 18b | 252 ± 13ab | 183 ± 12b | 260 ± 10ab | 222 ± 24b | 232 ± 16b | 429 ± 73a | 230 ± 97b | 310 ± 38ab | 277 ± 18ab | 231 ± 0b | 422 ± 22a | 398 ± 13ab | 348 ± 24ab | 405 ± 30ab | *** | *** | * |
Total esters+acetates (%) | 18.0 | 17.1 | 16.4 | 16.5 | 21.2 | 16.6 | 16.3 | 18.1 | 19.6 | 7.5 | 5.3 | 9.0 | 13.9 | 5.7 | 12.8 | 14.3 | 6.5 | 13.3 | |||
Linalool | 59 ± 7a | 37 ± 6ab | 44 ± 11ab | 49 ± 2ab | 52 ± 10ab | 42 ± 2ab | 56 ± 7a | 54 ± 1ab | 32 ± 7b | nd | 12 ± 0 | 33 ± 4 | 71 ± 82 | 31 ± 3 | 25 ± 3 | 24 ± 7 | 41 ± 18 | 28 ± 9 | ns | ns | ns |
α--terpineol | 9 ± 1ab | 8 ± 1abc | 6 ± 1bc | 9 ± 1a | 11 ± 1a | 9 ± 1a | 9 ± 1ab | 10 ± 0a | 6 ± 1c | nd | nd | nd | nd | 7 ± 1 | nd | 5 ± 0 | 13 ± 8 | 4 ± 0 | * | ns | ns |
HO-trienol | nd | nd | nd | nd | nd | nd | nd | nd | nd | 24 ± 1b | 8 ± 6e | 17 ± 3bcde | 11 ± 0de | 23 ± 2bc | 18 ± 0bcd | 15 ± 0cde | 43 ± 2a | 19 ± 2bcd | *** | - | - |
β-damascenone | 14 ± 1a | 11 ± 0ab | 13 ± 1ab | 11 ± 1ab | 10 ± 1b | 9 ± 1b | 14 ± 2a | 12 ± 2ab | 6 ± 0c | nd | nd | nd | nd | 12 ± 9 | nd | nd | 19 ± 5 | 14 ± 4 | ** | *** | ** |
Total Terpenes+C13 (%) | 0.2 | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.0 | 0.0 | 0.1 | 0.3 | 0.2 | 0.1 | 0.1 | 0.2 | 0.2 | |||
Butyric acid | 35 ± 4 | 126 ± 180 | 93 ± 131 | 23 ± 2 | 23 ± 7 | 23 ± 4 | 8 ± 1 | 23 ± 2 | 92 ± 116 | 40 ± 15 | 15 ± 9 | 22 ± 4 | 14 ± 0 | 24 ± 3 | 31 ± 3 | 25 ± 1 | 46 ± 20 | 26 ± 2 | ns | ns | ns |
2+3-methylbutytic acids | 263 ± 53a | 215 ± 11ab | 189 ± 17b | 170 ± 6b | 185 ± 9b | 171 ± 4b | 162 ± 6b | 175 ± 5b | 153 ± 10b | 120 ± 19a | 27 ± 26c | 76 ± 7abc | 31 ± 1c | 66 ± 13abc | 65 ± 2abc | 51 ± 6bc | 119 ± 44ab | 53 ± 5abc | *** | *** | ** |
Hexanoic acid | 814 ± 158 | 761 ± 47 | 700 ± 54 | 714 ± 39 | 664 ± 124 | 748 ± 22 | 729 ± 12 | 720 ± 12 | 737 ± 48 | 2746 ± 289a | 1313 ± 727bc | 1699 ± 25abc | 897 ± 24c | 1640 ± 165abc | 2021 ± 50abc | 1708 ± 150abc | 2236 ± 658ab | 1788 ± 112abc | *** | *** | *** |
Heptanic acid | 20 ± 1 | 13 ± 3 | 17 ± 4 | 18 ± 1 | 13 ± 4 | 12 ± 2 | 12 ± 1 | 15 ± 5 | 18 ± 5 | nd | nd | nd | nd | nd | nd | nd | nd | nd | ns | - | ns |
Octanoic acid | 3172 ± 354 | 2828 ± 335 | 3057 ± 297 | 2647 ± 105 | 2965 ± 183 | 3068 ± 54 | 2890 ± 176 | 3039 ± 49 | 2223 ± 992 | 12478 ± 1321 | 29788 ± 27232 | 8400 ± 84 | 4499 ± 211 | 7654 ± 204 | 8861 ± 14 | 8244 ± 3 | 9679 ± 802 | 8707 ± 85 | ns | *** | ns |
Decanoic acid | 1248 ± 89a | 1061 ± 90ab | 1254 ± 96a | 1132 ± 41ab | 1165 ± 134ab | 1111 ± 51ab | 1204 ± 108a | 1151 ± 9ab | 919 ± 57b | 3350 ± 438a | 2245 ± 1064abc | 2575 ± 462abc | 1078 ± 95c | 2380 ± 34abc | 1833 ± 12bc | 2449 ± 66abc | 3216 ± 196ab | 2775 ± 108ab | *** | *** | *** |
Dodecanoic acid | 64 ± 4a | 47 ± 4ab | 42 ± 3bc | 42 ± 8bc | 27 ± 4cd | 37 ± 9bc | 40 ± 3bc | 38 ± 2bc | 12 ± 5d | nd | 29 ± 19 | 29 ± 8 | 15 ± 2 | 23 ± 7 | 32 ± 13 | 56 ± 6 | 57 ± 35 | 32 ± 4 | *** | ns | *** |
Hexadecanoic acid | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | 168 ± 99 | nd | 72 ± 36 | 78 ± 1 | 254 ± 131 | 174 ± 67 | 186 ± 113 | 83 ± 2 | ns | - | - |
Total acids (%) | 12.2 | 13.3 | 16.7 | 13.1 | 13.0 | 12.8 | 11.4 | 15.1 | 9.3 | 24.4 | 58.7 | 27.0 | 27.5 | 26.4 | 26.7 | 32.6 | 24.0 | 33.4 | |||
4-vinylguaiacol | 36 ± 14 | 32 ± 3 | 33 ± 5 | 42 ± 1 | 42 ± 0 | 29 ± 2 | 42 ± 3 | 38 ± 1 | 43 ± 6 | 133 ± 18bc | 47 ± 23e | 84 ± 0de | 123 ± 11bcd | 116 ± 13cd | 187 ± 14a | 100 ± 13cd | 170 ± 7ab | 93 ± 0cde | *** | - | *** |
4-vinylfenol | nd | nd | nd | nd | nd | nd | nd | nd | nd | 102 ± 31ab | 23 ± 2c | 27 ± 4bc | 37 ± 4bc | 48 ± 1abc | 59 ± 1abc | 46 ± 8abc | 124 ± 51 | 45 ± 17abc | * | - | - |
Total phenols (%) | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.3 | 0.1 | 0.2 | 0.7 | 0.4 | 0.5 | 0.4 | 0.5 | 0.3 | |||
γ-butyrolactone | nd | nd | nd | nd | nd | nd | nd | nd | nd | 434 ± 83a | 133 ± 77b | 253 ± 31ab | 81 ± 2b | 255 ± 42ab | 235 ± 2ab | 183 ± 20b | 308 ± 124ab | 163 ± 8b | ** | - | - |
Total lactones (%) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6 | 0.2 | 0.5 | 0.3 | 0.6 | 0.5 | 0.4 | 0.5 | 0.4 | |||
Acetoin | nd | nd | nd | nd | nd | nd | nd | nd | nd | 85 ± 106 | 12 ± 6 | 15 ± 1 | 8 ± 0 | 23 ± 6 | 26 ± 2 | 14 ± 5 | 29 ± 9 | 20 ± 2 | ns | - | - |
Total Carbonyl C (%) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.0 | 0.0 | 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vilanova, M.; Genisheva, Z.; Tubío, M.; Alvarez, K.; Lissarrague, J.R.; Oliveira, J.M. Rootstock Effect on Volatile Composition of Albariño Wines. Appl. Sci. 2021, 11, 2135. https://doi.org/10.3390/app11052135
Vilanova M, Genisheva Z, Tubío M, Alvarez K, Lissarrague JR, Oliveira JM. Rootstock Effect on Volatile Composition of Albariño Wines. Applied Sciences. 2021; 11(5):2135. https://doi.org/10.3390/app11052135
Chicago/Turabian StyleVilanova, Mar, Zlatina Genisheva, Miguel Tubío, Katia Alvarez, José Ramón Lissarrague, and José Maria Oliveira. 2021. "Rootstock Effect on Volatile Composition of Albariño Wines" Applied Sciences 11, no. 5: 2135. https://doi.org/10.3390/app11052135
APA StyleVilanova, M., Genisheva, Z., Tubío, M., Alvarez, K., Lissarrague, J. R., & Oliveira, J. M. (2021). Rootstock Effect on Volatile Composition of Albariño Wines. Applied Sciences, 11(5), 2135. https://doi.org/10.3390/app11052135