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Abstract: Incremental learning is a methodology that continuously uses the sequential input data to
extend the existing network’s knowledge. The layer sharing algorithm is one of the representative
methods which leverages general knowledge by sharing some initial layers of the existing network.
To determine the performance of the incremental network, it is critical to estimate how much the
initial convolutional layers in the existing network can be shared as the fixed feature extractors.
However, the existing algorithm selects the sharing configuration through improper optimization
strategy but a brute force manner such as searching for all possible sharing layers case. This is
a non-convex and non-differential problem. Accordingly, this can not be solved using powerful
optimization techniques such as the gradient descent algorithm or other convex optimization problem,
and it leads to high computational complexity. To solve this problem, we firstly define this as a
discrete combinatorial optimization problem, and propose a novel efficient incremental learning
algorithm-based Bayesian optimization, which guarantees the global convergence in a non-convex
and non-differential optimization. Additionally, our proposed algorithm can adaptively find the
optimal number of sharing layers via adjusting the threshold accuracy parameter in the proposed
loss function. With the proposed method, the global optimal sharing layer can be found in only six
or eight iterations without searching for all possible layer cases. Hence, the proposed method can
find the global optimal sharing layers by utilizing Bayesian optimization, which achieves both high
combined accuracy and low computational complexity.

Keywords: Bayesian optimization; incremental learning; layer sharing algorithm

1. Introduction

Recently, computer vision technologies, including image recognition and object detec-
tion, have developed rapidly in the field of deep learning [1,2]. Despite these remarkable
achievements, one of the significant challenges in neural network-based computer vision
algorithms is learning new tasks continually, like the cognitive process of human learn-
ing [3–5]. Because in practical situations, new datasets for new tasks are obtained in an
incremental manner, meaning that the network only accesses the dataset for new tasks [6].
Three conditions are needed for the successful incremental learning algorithm:

i The subsequent data from new tasks should be trainable and be accommodated
incrementally without forgetting any knowledge in old tasks, i.e., it should not suffer
from catastrophic forgetting [7].

ii The overhead of incremental training should be minimal.
iii The previously seen data of old task should not be accessible when it is training incre-

mentally.

For incremental learning, most of previous works have focused on utilizing knowl-
edge acquired from previously learned tasks and transferring them to a new task, avoid-
ing “catastrophic forgetting” [8–10]. Li and Hoiem [11] proposed ‘Learning without
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Forgetting (LWF)’ to exploit knowledge distillation [12] as a solution to catastrophic forget-
ting. Using only datasets for the new tasks, they encourage reducing the variance between
the output probabilities of old classes in the original network and that in the updated
new network. In addition, Michieli et al. [13] proposed incremental learning for sementic
segmentation, while previous works focused on only object detection or classification prob-
lems. This methodology introduced four types of knowledge distillation strategies such as
knowledge distilled on the output layer, on the intermediate feature spaces, on dilation
layers, and on the intermediate layers of the decoding. They also tried to freeze only
the first couple of convolutional layers allowing to preserve the lower level descriptions.
However, this method only freezes the first couple of convolutional layers, rather than
considering how much layer can be shared to preserve the feature extraction capabilities
unchanged from previously learned task. Nguyen et al. [12] introduced a methodology
to select how much convolutional layers can be shared for incremental learning by con-
sidering where the forgetting issue comes from. There are two steps of the methodology,
which are ‘Catastrophic Forgetting Dissector (CFD)’ and ‘Critical Freezing’ approaches.
The first step is to explain how forgetting happens, based on the vision network models to
figure out the most flexible convolutional blocks in a network, and the second step is to
freeze weights of the earlier blocks than the most flexible convolutional layers. However, al-
though the relationship between the accuracy and the ratio of freezing weights is a trade-off
to be balanced, this methodology is limited to find the most flexible convolutional blocks
adaptively with given requirements. Sarwar et al. [14] focused on hardware and energy
requirements for model update [15–17], then proposed a ‘clone-and-branch’ technique lever-
aging general knowledge from previous tasks to learn subsequent new tasks by sharing
some initial convolutional layers of the base network as fixed extractors and fine-tuning in
the new branch. This is because a deep convolutional neural network (DCNN) denotes
the neural network that consists of multiple convolutional layers to extract hierarchical
visual features [9,18]. Thus, when the image is fed into a DCNN, the network transforms
the image hierarchically layer by layer. Observing features learned by a convolutional
neural network, the earlier convolutional layers extract basic features like color and texture,
while the later layers extract more detailed and sophisticated features like certain parts of
objects [19–21]. Hence, in [14], they identify to determine how much of the initial convolu-
tional layers in the base network for learning new classes having similar features as the
classes in the base network. However, estimating optimal sharing layer configuration is a
non-convex and non-differential problem, so it cannot be solved using the gradient descent
algorithm or convex optimization method [5,22,23]. Therefore, this method should explore
all possible sharing layer cases to find the optimal ones that meet quality specifications
and approximate the existing network sharing capacity for the new task-specific sharing
configuration via similarity score. Thus, it forces to high computation complexity [24].
To solve this limitation, the proposed method utilizes a Bayesian optimization technique
(BayesOpt) to get the optimal number of sharing layer without considering all possible
cases. The BayesOpt is a class of machine learning-based optimization algorithm, and there
are several previous works that shows BayesOpt guarantees the global convergence in com-
binatorial optimization problem [25,26]. Therefore, with a properly designed loss function,
the proposed algorithm can find a global optimal sharing layer for layer sharing-based
incremental learning.

In summary, the contributions of the proposed method are as follows:

• We firstly define the sharing layer ratio estimation problem for incremental learning
as discrete combinatorial optimization problem with the global optimization strategy.

• By utilizing BayesOpt, the proposed method effectively computes the global optimal
sharing capacity of the existing network for accommodating the new task without
computing all possible cases.

• The proposed algorithm can adaptively find the global optimal sharing configura-
tion with the target accuracy via adjusting the threshold accuracy parameter in the
proposed loss function.
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• To employ BayesOpt, the proposed objective function should be continuous. It is a
discrete function due to the number of layers, designed to represent the continuous
combinatorial optimization problem with a step function.

The remainder of this paper is organized as follows. Section 2 gives the brief explana-
tions of target incremental learning algorithm in [14]. Section 3 introduces our proposed
algorithm focusing on both the proposed objective function and the utilization of BayesOpt.
Section 4 shows the experimental results on the representative classification dataset. Finally,
Section 5 summarizes the proposed algorithm. This work is an extension version of [27].

2. Preliminaries

In this section, we briefly describe the ‘clone-and-branch’ technique in [14] which we
target, and define the problems in the existing method.

2.1. Incremental Learning Algorithm Based on ‘Clone-and-Branch’

A deep convolutional neural network (DCNN) denotes a neural network that consists
of multiple convolutional layers to extract hierarchical visual features [9,18]. By tracking
the feature projection to these convolutional layers, the earlier layers extract the most basic
part of an image, i.e., edges, colors, and textures, while the later layers extract much more
detailed and sophisticated structures [19–21]. For efficient incremental learning, ref. [14]
proposed a training methodology called the ‘clone-and-branch’ technique, depicted in
Figure 1. This method leverages general knowledge from previously learned tasks to learn
subsequent new tasks by sharing initial convolutional layers of base networks. The basic
idea is that the earlier layer of base network can be used for learning new task, especially
in a similar domain of input used in new task [8,9]. Besides, when the branch network is
in training, the last convolutional layers of the base network remain disconnected, so that
the network can learn new tasks one after another without any performance loss in the
knowledge of the base network. In ‘clone and branch’ technique, there are two steps of
training methodology, which consist of both empirical searching method and similarity
scoring method.

Figure 1. The incremental network structure called ‘clone and branch’. The shaded gray rectangle
is the base network. Each time we update the network for the new task, some initial parts of
convolutional layers are shared and frozen, so only the branch part of layers is retrained with the
new task data, while the last layers of the base network remain disconnected.

2.1.1. Step 1: Empirical Searching

In order to select optimal sharing layer number for learning new tasks, they generate
an ‘accuracy vs. sharing’ trade-off curve. Through this trade-off curve, we can observe
the fewer earlier layers are used to share, the better the inference performance of the
branch network, since the layers in a large DCNN can extract more detailed features of
specific tasks as going up to the upper level. On the other hands, if they share more
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than a certain ratio of the network parameters, a drastic accuracy drop can be observed.
Thus, this curve allows to determine the optimal sharing configurations without severe
accuracy degradation on new task. However, there is a large overhead for determining the
optimal sharing configuration that meets quality specifications from this curve. Because for
generating an ‘accuracy vs. sharing’ trade-off curve, they need to utilize only a brute force
manner such as searching for all possible sharing layer cases. This is because the problem
of estimating the optimal sharing layer number is a non-convex and non-differential
problem, so they cannot be solved by using powerful optimization techniques such as the
gradient descent algorithm or other convex optimization strategies, and it leads to high
computational complexity.

2.1.2. Step 2: Utilizing Similarity Score

To get the sharing capacity of the base network for each new-task, a similarity score
is utilized. For generating a similarity score, few random samples of each class in a new
task are passed through the pre-trained base network. From the classification results,
they assume that the number of repeating classes is regarded as a similarity score, which is
approximately quantified the similarity between the classes of the base network and the
new task. This is because if same classification results repeatedly appear in classes of a
new task as in some specific classes of the base network, it can be considered that feature
representation of new classes is similar to that of specific classes in the base network.
However, utilizing the similarity score is not accurate or ideal. Because it can not be robust
on few randomly sampled data, the similarity score essentially has approximation errors
on accuracy degradation in incremental learning.

2.1.3. Problem Definition

Based on what was explained in the prior subsection, ‘clone-and-branch’ optimizes
the objective function as follows:

n∗ = γ× (θn−base/θbase), (1)

where γ is the approximate sharing configuration of the base network at the ‘accuracy
vs sharing’ trade-off curve, θbase is the similarity score between new tasks and the base
network, and θn−base is the similarity score between specific new task ‘n’ and the base
network. Then, n∗ is the optimal sharing configurations of base network for accommodat-
ing a new task ‘n’. As shown in Equation (1), the problem to select the number of global
optimal sharing layers for learning new tasks is non-convex and non-differential which is
difficult to be solved by using a proper optimization strategy. To solve this issue, we firstly
define this as a discrete combinatorial optimization problem and propose a novel efficient
incremental learning algorithm-based Bayesian optimization which guarantees the global
convergence even though the problem is non-convex and non-differential. The proposed
method will be described in more detail in the following sections.

3. Proposed Algorithm

In this section, we explain both the proposed objective function for selecting optimal
sharing layer and optimization details of the proposed algorithm through BayesOpt.

3.1. Combined Classification Accuracy

The combined classification accuracy measures the quality of incremental learning
with n initial sharing layers by activating the combined softmax of both the base network
and the new branch network simultaneously. The equation of the combined classification
accuracy is as follows:
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LAcc(n) =
1
N ∑

xi∈DN

n(xi, di)

n(xi, di) =

{
1 if Fbase,new(xi) = di,
0 otherwise .

,

(2)

where N denotes the total number of data for testing combined classification, xi is the
ith data for testing, di is the label of xi, and n(xi, di) denotes accuracy on xi, respectively.
Therefore, if the output of the combined network has the same value with the ground truth
on xi. i.e., Fbase,new(xi) = di, it provides 1 or otherwise 0.

3.2. Target Combined Classification Accuracy

In our proposed algorithm, there is the target combined classification accuracy,
which should meet some degraded accuracy within the baseline as the required qual-
ity specification. The baseline is the combined classification accuracy without any sharing
layer of the base network.

LTarget = LAcc(0)− TDeg, (3)

where LAcc(0) is the baseline and TDeg is the threshold accuracy degradation value. Then,
LTarget is the target combined classification accuracy. The reason of utilizing LAcc(0) to
define LTarget is that LAcc(0) is the upper-bound value of accuracy, where every layer of the
network is updated for new tasks without any network sharing.

3.3. Proposed Objective Function

The objective function L(n) with sharing some of the initial convolutional layers n
is the linear-combination between LAcc(n) and LTarget. The n∗ is the global optimal con-
figurations for the target combined classification accuracy degradation in the incremental
learning modeling, and it minimizes the objective function. Hence, the objective function
is as follows:

n∗ = arg min
n

L(n),

L(n) = ||LAcc(n)− LTarget||1.
(4)

However, as selecting the number of global optimal sharing layers in the discrete
optimization problem, the objective function has the form of a discrete function. This form
can not be applied to BayesOpt, because the BayesOpt guarantees the global convergence
in continuous but the non-derivative combinatorial optimization problem. To solve this
problem, we change the proposed objective function in a continuous step function. There-
fore, even though the modified objective function is not differential, it can be solved by
BayesOpt. In other words, it is possible to find the optimal global rank via the proposed
objective function.

3.4. Global Optimal Layer Selection via BayesOpt

In the proposed algorithm, the optimal number of sharing layer n∗ is found through
BayesOpt which enables to optimize an objective function, globally. The BayesOpt consists
of two major components: (1) Gaussian process (GP) regression, which statistically defines
the uncertainty of an objective function, (2) an acquisition function which selects where
to sample next [28,29]. The GP regression provides a Bayesian posterior probability dis-
tribution of the proposed objective function, which denotes potential value of L(n) at an
unidentified number of sharing layer n. After the GP regression, the acquisition function
measures the value which would be evaluated for next optimization iteration, in other
words, it decides the best candidate n which induces better objective function value than
previously computed points. In the following sections, we discuss the components of
BayesOpt in detail, first explaining GP regression and describing acquisition functions
including probability improvement (PI) and expected improvement (EI).
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3.4.1. Gaussian Process (GP) Regression

GP regression is a Bayesian statistical approach for modeling an objective function [29].
Just as Gaussian distribution is a distribution over a random variable, completely speci-
fied by its mean and covariance, GP regression is a distribution over objective functions,
identified by its mean function and covariance function. Any finite set of k points in n,
n1:k produces a k-dimensional Gaussian distribution on Rk, taken to be a distribution on
{L(ni)}k

i=1. GP regression considers this k-dimensional Gaussian distribution as the prior
distribution with a mean vector µ(n1:k) and covariance matrix Σ0(n1:k). The resulting prior
distribution on {L(ni)}k

i=1 is defined as follows:

L(n1:k) ∼ Normal(µ0(n1:k), Σ0(n1:k, n1:k)), (5)

where µ0(n1:k) means a vector which is constructed by evaluating a mean function µ0
at each ni in {L(ni)}k

i=1, Σ0(n1:k, n1:k) denotes the covariance matrix which is composed
by evaluating a covariance function Σ0 at each pair of points ni, nj in {L(ni)}k

i=1. In GP
regression, the covariance function should produce large positive correlation when ni and
nj are closer in the input space.

From the above prior distribution, the conditional distribution of L(n) can be com-
puted by Bayesian rule.

L(n)|L(n1:k) ∼ Normal(µk(n), σ2
k (n)), (6)

where µk(n) is
Σ0(n, n1:k)Σ0(n, n1:k)

−1(L(n1:k)− µ0(n1:k)) + µ0(n̂)

and σ2
k (n) is

Σ0(n, n)− Σ0(n, n1:k)Σ0(n1:k, n1:k)
−1Σ0(n1:k, n).

This conditional distribution is called a posterior probability distribution and quanti-
fies the uncertainty of loss function value L(n) on the unidentified sharing layer points n.

The performance of GP regression to represent a valuable distribution on the objec-
tive function depends on the covariance function. Therefore, in the proposed algorithm,
we utilize automatic relevance determination (ARD) Màtern 5/2 function as a covari-
ance function:

Σ0(n, n′) = θ0

(
1 +

√
5r2(n, n′) +

5
3

r2(n, n′)
)

exp
(
−
√

5r2(n, n′)
)

, (7)

where r2(n, n′) is (n− n′)2/θ1, θ0 and θ1 are hyper-parameters. This covariance function
results in twice differentiable sample functions, a hypothesis that corresponds to those made
by, quasi-Newton methods, but without requiring the smoothness of the squared exponential.

3.4.2. Probability of Improvement (PI)

After the GP regression, the acquisition function determines which point in the input
space should be evaluated next via proxy optimization:

nk+1 = arg max
n

f (n, n1:k), (8)

where f (.) denotes the acquisition function.
One intuitive approach is to maximize the probability of improving the best current

point n∗k , which is called as “probability of improvement (PI)”. Under the GP regression,
the PI can be calculated as:

PI(n, n1:k) = P(L(n) ≤ L(n∗k )) = Φ(γ(n)), (9)
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where γ(n) is
L(n∗k )− µk(n)

σk(n)

and Φ denotes the cumulative distribution function of the standard normal distribution.
The drawback of PI is that this strategy is based on pure exploitation. Points that have

a high probability of being smaller than L(n∗k ) will be drawn over points that offer larger
gain but less certainty [28–30].

3.4.3. Expected Improvement (EI)

To mitigate the limitations of PI, the proposed algorithm uses an expected improve-
ment (EI) acquisition function to decide the next observation points [28,31].

EI(n, n1:k) =

{
(L(n∗k − µk(n))Φ(γ(n)) + σk(n)φ(γ(n)) if σk(n) > 0,
0 if σk(n) = 0,

(10)

where φ(.) denotes the standard normal density function.
The EI concerns the predictive distribution of GP regressions to balance the trade-

off of exploiting and exploring [28–31]. In other words, when exploring, EI determines
the next point where the surrogate variance is large. When exploiting, EI decides the
next point where the surrogate mean is high. Therefore, the proposed algorithm can find
optimal and accurate sharing layer point by using BayesOpt. In addition, because the
proposed loss function is shaped in continuous function, the BayesOpt in the proposed
algorithm can converge to the global optimal sharing layer number, meeting incremental
learning conditions. More details can be found in Appendix A.

4. Experiment Results

In this section, we first compare the results using ’Probability of Improvement (PI)’
and ’Expected Improvement (EI)’ as the acquisition functions for BayesOpt and adopt an
acquisition function as a better result to proceed with the following experiments. Then,
we conduct experiments with different proportions of classes in the new class and the
base network, respectively. Accordingly, the results in different cases of experiments
demonstrate the robustness of our proposed algorithm that can adaptively find the optimal
number of sharing layers considering some threshold accuracy degradation. Additionally,
we compare the results of the proposed algorithm with the ‘clone and branch’ technique
with respect to the accuracy and the computational time for estimating the optimal sharing
layer numbers.

4.1. Implementation Details

The PyTorch and GPyOpt machine learning frameworks were used to develop and val-
idate our works. To apply our proposed algorithm, we trained ResNet50 [32] with CIFAR-
100 [33] dataset. In addition, we also trained another network called MoblieNetV2 [34]
with EMNIST [35] dataset to evaluate the robustness of our proposed algorithm. To make
new classes have similar features as the old classes, we divided the dataset to several
sets, which were chosen randomly and mutually exclusive. As shown in Figure 2, we
trained a base network with some randomly chosen classes, and then we updated the
network with remaining classes by retraining a new branch network only. When starting
to retrain the branch network, we used the cloned weights of the base network instead of
randomly initialized weights to have a good starting point for learning a new task. We set
the threshold of the combined classification accuracy to 2% or 3% less than the baseline
accuracy, which was the combined classification without any layer sharing of the base
network. The average computational time to train the branch network searching for a
specific possible layer case took around 52.6 min on a machine with i7 3.4 GHz CPU and
two GTX 1080 graphic cards. Furthermore, as the number of sharing layers increased,



Appl. Sci. 2021, 11, 2171 8 of 15

the number of layers in branch networks needed to be retrained decreased, and then the
overall training time decreased.

Figure 2. Incremental learning model: the network needs to accommodate its capacity by updating it
with sequential new classes.

4.2. Comparison of Experimental Results for ‘PI’ and ‘EI’

In BayesOpt, the acquisition function is a function that recommends the next candi-
date to be explored based on the probabilistic estimation of the objective function by the
Surrogate Model. We conduct experiments with two types, PI and EI, and compare the
results. We utilized the base network which was trained with 70 classes among 100 classes
in CIFAR-100 and updated the branch new network with the rest of 30 classes. Then we set
the threshold accuracy to 1% less than the baseline accuracy, which did not share any base
network layer. Figure 3a shows the result of the selected optimal number of sharing layers
through BayesOpt using ‘PI’ as the acquisition function and Figure 4a shows the result of
that through BayesOpt using ‘EI’ as the acquisition function. The shaded area represents
the uncertainty of unsampled points calculated through GP regression, and the black line is
the posterior mean value of unsampled points. The red points denote the normalized loss
value of sampled points, and the red line is drawn as the ‘PI’ values based on GP regression
results. In Figures 3 and 4b,c, the L2 distance of the consecutive observed points and the
value of the calculated best-selected sample are represented for every iteration, respectively.
Since ‘PI’ considered only the probability of increasing the function values, while ‘EI’ con-
siders both that and the magnitude of improvements. BayesOpt followed a different path
depending on which acquisition function was used as shown in Figures 3 and 4. Therefore,
we chose ‘EI’ as an acquisition function that found the better optimal point with the smaller
number of attempts.

Figure 3. Visualization results of the optimal sharing layer configuration through BayesOpt using ‘PI’
as the acquisition function. (70 classes/30 classes) (a) the result of the selected optimal number of
sharing layers. (b) The L2 distance of the consecutive observed points. (c) The value of the calculated
best-selected sample for every iteration.
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Figure 4. Visualization results of the optimal sharing layer configuration through BayesOpt using ‘EI’
as the acquisition function. (70 classes/30 classes) (a) The result of the selected optimal number of
sharing layers. (b) The L2 distance of the consecutive observed points. (c) The value of the calculated
best-selected sample for every iteration.

4.3. Experimental Results on Resnet50 with CIFAR-100

Two cases of the different proportion classes in CIFAR-100 were conducted to demon-
strate the proposed algorithm could adaptively find the optimal number of sharing layers
considering some threshold accuracy degradation:

• Case 1: utilizing base network which was trained with 70 classes among 100 classes
dataset.

• Case 2: utilizing base network which was trained with 60 classes among 100 classes
dataset.

4.3.1. Experimental Results on Case 1

We utilized the ‘Case 1’ network and updated the branch new network with the
remaining 30 classes. Then we set the threshold accuracy degradation value to 2% less
than the baseline accuracy. Figure 5a shows the result of the selected optimal number of
sharing layers through BayesOpt. Observing the result, we could find out that the 39th
layer was the optimal number of sharing layers with six iterations. This means it could
converge to the solution that satisfied the proposed objective function with only six layer-
attempts of the experiment. Additionally, since BayesOpt followed the global optimization
scheme, the L2 distance of the consecutive points was also very high with updating the
best calculated sample value as shown in Figure 5b,c. The combined classification accuracy
value of the corresponding sharing layer was 67.84%, while the baseline of classification
accuracy was 69.73%, as listed in Table 1. Additionally, we proceeded to experiment with a
different threshold value of the combined classification accuracy degradation, such as 3%
less than the baseline accuracy, as depicted in Figure 6a–c. Thus, we could get the optimal
sharing configuration number of layers to be 47, having an accuracy of 67.03% with only
six iterations.
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Figure 5. Visualization results of the optimal sharing layer configuration through BayesOpt as
threshold accuracy degradation is 2% less than the baseline accuracy. (70 classes/30 classes) (a)
the result of the selected optimal number of sharing layers. (b) The L2 distance of the consecutive
observed points. (c) The value of the calculated best-selected sample for every iteration.

Figure 6. Visualization results of the optimal sharing layer configuration through BayesOpt as
threshold accuracy degradation is 3% less than the baseline accuracy. (70 classes/30 classes) (a)
The result of the selected optimal number of sharing layers. (b) The L2 distance of the consecutive
observed points. (c) The value of the calculated best-selected sample for every iteration.

Table 1. Experimental results on the proposed algorithm in CIFAR-100 (Case 1,2).

Task Classes Network
With Sharing Layers w/o

Sharing Layers

Accuracy
Degradation 2%

Accuracy
Degradation 3% -

T0 70 (Base)

ResNet 50:
53 convolution,

53 BN,
49 ReLU,

1 Averpool,
1 FC layer

- - 81.73%

T1 30 83.33% 81.17% 84.40%

T0–T1 100
67.84%

(the optimal
configuration: 39)

67.03%
(the optimal

configuration: 47)

69.74%
(Baseline)

T0′ 60 (Base) - - 82.27%

T1′ 40 82.10% 78.38% 83.93%

T0′ –T1′ 100
67.78%

(the optimal
configuration: 44)

66.82%
(the optimal

configuration: 49)

69.81%
(Baseline)

4.3.2. Experimental Results on Case2

We utilized the ‘Case 2’ network which was trained with 60 classes in CIFAR-100
dataset and updated the branch new network with the remaining 40 classes. As shown
in Figure 7, the optimal sharing number of layers was 44 in six iterations, when target
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accuracy degradation was 2% which was lower than the baseline accuracy. As listed in
Table 2, The combined classification accuracy of 44 layers sharing in the base network was
67.78% as the baseline accuracy value was 69.81%. Besides, we changed the threshold
accuracy value to 3% less than the baseline accuracy, and we could get the result in Figure 8.
As listed in Table 1, the optimal sharing layer configuration was 49 in eight iterations,
and the combined classification accuracy was 66.82% when the baseline accuracy value
was 69.81%.

Figure 7. Visualization results of the optimal sharing layer configuration through BayesOpt BayesOpt
as threshold accuracy degradation is 2% less than the baseline accuracy. (60 classes/40 classes) (a)
the result of the selected optimal number of sharing layers. (b) The L2 distance of the consecutive
observed points. (c) The value of the calculated best-selected sample for every iteration.

Figure 8. Visualization results of the optimal sharing layer configuration through BayesOpt BayesOpt
as threshold accuracy degradation is 3% less than the baseline accuracy. (60 classes/40 classes) (a)
The result of the selected optimal number of sharing layers. (b) The L2 distance of the consecutive
observed points. (c) The value of the calculated best-selected sample for every iteration.

4.4. Experimental Results on MobileNetV2 with EMNIST

To evaluate the robustness and the extensive applicability of our proposed methodol-
ogy, we conducted experiments training another network called MobileNetV2 [34] with
EMNIST [35] additionally. EMNIST dataset is set of handwritten character digits derived
from the NIST Special Database 19. There are six different splits provided in this dataset,
and we used the EMNIST Balanced dataset which contains a set of characters with an equal
number of samples per class. It was made up of 131,000 gray characters images, which
were converted to 28 × 28 pixel image format and consisted of 47 classes of letters and
digits totally. MobileNetV2 is based on an inverted residual structure where the shortcut
connections are between the thin bottleneck layer. Besides, the MobileNetV2 network
consisted of 52 convolutional layers, and we allowed Bayesian Optimization to select the
optimal number of layers within this range. Then, we divided the EMNIST dataset to two
sets which were chosen randomly and mutually exclusive. The base network which was
trained with 40 classes among 47 classes was utilized and the branch network with the
remaining seven classes was updated. To enable the branch network to utilize abundant
knowledge acquired from the base network, we trained the base network with most of the
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47 classes. The baseline accuracy, where every layer of the network was updated for new
tasks without any network sharing, was 78.66% and then we set the threshold accuracy
degradation value to 8% less than baseline accuracy. Utilizing the proposed method, the op-
timal number of sharing layers was obtained as shown in Figure 9. Observing the results of
experiment, the optimal number of sharing layers was the 36th layer, having the accuracy
of 70.69% with only seven iterations. That means it converged to the optimal solution that
satisfies the proposed objective function with only seven layer-attempts of experiment.

Table 2. Comparison of experimental results for ‘clone and branch’.

Task Classes

With Sharing Layers in Base Network w/o
Sharing Layers‘Clone-and-Branch’

Technique The Proposed Method

Accuracy Time
(hours) Accuracy

The
Optimal

Layer

# of
Attempts/

Time (hours)

Accuracy
(Baseline)

T0 60(base) - - - - 80.90%

T0–T1 60–30 66.73%
(45th layers)

63.23
66.73% 45 4/3.34 68.96%

T0–T2 60–10 68.74%
(46th layers) 68.74% 46 9/3.88 70.34%

Figure 9. Visualization results of the optimal sharing layer configuration through BayesOpt
BayesOpt as threshold accuracy degradation is 8% less than the baseline accuracy. (EMNIST:
40 classes/seven classes) (a) the result of the selected optimal number of sharing layers. (b) The L2
distance of the consecutive observed points. (c) The value of the calculated best-selected sample for
every iteration.

4.5. Comparison of Experimental Results for the ‘Clone and Branch’

In this section, we divided CIFAR-100 into three sets to compare the proposed algo-
rithm with the ‘clone and branch’ technique. The 60 classes (T0) out of the 100 classes were
used for training a base network, and the remaining 30 classes (T1) and 10 classes (T2)
were used for training each incremental branch network. In Table 2, we set the threshold
accuracy of ‘T0–T1’ to 2.33% and that of ‘T0–T2’ to 1.6% for making fair comparisons with
‘clone and branch’ using similarity score [14]. In the case of ‘T0–T1’, the proposed method
could achieve the same accuracy result as the ‘clone and branch’ in only four attempts.
In case of ‘T0–T2’, we got the same result as the ‘clone and branch’ in nine attempts and
since ‘T2’ had 10 classes, which was much smaller than ’Base’, it needed more attempts
to converge to reduce the tendency for combined classification accuracy. In other words,
despite the same accuracy results of both algorithms, the ‘clone-and-branch’ computa-
tionally took a lot of time to obtain the optimal number of sharing layers, searching all
cases by increasing the layer one by one for the branch network in the empirical searching
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step. In Table 2, we could also find out the comparison of computational time between
the ‘clone and branch’ technique and the proposed algorithm. We could observe that
under the same accuracy results, the computational time required to find the optimal
number of sharing layers in our algorithm was reduced by 8.75 times than in the ‘clone
and branch’ techniques. (‘clone and branch’ technique: 62.23 h, the proposed algorithm:
7.22 h) Moreover, our proposed algorithm could adaptively find the global optimal sharing
configuration with target accuracy via adjusting the threshold accuracy parameters in the
proposed loss function.

5. Conclusions

In our work, we introduce a novel methodology for selecting a global optimal sharing
layers for incremental learning via BayesOpt. The proposed methodology can adeptly find
the number of sharing layers according to a given condition of accuracy degradation by
adjusting the threshold accuracy parameter. The experimental results demonstrate that our
method finds the precise sharing capacity of a base network for subsequent new tasks and
converges in a few iterations. In conclusion, our proposed method is accurate and efficient.
We solve the discrete combinatorial optimization problems for incremental learning by
BayesOpt, which ensures global convergence.
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Appendix A. Overview of Bayesian Optimization

As in other kinds of optimization, in Bayesian optimization, we are interested in
finding the global minimum of an objective function f (x), where x is a sample from
the bounded subset of RD. The major difference between the Bayesian optimization
and other optimization techniques is that it composes a probabilistic model of the objec-
tive function f (x). After the probabilistic model composition, the Bayesian optimization
utilizes this model to make decisions about where in X to next identifies the objective
function, while figuring out uncertainty. The basic belief is to use all of the information
available from previous f (x) evaluations and not commonly rely on local gradient approx-
imations [28,30,36]. Therefore, the Bayesian optimization can find the global optimum
of intricate non-convex non-differential functions with comparatively rare evaluations.
The employed probabilistic model is usually a Gaussian process [37] because of its desirable
statistical and computational characteristics. Additionally, to determine the next point to
evaluate, we must define an acquisition function, including probability improvement and
expected improvement, which quantifies global optimal point expectation.
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