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Abstract: Microbial community composition and diversity of agricultural soils primarily depend
on management practices. The application of compost on agricultural fields is known to increase
soil fertility, which can also help to enhance agricultural productivity. The effects of long-term
application of compost along with nitrogen (N), phosphorus (P), and potassium (K) (+Compost)
on soil bacterial diversity and community profiles were assessed by amplicon sequencing targeting
the 16S rRNA gene of bacteria and compared with those on soils that received only NPK but not
compost (−Compost). Ordination plot showed treatments to cluster differently, implying changes
in community composition, which were validated with taxonomical data showing Firmicutes, Acti-
nobacteria, and their related classes to be significantly higher in +Compost than in −Compost soils.
The predicted abundance of functional genes related to plant growth promotion, development, and
decomposition was significantly higher in compost-amended soil than in soils without compost. The
results are of particular importance as they provide insights into designing management practices to
promote agricultural sustainability.

Keywords: long-term fertilization; next-generation sequencing; bacterial diversity; plant growth

1. Introduction

The diverse and abundant population of soil bacteria plays a major role in the func-
tioning of the ecosystem; however, different agricultural management strategies primarily
drive the bacterial community composition and functioning [1,2]. Nutrient amendments in
agricultural soils are usually used to improve plant productivity, but overuse of fertilizers,
like inorganic N, can affect the soil quality by deteriorating soil fertility [3], decreasing crop
yield [4], and affecting bacterial diversity [5,6].

With the increasing importance of soil microbes, which include bacteria, in maintain-
ing soil quality [7], understanding soil microbial processes under different management
schemes is recognized to be important for the sustainability of agricultural ecosystems.
Soil fertility management based on the use of organic fertilizers can promote microbial
processes and increase crop yield [8]. Increment in microbial processes can help bio-
geochemical cycles and nutrient cycling [9], which can assist in the enhancement of crop
productivity [10]. Extensive research has indicated the beneficial effect of organic matter
application in enhancing bacterial diversity and positive interaction with plants [11,12].

Appl. Sci. 2021, 11, 2183. https://doi.org/10.3390/app11052183 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8373-1348
https://orcid.org/0000-0001-7444-5852
https://doi.org/10.3390/app11052183
https://doi.org/10.3390/app11052183
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11052183
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/5/2183?type=check_update&version=1


Appl. Sci. 2021, 11, 2183 2 of 10

Livestock manure and crop residue are two major types of organic matter that have the
potential to mitigate soil degradation caused by long-term chemical fertilization. Several
studies have addressed the impacts of livestock manure and plant residues on soil-dwelling
bacterial communities [13,14]. Crop residues are the most abundant, cheapest, and most
readily available organic waste to be biologically transformed, with rice straw being one
of them, in many rice-growing countries. They have been used as a common organic
material as they contain numerous mineral nutrients, such as nitrogen, phosphorus, potas-
sium, and silicate [15]. The application of straw in soil has been used to improve the
activity of soil bacterial community and promote soil nitrogen and carbon sequestration
potential [16]. Additionally, livestock manure has shown similar characteristics as crop
residues [17]. However, there have been limited studies that concentrate on the effect of
compounded compost made of rice straw and livestock manure on soil bacterial diversity
and community profiles.

Thus, this study was conducted to compare and characterize the bacterial diversity
and community composition of paddy soils treated with NPK combined with rice straw
and livestock manure (+Compost) and that with only conventional fertilizers without
compost (−Compost). We hypothesized that the additional compost amendment will
result in changes in the structural and functional composition of the bacterial community.

2. Materials and Methods

The experimental field (1230 m2) was located at the Paddy Crop Research Division,
Department of Southern Area Crop Science, National Institute of Crop Science, Republic
of Korea. The plots within the experiment were managed and fertilized as mentioned
previously by Samaddar et al. [18]. Briefly, the fertilization trial was initiated in 1967,
and rice (Oryza sativa cv. Hwayeong) was cultivated as a single crop. Out of several
fertilization treatments, two different treatments with three replicate plots (10 m × 10 m
each) for each treatment arranged in a completely randomized manner were used in this
study. The treatments were (1) inorganic NPK fertilized soil sample (−Compost) and
(2) NPK amended with compost (10 tons·ha−1·year−1) fertilized soil sample (+Compost).
NPK fertilizers were applied as urea, fused superphosphate, and potassium chloride
at the rate of 120, 80, and 80 kg·ha−1 from 1967 to 1972. Since 1973, N, P, and K have
been applied at a higher rate of 150, 100, and 100 kg·ha−1, respectively. Compost was
prepared by decomposing rice straw and cattle manure for a period of 6 months, and it
contained 431, 19.8, 5.2, and 29.1 g·kg−1 of total C, N, P, and K, respectively. A total of
five individual subsamples (~20 cm depth) were collected from each of the three repli-
cates of individual treatments in April 2016 and were pooled to make a composite sample
(~100 g) for each replicate. Thus, six individual samples were collected. Soil samples were
sieved (<2 mm) and stored in sterile bags and transported to the laboratory on ice. Soil
DNA was extracted using 0.5 g of fresh soil sample by using a PowerSoil DNA Isolation
Kit (Mo Bio Laboratories, Carlsbad, CA, USA), and DNA was stored at −20 ◦C for all
downstream analysis. The 16S rRNA copy number was estimated using quantitative PCR
(qPCR) with the primers 517F/1028R [19,20] following conditions described in detail by
Samaddar et al. [18]. Briefly, qPCR amplification targeting the 16S rRNA gene of bacteria
was performed using the primers 517F (5′-GCCAGCAGCCGCGGTAA-3′) and 1028R (5′-
CGACARCCATGCASCACCT-3′) with a Rotor-Gene® Q (Qiagen, Foster City, CA, USA) in
10 µL of reaction mixture containing 5 µL of Maxima SYBR Green Master Mix (Thermo
Fisher Scientific Inc., Waltham, MA, USA), 0.4 µM of each of forward and reverse primers,
1 µL of template DNA, and 3.6 µL of sterile distilled water. The reaction conditions for the
qPCR were as follows: 1 cycle at 95 ◦C for 10 min, 45 cycles of denaturation at 95 ◦C for 30 s,
annealing at 60 ◦C for 40 s, and extension at 72 ◦C for 45 s. All sample and standard curve
measurements were performed in triplicate, and negative controls were included in every
qPCR run. For standard curve preparation, the 16S rRNA fragment from Pseudomonas
mendocina PC1 was amplified with the same primer pair under the same thermal condi-
tions. Rotor-Gene Series Software v. 2.0.2 (Qiagen, Foster City, CA, USA) and LinRegPCR



Appl. Sci. 2021, 11, 2183 3 of 10

program v. 2017.0 (Academic Medical Centre, Amsterdam, Netherlands) [21] were used to
analyze the obtained data. The qPCR standard curve efficiency was 1.866 ± 0.031 (n = 12).
Additionally, the amplification efficiency of each sample was considered for calculating
the 16S rRNA gene copy numbers. The isolated DNA was subjected to high-throughput
Illumina MiSeq sequencing at ChunLab, South Korea. The V3–V4 regions of 16S rRNA
genes were targeted and amplified using the primers 341F (5′-TCGTCGGCAGCGTCAG
ATGT GTATAAGAGACAGCCTACGGGNGGCWGCAG-3′; underlined sequences indi-
cating the target) and 805R (5′-GTCTCGTGGGCTCGGAGATGGTATAAGAGACAG
GACTACHVGGTATCTAATCC-3′). The raw data obtained were analyzed using a Mothur
pipeline v. 1.39.5 [22] similarly as performed in our previous studies [18,23]. The raw
sequences were deposited in a Sequence Read Archive (SRA) dataset at NCBI (National
Center for Biotechnology information) under accession numbers SRP127951 (−Compost)
and SRP298800 (+Compost). Analyzed data were normalized to a minimum number
of reads prior to calculation of Shannon and Chao indices in Mothur. Principal coordi-
nate analysis (PCoA) was performed in Mothur. Tukey’s test was used wherever neces-
sary to calculate the differences between the means, which were considered significant
at p < 0.05 using SAS version 9.4 [24]. Bacterial community was characterized using
the linear discriminant analysis (LDA) effect size (LEfSe) tool for biomarker discovery
(http://huttenhower.sph.harvard.edu/lefse/, accessed on 25 February 2021) [25]. The
PICRUSt tool was used to predict functional profiles of bacterial communities from the
bacterial 16S rRNA abundance data [26].

3. Results

The bacterial 16S rRNA abundance, as determined by qPCR, increased significantly by
nearly threefold in +Compost soil compared with −Compost soil (Figure 1a). Analysis of
sequence data yielded on average 782 operational taxonomic units (OTUs) for −Compost
and 750 OTUs for +Compost, which were not significantly different. Additionally, no
significant differences for diversity and richness estimates were observed between the
treatments (Table 1). A 98% coverage from Good’s coverage estimator and rarefaction
curve (Figure S1) showed that sampling was sufficient to estimate those indices. Principal
coordinate analysis (PCoA), performed to estimate the effects of studied treatments on bac-
terial community composition, showed differences in ordination patterns of the treatments
with PC1 explaining 28% of variance and PC2 explaining 22% of variance (Figure 1b).
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Figure 1. (a) The 16S rRNA copy numbers of soil bacterial communities estimated by qPCR. (b) The principal coordinate
analysis (PCoA) showing the clustering of bacterial communities between soil samples. Values for 16S rRNA data are
plotted with mean; error bars indicate standard errors; different letters on plot mean significant difference (p < 0.05) between
treatments according to Tukey’s test.
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Table 1. Summary data for 16S rRNA sequencing results and α-diversity of the soil samples.

Treatment No. of
Sequences

Goods
Coverage (%) No. of OTUs Chao Shannon’s

Index

−Compost 6567 98.6 782 ± 6.71 a 816 ± 8.2 a 6.02 ± 0.02 a

+Compost 6567 98.8 750 ± 13.5 a 775 ± 15 a 5.98 ± 0.01 a

a Values are not significant at p < 0.05 among the treatments according to Tukey’s test.

At taxonomic levels, the sequences from the soils were annotated to 56 different phyla,
of which the 20 most abundant phyla are represented in Figure 2a. Proteobacteria were the
most abundant bacterial phylum in both the studied soil groups, followed by Chloroflexi,
Actinobacteria, Verrucomicrobia, Firmicutes, Bacteroidetes, Nitrospirae, uncultured-OD1,
Gemmatimonadetes, uncultured-TM7, Cyanobacteria, Chlorobi, Elusimicrobia, Fibrobac-
teres, Chlamydiae, Spirochaetes, uncultured-WS3, and Armatimonadetes. Of all phyla, the
abundance of Chloroflexi and Firmicutes varied significantly with Chloroflexi significantly
abundant in−Compost soils while Firmicutes significantly dominating +Compost soils. At
the bacterial order level (Figure 2b), Actinomycetales were the most abundant, followed by
other groups. However, Rhizobiales and Clostridiales were significantly abundant in +Com-
post, whereas the abundance of uncultured-SJA-15 increased significantly in −Compost
soils. LEfSe analysis (Figure 3) demonstrated that −Compost soils had significantly higher
abundance of the phylum Chloroflexi and their related class Anaerolineae and the phylum
Acidobacteria and their related order Acidobacteriales compared with −Compost soils.
On the other hand, +Compost soils had higher abundance of Actinobacteria along with
the family Micrococcaceae and genus Arthrobacter, and Firmicutes along with the class
Bacilli and order Bacillales. Additionally, abundance of the class Alphaproteobacteria, their
related order Rhizobiales, family Hyphomicrobiaceae, and genus Rhodoplanes increased
significantly in +Compost soils compared with −Compost soils. The predicted abundance
of genes encoding enzymes related to plant growth promotion, development, and fatty
acid biosynthesis was significantly increased in +Compost soils when compared with
−Compost soils (Figure 4).
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4. Discussion

Investigation of soil microbial communities, considered as indicators of soil quality, [7]
showed altered compositional and functional profiles of bacterial community in +Compost
and −Compost soils.

The bacterial 16S RNA abundance increased in +Compost soil compared with−Compost
soil, which is in agreement with the observations of Li et al. [27], where the 16S rRNA gene
abundance increased in soils amended with manure and conventional fertilizer compared
with conventional fertilizer alone. Besides, compost amendment did not alter the microbial
diversity or richness, but differences in community composition were observed from
taxonomical data as also observed in other studies [28,29]. Diversity or richness might not
always alter with changes in community composition, as differences in abundance of some
taxonomic groups may be compensated by differences in abundance of other taxonomic
groups [30]. Additionally, it is true that these estimates are powerful tools and provide
us an ecological trend, but it also important to keep in mind that univariate analyses, like
alpha diversity estimates, are just a step in the line of scientific query and do not provide a
definite answer to community outcomes [31] or composition, which was observed to be
altered in the present study.

Proteobacteria were the most abundant phylum belonging to both the studied soil
groups [32,33]. However, the abundance of Chloroflexi was observed to be significantly
higher in −Compost soils along with their order, the uncultured bacterium SJA-15. Zhal-
nina et al. [34] recently reported that a decrease in pH and an increase in total nitrogen
can contribute to a decrease in Chloroflexi population, as they might be following an
oligotrophic lifestyle. Additionally, the amendment of straw and manure results in a
decrease in soil pH and an increase in total nitrogen content in soil [35], which might have
resulted in a decrease in Chloroflexi population in +Compost soils. The relative abun-
dance of Firmicutes and their order Clostridiales was observed to be higher in +Compost
soils, which is important as Firmicutes are regarded as the main phylum that consists
of decomposers and are important for the conversion of organic matters [36]. These ob-
servations also get support from Sharmin et al. [37], where the abundance of Firmicutes
increased in a sugarcane processing plant, which encompasses a large amount of plant
organic matters. Actinobacteria and their related class and genus were also significantly
abundant in +Compost soils, which draws support from studies where Actinobacteria
were sensitive to management strategies [18,38]. A significant increase in the abundance
of Rhizobiales in +Compost soil is interesting as they are one of the most important bac-
terial orders responsible for nitrogen fixation and the enhancement of the total nitrogen
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content of the soil [39]. Changes in bacterial community composition might also have
contributed to changes in the functional profiles of the bacterial community as observed
from the predicted abundance of genes encoding enzymes, which were significantly higher
in +Compost soil when compared with −Compost soil. One of the limitations of amplicon
gene sequencing is that it does not provide information on what the microbes are doing, so
the use of the PICRUSt tool [26], which uses an ancestral-state reconstruction algorithm
to predict the presence of gene families and then combines them to estimate composite
metagenome, is expected to provide an idea about the functional composition of microbes,
which is believed to be informative. This tool has been proved to be highly accurate in
predicting a community’s functional capabilities from 16S abundance profiles [26,40] and
has been popular recently [41–44]. The abundance of genes encoding enzymes, which were
relatively higher in +Compost compared with −Compost, was mostly related to decompo-
sition and plant growth promotion and is well known to be synthesized by Proteobacteria
and Firmicutes [45]. Amidases, which increased significantly in +Compost soil, are charac-
teristic of Actinobacteria [18] and are important for the synthesis of indole-3-acetic acid,
an important plant-growth-promoting hormone [46]. Likewise, bacterial citrate synthases,
which were relatively higher in abundance in +Compost soil, have shown enhanced plant
growth under nutrient-limited soils [47,48]. On the other hand, cellulases, which also in-
creased in +Compost soil, are important for breaking down cellulose into monosaccharides
or shorter polysaccharides [49], which improves soil fertility and plant growth through
accelerated straw decomposition [50]. The requirement of higher amount of ATP in the
decomposition process might have resulted in an increase in the abundance of glucokinase
in +Compost soils [51]. On the other hand, compost addition also improved aldehyde dehy-
drogenase activity, which is known to provide stress tolerance to plants [52]. Furthermore,
enzymes known to act on plant development, like acyl-CoA synthetase, which is essential
for cuticle development [53], microsporogenesis [54], and pollen development [55], also
increased in +Compost soils. Lastly, the increase in the predicted abundance of the fatty
acid biosynthesis-specific enzyme 3-oxoacyl reductase, which is known to improve seed
yield [56], was also higher in compost-amended soils.

5. Conclusions

Long-term amendment of compost altered the bacterial community composition
both structurally and functionally. The relative abundances of a few groups of bacteria,
like Firmicutes, Actinobacteria, and Proteobacteria, were significantly higher in compost-
amended soil, of which several are reported to be beneficial. Moreover, the predicted
abundance of genes coding enzymes related to decomposition, plant growth promotion,
and development increased in +Compost soils compared with−Compost soils alone. Thus,
a combined application of compost and inorganic fertilizers might be a good way to keep
up with the agricultural productivity while keeping the environmental balance.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-341
7/11/5/2183/s1, Figure S1: Rarefaction curves of bacterial 16S rRNA sequences obtained from the
studied soil samples.
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